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ABSTRACT

Context. When selecting a light curve classifier for use as part of a photometric supernova Ia (SN Ia) cosmological analysis, it is
common to make decisions based on metrics of classification performance, such as the contamination within the photometrically clas-
sified SN Ia sample, rather than a measure of cosmological constraining power. If the former is an appropriate proxy for the latter, this
practice would eliminate the computational expense of a full cosmology forecast in the analysis pipeline design process.

Aims. This study tests the assumption that light curve classification metrics are an appropriate proxy for cosmology metrics.
Methods. We emulated photometric SN Ia cosmology light curve samples with controlled contamination rates of individual contam-
inant classes and evaluated each of them under a set of classification metrics. We then derived cosmological parameter constraints
from all samples under two common analysis approaches and quantified the impact of contamination by each contaminant class on the
resulting cosmological parameter estimates.

Results. We observe that cosmology metrics are sensitive to both the contamination rate and the class of the contaminating popula-
tion, whereas the classification metrics are shown to be insensitive to the latter.

Conclusions. Based on these findings, we discourage any exclusive reliance on light curve classification-based metrics for analysis
design decisions, which (counterintuitively) include but are not limited to the classifier choice. Instead, we recommend optimising

science analysis pipeline design choices using a metric of the information gained about the physical parameters of interest.

Key words. methods: data analysis — methods: miscellaneous — methods: observational — methods: statistical —

supernovae: general — cosmological parameters

1. Introduction

More than two decades after the discovery of the accelerating
expansion of the universe (Riess et al. 1998; Perlmutter et al.
1999), Type la Supernovae (SNe Ia) remain a widely used probe
of dark energy with the potential to distinguish between cosmo-
logical models and the values of their parameters, particularly
the dark energy equation-of-state parameter, w. Technological
advances have allowed large photometric surveys, such as the
Sloan Digital Sky Survey' (SDSS, Holtzman et al. 2008),
the ESSENCE Supernova Survey (Wood-Vasey et al. 2007),

* Corresponding author; aimalz@nyu. edu
I https://www.sdss.org/

the SuperNova Legacy Survey (SNLS, Astier et al. 2006),
PAN-STARRS? (Rest et al. 2014), the Dark Energy Sur-
vey? (DES, Dark Energy Survey Collaboration 2016; DES
Collaboration 2018), and the Zwicky Transient Facility* (ZTF,
Bellm et al. 2019), to significantly increase the number of
SNe Ia available for cosmological studies (Hlozek et al. 2012;
Jones et al. 2018; Popovic et al. 2020; Vincenzi et al. 2022).
Soon, the next-generation Rubin Observatory Legacy Survey of
Space and Time> (LSST, LSST Science Collaboration 2009;

2 https://www2.ifa.hawaii.edu/research/Pan-STARRS.
shtml

3 https://www.darkenergysurvey.org/

4 https://www.ztf.caltech.edu/

5 https://www.lsst.org/
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The LSST Dark Energy Science Collaboration 2018) and Nancy
Grace Roman Space Telescope® (Hounsell et al. 2018; Rose et al.
2021) will amass even larger samples of light curves, exceeding
the available spectroscopic follow-up resources that could con-
firm their identities. Consequently, the utility of these samples
for SN Ia cosmology depends heavily on light curve classifiers
that have the ability to classify sources as SNe Ia to be included
in a cosmology sample. This procedure would be done on the
basis of their photometric data including (but not necessarily
limited to) the light curves (Kessler et al. 2010; Hlozek et al.
2023), primarily by machine learning techniques (see e.g. Ishida
2019, and references therein).

Since there is no perfect light curve classifier, we should
expect an unavoidable fraction of false positives (non-SNe Ia
erroneously classified as SNe Ia), which can cause biases in sub-
sequent cosmological analyses’. Imperfect classifications are,
in part, induced by the coarseness of broad-band photometry,
the irregular and sparse timing of observations, and the non-
representativity and incompleteness of training sets or model
libraries. Much effort has been directed towards optimising light
curve classification, largely focusing on the development of
data-driven classifiers (e.g. Muthukrishna et al. 2019; Pasquet
et al. 2019; Moller & de Boissiere 2020; Villar et al. 2020),
and there have been recent attempts made to improve the train-
ing sets used for machine learning methods (e.g. Boone 2019;
Ishida et al. 2019; Kennamer et al. 2020; Carrick et al. 2021).
Valiant efforts toward using probabilistic classifications have
been undertaken (e.g. Kessler & Scolnic 2017), yet the relia-
bility of estimated classification probabilities remains difficult
to characterise (Malz et al. 2019), leading to a continued reliance
on the definition of cosmological light curve samples with a goal
of purity.

It is reasonable to expect that depending on a contaminant
class’s characteristic deviations from an SN Ia light curve shape
and color, the distance modulus derived from an inappropriate
SN Ia fitting procedure may induce a different biasing effect
in the final cosmological results. Thus, it is important not only
to determine which classes of objects are the main sources of
contamination, but also to understand how their contamination
affects the cosmological results. In what follows, we stress-test
the hypothesis that metrics of classification quality are a good
proxy for the impact of impurities on subsequent cosmological
parameter inference.

This work was developed under the umbrella of the Rec-
ommendation System for Spectroscopic Follow-up (RESSPECT)
project®, a joint effort between the LSST Dark Energy Sci-
ence Collaboration’ (DESC) and the Cosmostatistics Initiative '
(COIN), whose goal is to guide the construction of optimal spec-
troscopic training sets for purely photometrically-typed SN Ia
cosmology. The core project uses an active learning approach
(see e.g. Ishida et al. 2019) that identifies, on each night, which
candidate targets should be selected for spectroscopic follow-up
(Kennamer et al. 2020). Considering a fixed amount of telescope
time per night there are different sets of potential objects that
result in the same classification improvement if added to the
training sample; however, the metrics of cosmological parameter

¢ https://roman.gsfc.nasa.gov/

7 The effect caused by false negatives is outside the scope of this work.
8 https://cosmostatistics-initiative.org/focus/
resspectl/

9 https://lsstdesc.org/

10 https://cosmostatistics-initiative.org/
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constraints might be sensitive to effects that the classification
metrics cannot capture.

We present an experiment in which we propagated imper-
fect classifications of synthetic light curves to constraints on the
dark energy equation-of-state parameter, w, and the analysis in
which we evaluated a comprehensive set of metrics to estab-
lish how well those of classification predict those of constraints
on a cosmological parameter. This paper is organised as fol-
lows. We review the mock light curve data set and present our
adjustments made to it and the mock classification generation
process in Section 2. In Section 3, we present the classification
metrics, cosmology fitting procedures, and cosmology metrics.
We present the results of the quantitative analysis in Section 4
and present our conclusions in Section 5. The code necessary
to reproduce our results are available within the COINtoolbox !
and the corresponding output data is available at Zenodo'?.

2. Data

We analyzed the cosmological parameter constraints derived
from mock-classified samples of synthetic light curves, as
described below. Section 2.1 reviews the light curve data set,
Section 2.2 outlines how mock-classified SN Ia samples were
created from the light curve catalogue, and Section 2.3 describes
the procedures used to obtain cosmological parameter con-
straints.

2.1. Light curves and distance moduli

We first describe the pool of light curves from which our cos-
mological samples are defined. Section 2.1.1 introduces the
multi-class light curves and Section 2.1.2 describes the addi-
tional set of SN Ia light curves included as a realistic low-redshift
anchor sample. We then present the process by which distance
moduli are derived from the light curves in Section 2.1.3.

2.1.1. PLASTICC light curves

The Photometric LSST Astronomical Time-Series Classifica-
tion Challenge (PLASTICC; The PLAsTiCC team et al. 2018;
Kessler et al. 2019; Malz et al. 2019; HloZek et al. 2023) was an
open challenge that ran in 2018 and offered a cash prize to cat-
alyze the development of light curve classifiers by the machine
learning community; as PLASTICC aimed to address a Rubin-
wide need for multi-class classification, its metric was agnostic
to specific science goals. This opened up the possibility of subse-
quent works, such as this, to explore metrics for cosmology and
other use cases. The complete unblinded PLASTICC data set'?
(PLASTiCC-Modelers 2019) includes simulations of three years
of observations for LSST.

The data set was generated considering a flat dark-energy-
dominated cosmology with dark matter energy density of Q,, =
0.3 and dark energy equation of state of w = —1. Fourteen
galactic and extragalactic classes are represented in the train-
ing set and 15 classes are present in the test set. In this work,
we limit our sample to extragalactic (z > 0) sources in the test
set, including supernova type Ia (SN Ia), supernova type lax
(SN Iax), supernova type Ia-91bg (SN Ia-91bg), core-collapse
supernova type Ibc (SN Ibc), core-collapse supernova type II

" https://github.com/COINtoolbox/RESSPECT metric
12 https://zenodo.org/records/13320724
3 https://zenodo.org/record/2539456
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(SN 1II), super-luminous supernova (SLSN), tidal disruption
event (TDE), kilonova (KN), active galactic nucleus (AGN),
intermediate luminous optical transient (ILOT), calcium-rich
transient (CaRT), and pair-instability supernova (PISN) models.
For more details about the PLASTICC models and simulations,
we refer to Kessler et al. (2019).

The PLASTICC simulations assumed a baseline cadence
model that has two distinct observing strategies: Wide-Fast-
Deep (WFD) and Deep-Drilling Fields (DDF), both covering
observations in all LSST filters (ugrizY) and following the trig-
ger model described in Section 6.3 of Kessler et al. (2019).
The WFD covers 17950 deg? every few days, producing a large
set of sparsely sampled light curves. The DDF covers a much
smaller part of the sky and observes in at least two filters every
night, yielding light curves having higher signal-to-noise ratio
(S/N) and denser time-sampling. To isolate the effect of differ-
ent survey strategies on the final cosmological results, we present
separate results for DDF and WFD light curves.

2.1.2. Low-z anchor light curve sample

We supplement all our synthetic sub-samples of PLASTICC
light curves with a simulated low-redshift sample of 147 SNe Ia
with 0.01 < z < 0.11 as a stand-in for the common practice of
supplementing photometric SNe Ia samples with high-fidelity,
spectroscopically-confirmed SNe Ia. The simulation is gener-
ated using SNANA using the SALT2 model from Betoule et al.
(2014) and reproduces the FOUNDATION sample in Jones et al.
(2019). This low-z sample acts as an anchor for the Hubble dia-
gram, thus guaranteeing numerical convergence for samples with
higher contamination fractions.

2.1.3. Distance modulus estimation

We assumed the true redshifts of the host galaxies were known
to avoid introducing the nonlinear bias from the PLASTICC
photo-z model. All PLASTICC test set light curves were subject
to the SALT? fitting and standardisation procedure (Guy et al.
2007), and only light curves for which this process converged
were used in the subsequent analysis. This procedure naturally
selects objects whose light curves are similar to the SALT2 SNIa
model, reducing the total number of available light curves'* and
raising the proportion of SN Ia, as detailed in Table 1. In other
words, SALT2 convergence is an effective classifier of SNe Ia,
with 84% purity and 64% completeness under the DDF observ-
ing strategy, and 91% purity and 61% completeness under the
WEFD observing strategy, but also that the surviving non-SN Ia
light curves are those with properties most similar to SNe Ia.
Subsequently, we used the SALT2mu (Marriner et al. 2011)
program within the SNANA package, which uses the “BEAMS
with Bias Correction” (BBC; Hlozek et al. 2012) method to cal-
culate bias-corrected distance moduli of the post-SALT2 light
curve sample (Marriner et al. 2011; Kessler & Scolnic 2017).
It fits the population-level nuisance parameters o and S decou-
pled from the cosmology fit and determines the bias-correction
terms by simulating large light curve samples and running them
through the same analysis procedure. Here, we simulate the bias-
correction samples using the same SNANA inputs (i.e. redshift,
luminosity-color, luminosity-stretch parameters) that generated
the PLASTICC data and the low-z sample, while increasing the
sample size by a factor of ~10. Since the bias-correction sam-
ples were simulated with the same selection functions as were

4 Only 32% of the objects in the original data survived this procedure.
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Table 1. The populations of light curves under each survey strategy that
survive a SALT?2 fit, as well as the survivor fraction after the SALT2 fit
criterion.

DDF % % WFD % %

Class | N total SALT2 N total SALT2
Ia 8613  84.2 68.1 999789 913 60.7
1I 1028 10.0 6.4 72319 6.6 7.4
Tax 362 3.5 448 8993 0.8 14.3
Ibc 196 1.9 8.9 11 603 1.1 6.7
CART 19 0.2 13.4 1136 0.1 11.9
AGN 1 <0.1 0.3 146 <0.1 0.1
91bg 4 <0.1 1.1 308 <0.1 0.8
SLSN 4 <0.1 4.1 503 <0.1 1.4
TDE 1 <0.1 1.5 - - 0
PISN - - 0 9 <0.1 0.8
ILOT - - 0 22 <0.1 1.3
KN - - 0 1 <0.1 0.8
Total 10228 100 N/A 1094829 100 N/A

Notes. For each survey strategy, three per-class measures of original
PLASTICC light curves that survived a SALT2 fit: left: the raw num-
ber of light curves of each class that survived the SALT2 fit; middle:
the percentage of the total number of surviving light curves that are of
the indicated class; right: the percentage of original PLASTICC light
curves of the indicated class that survived the SALT?2 fit.

used in the original simulations, the BBC method corrects for the
simulated selection bias. However, we did not utilise the BBC
framework to take into account the classification probabilities
and assumed all the objects in the final cosmology sample were
SNe Ia, as it would require more careful treatment to the clas-
sification probabilities to properly use them and such study is
beyond the scope of this paper. We then utilised a 1D bias cor-
rection method within SNANA, which only determines the bias
in distance modulus as a function of redshift in the context of
SALT2mu (i.e. it does not calculate biases in the determination of
other SALT?2 parameters).

2.2. Mock SN la classification

We built the light curve samples for the cosmology calculations
by considering mock classifiers of the full set of light curves
shown in Table 1, in a procedure analogous to that of Malz et al.
(2019). In Section 2.2.1, we describe the mock classifiers and
in Section 2.2.2, we address the choice of the size of the mock
samples used in the cosmological analysis.

2.2.1. Mock classifiers

Though modern classifiers often provide classification probabil-
ities to sophisticated SN Ia cosmology pipelines, the scope of
our experiment only needed deterministic classifications neces-
sary to define light curve samples. We defined three baseline
mock classifiers: ‘perfect’, ‘random’, and ‘fiducial’. The ‘per-
fect’ classifier yields an entirely pure sample of SNe Ia, and
the ‘random’ classifier yields a sample with the class propor-
tions of the underlying post-SALT2 PLASTICC data set given in
Table 1. The ‘fiducial’ classifier emulates a realistically competi-
tive classifier, modeled after Avocado, the winner of PLASTICC
(Boone 2019), defined by the pseudo-confusion matrix provided
in Figure 8 of HloZek et al. (2023).

A130, page 3 of 9
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In addition to these baseline classifiers, we constructed mock
classifiers with controlled levels of contamination, considering
one contaminant class at a time. To generate each light curve
sample, we set a desired sample size, N, comprised of the num-
bers of true positives, TP (true SN Ia correctly classified as
SN Ia), and false positives, FP (true non-SN Ia misclassified
as SN Ia). For a sample of N = TP + FP light curves classi-
fied as SN Ia, a fraction, c, belong to the contaminating class,
whereas the remaining 1 — ¢ are true SN Ia. We considered target
contamination rates of ¢ = 0.01, 0.02,0.05, 0.1, 0.25.

We could certainly conceive of more sophisticated mock
classification schemes than those we considered here. For exam-
ple, all the mock classifiers in this experiment lack a notion
of false negatives FN, as their effect would degenerate accord-
ing to the different sample sizes being tested. This is, of
course, the case — unless the selection is conditioned on source
properties, such as redshift or peak magnitude. Such an exten-
sion of this study could be informative, but this is beyond
the scope of this initial investigation and shall be left for
future work.

2.2.2. Cosmological sample size

Independently of the bias due to contamination, a larger cosmo-
logical sample will yield tighter constraints on the cosmological
parameters. To isolate this effect, we performed experiments
with a shared sample size of N = TP + FP = 3000 cosmo-
logical light curves. Although LSST’s photometric cosmology
sample will be much larger, we performed a series of tests with
different samples sizes which showed that keeping a sample
comparable to that of modern spectroscopic SN Ia cosmology
analyses was enough to access the impact in cosmology that we
sought to measure, while maintaining computational cost within
feasible values for this proof of concept work. Nevertheless,
we expected that the qualitative impact of different contami-
nant populations at each given contamination level would be
preserved among samples of constant total size in the limit-
ing regime where it is much larger than the low-z (z < 0.1)
anchor sample size; given current estimates of detection rates,
this assumption shall hold for the duration of LSST (see, e.g.
Gris et al. 2023).

As a consequence of enforcing the intrinsic balance of
classes under the WFD and DDF observing strategies, some rare
classes did not have enough members to draw without replace-
ment the desired FP = ¢N non-SNe Ia light curves for the
contaminated samples at all target contamination rates c. To pre-
serve the realism of the test cases, we created samples only for
reasonable values of ¢ given the potential pool of light curves
shown in Table 1. In DDF, we considered only ¢ less than or
equal to the ratio of contaminant light curves to SN Ia light
curves. Because the quality of light curves in WFD varies so
much, we performed ten trials, drawn with replacement, to estab-
lish error bars on the metrics; we thus considered only values of
¢ less than or equal to ten times the ratio of the contaminant to
SN Ia in the post-SALT2 PLASTICC sample.

2.3. Cosmology constraints

Using distances obtained from SALT2mu, we subjected all our
mock samples to a Hubble Diagram fit to obtain constraints
for the dark energy equation of state parameter, w, and the
matter density parameter €,. For comparison, we employed
two approaches to constraining the cosmological parameters,

A130, page 4 of 9

Table 2. Description of the StanIa model for cosmological parameter
inference.

Physical constants
Hubble constant: Hy = 70 km/s/Mpc

Speed of light: ¢ = 3 x 10° km/s

Theoretical model relationships (flat cosmology)
Proper distance: E(z) = 1

f() VO (14283 +(1-Q,,)(142)3w+D
Distance modulus: u(z) = M + 51og, [HLO(l + Z)E(z)]

Priors

Intercept: M ~ 47(0,50)

Matter energy density: Q,, ~ .47(0.3,0.01)
Dark energy equation of state: w ~ % (—11,9)

Likelihood
Measured distance modulus: g ~ A (1, (2,,)

the wfit method" implemented within SNANA (Kessler et al.
2009) and a simple Bayesian model for parameter inference
(StanIa), which produces full posterior estimates for w and €2,,,.
The StanIa model structure and priors are given in Table 2. As
the tight prior on €, dominates the joint posterior samples, we
present here only the constraints on w.

Although StanIa'® does not contain many of the nuances
of modern cosmology pipelines (e.g. Hlozek et al. 2012; Kessler
& Scolnic 2017; Hinton & Brout 2020), it is not an oversim-
plification given the goal of this paper. RESSPECT seeks not
to perform a cosmological analysis to derive physically mean-
ingful constraints; rather, we aim only to quantify the effect
of training set imperfection on derived cosmology results in
order to identify the follow-up candidates whose inclusion in
the classifier’s training set will be most impactful to down-
stream cosmological constraints. We thus consider a simpli-
fied cosmology pipeline and deterministic classification sce-
nario, resulting in a conservative framework to evaluate the
potential impact on cosmology under each case of imperfect
classification. As our goal is to determine if the classifica-
tion metrics are sufficient for RESSPECT or if RESSPECT
needs a cosmology metric to optimally allocate spectroscopic
follow-up resources for training set construction, we require
a computationally light pipeline working on incomplete data.
Thus, the framework described here is entirely appropriate even
if it would be insufficient for a research-grade cosmological
study.

3. Methods

We evaluated two categories of metrics: Section 3.1 describes
those based on the degree of non-la contamination within each
mock cosmological sample, and Section 3.2 describes those
based on cosmological parameter constraints obtained from the
same samples.

3.1. Metrics of classification

Deterministic classifications are often summarised by a confu-
sion matrix (Hlozek et al. 2023), an array of the number of

15 See  SNANA manual, Section 11 at https://github.com/
RickKessler/SNANA/blob/master/doc/snana_manual.pdf

16 https://github.com/COINtoolbox/RESSPECT _metric/blob/
main/utils/cosmo.stan
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objects truly of class i classified as class j for all pairs i, j =
1,...,M for M classes in total. Since the application of SN Ia
cosmology is concerned only with the classification of light
curves as SNe Ia or non-SNe Ia, we evaluate the classification
metrics in the binary case of M = 2, namely, SN Ia vs. non-
SN Ia. In addition to TP and F P defined in Section 2.1, we must
also define the numbers of true negatives TN (true non-SN Ia
correctly classified as non-SN Ia) and false negatives F'N (true
SN Ia misclassified as non-SN Ia).

We evaluate the following classification metrics, initially
proposed within the SNPHOTCC (Kessler et al. 2010):

— The accuracy is defined as

TP+TN
=, 1
N M

where a value closer to unity is more accurate.
— The ‘purity’ (also known as ‘precision’) is defined as

TP

= 2
P TP+ FP’ )

where a value closer to unity is more pure.
— The ‘efficiency’ (also known as ‘recall’) is defined as

TP

R=TpFN’ )

where a value closer to unity is more efficient.
— The SNPHOTCC defines a ‘figure of merit’ (FoM):

false P TP
FoMytse = FOM(W™™°) = X R
TP+FN TP+ Whlsex Fp

“)

where the factor Wils¢ penalises false positives. For Walse =

1, FoM, = R X P. We used FoM3 in this paper to match the

SNPHOTCC value of Wil = 3,
Figure 1 shows the aforementioned metrics as a function of con-
tamination parameter ¢, showing that they are wholly degenerate
with one another and insensitive to the contaminant types. As
a consequence, we only need to evaluate one classification met-
ric and choose FoM3, noting that in our experimental design,
TN =FN =0.

3.2. Metrics of cosmology constraints

We explored the metrics of derived cosmological constraints
between our synthetic SN Ia samples, rather than relative to an
absolute true cosmology. In doing so, we were able to account for
the fact that the purity of the SN Ia sample is not the only factor
influencing the quality of the cosmology results; for example, the
quality of the light curves themselves and the analysis method-
ology chosen both impact the accuracy and precision of derived
constraints. This paper aims to isolate such effects from that of
systematic deviations from a perfect classification.

We compared cosmology metrics that can be divided into
three broad categories: a Fisher matrix based on redshifts and
distance moduli under the ACDM cosmological model, a Gaus-
sian approximation to the inferred w, and metrics of the inferred
posterior probability distribution of w, each relative to that of the
‘perfect’ sample described in Section 2.2.1).

— The Fisher matrix (FM) from the light curve fits: Frequently
used to guide survey design decisions, the Fisher matrix
uses redshifts and estimated errors on distance moduli under
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accuracy

0.425 0.275 0.300 0.325
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Fig. 1. Traditional deterministic metrics as a function of each other
for increasing values (arrows) of the contamination parameter (¢ =
0.01,0.02,0.05,0.10, 0.25), indicated in light orange, dark orange, pink,
violet, and navy, respectively. Though these metrics are functions of the
same four variables (see Equations (1), (2), (3), and (4)) and should
thus be expected to have consistent relationships at all values of ¢, the
detailed shapes depend on the values of the true and false positive and
negative rates; this demonstrative plot thus reflects the proportions of
SNe Ia and non-SNe Ia under the DDF observing strategy from Table 1
and our cosmological sample size of N' = 3000 (see Section 2.2.2).
As anticipated, these metrics are degenerate with one another and are
insensitive to the contaminating class makeup, only probing the con-
tamination rate.

a Gaussian likelihood centered on a given mean model
(Albrecht et al. 2006), probing only the expected uncer-
tainties in inferred parameters. We calculated the FM at
the expected mean of w = —1 and Q,, = 0.3, given a flat
universe, and report the fractional difference AFM on the
inverse of its diagonal component o2 between a given light
curve sample’s estimate and that of the ‘perfect” sample.

— The summary statistics of estimated cosmological parame-
ters: wfit assumes a Gaussian likelihood centered on the
ACDM model and produces an estimated mean, fi,¢i+, and
standard deviation, &fir, Whereas StanIa, on the other
hand, yields posterior samples of w, which define a univari-
ate probability density function (PDF). For the sake of com-
parison, we fit a normal distribution to the StanIa posterior
samples of w to obtain fistanta and G stanra and observed their
relative responses under different contamination levels and
contaminant classes.

— Metrics of cosmology posterior PDFs: The posterior samples
of w from the StanIa fit define a PDF, which we flexibly fit
and evaluate on a fine grid using kernel density estimation
(KDE), that is, eliminating the Gaussian assumption of the
aforementioned cosmology metrics. We then performed a
quantitative comparison of the KDEs p,,,.x(w) for each syn-
thetic light curve sample by comparing them to that of the
‘perfect’ sample po(w) by evaluating two metrics:

— The Kullback—Leibler divergence (KLD),

&)

KLD = —fﬁo(w)ln[ﬁmmk(w)}dw,

DPo(w)

is an information theoretic measure of the loss of informa-
tion due to using an approximation, p,,,.x(w), rather than

A130, page 5 of 9



Malz, A. 1, et al.: A&A, 694, A130 (2025)

the true distribution po(w); the KLD has been used before
in extragalactic astrophysics (Malz et al. 2018; Kalmbach

et al. 2020).
— The Earth-Mover’s distance (EMD),
dw,

EMD = f \ f Bo(w)duf — f Broci ()
©)

also known as the first-order Wasserstein metric, can
be intuitively understood as the integrated discrepancy
between a pair of PDFs, defined in terms of their cumu-
lative distribution functions (CDFs); the EMD has been
used before in cosmology (e.g. Moews et al. 2021).
For both the KLD and EMD, lower values indicate a closer
correspondence between distributions.

4. Analysis and results

Recalling that the goal of this investigation is to assess the degree
to which classification metrics are consistent with metrics of cos-
mological constraints in the context of RESSPECT’s need for an
internal metric to optimise classifications that are ultimately des-
tined for SN Ia cosmology, we present a comprehensive compar-
ison of various metrics evaluated on incrementally contaminated
samples.

Our first goal is to quantify the effect on parameter infer-
ence due to sample size. Figure 2 shows posterior samples of
w for the ‘perfect’, ‘random’, and ‘fiducial’ cases on mock cos-
mological light curve samples for different sample sizes. As the
observed sensitivity of the posterior PDFs on w to sample size
matches intuitive predictions (i.e. narrower for larger sample
size), it is thus safe to use TP + FP = 3000 ‘post-classification’
light curves in our cosmological samples. The relatively small
difference between the posterior widths for the DDF and WFD
light curves could be considered a natural consequence of the
fact that the samples include only light curves that survived a
SALT2 fit and thus have error bars of comparable size on the
distance moduli that enter the cosmology fits.

The tremendous gap between ‘random’ and the other two
samples in the DDF is a direct consequence of the intrinsically
higher S/N and sampling rate defining the DDF observing strat-
egy. We also see that under DDF conditions, the constraints of
the realistic ‘fiducial’ sample are close to the results for the ‘per-
fect’ sample. For the WFD, however, the distinction between the
three cases is less pronounced, although the ‘random’ sample
still outputs the largest biases independent of the sample size.

Figures 3 and 4 depict the behavior of our metrics as a func-
tion of the contaminant class and contamination level for the
DDF and WFD observing strategies, respectively. Under both
observing strategies, we note that the metrics of derived cosmo-
logical constraints are sensitive to both the contaminant class and
the contamination rate, whereas the classification metric probes
only the rate.

Under the DDF, in Figure 3, we observe that AFM shows
a comparable impact for 2% SN II and 1% SN Ibc, and, sepa-
rately for 5% SN II and 2% SN Ibc contamination, which are
themselves on par with that of the random classification scheme,
indicating that SN Ibc contaminants are effectively twice as dam-
aging as SN II contaminants, and that random contamination
isn’t much worse than that. However, the metrics derived from
a full cosmological analysis tell a different story; the constraints
from wfit and StanIa agree that even 1% contamination in the
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Fig. 2. StanIa posterior PDFs of w for different cosmological sample
sizes (line styles) from the DDF and WFD observing strategies (panels)
under the ‘perfect’ (black), ‘random’ (magenta), and ‘fiducial’ (cyan)
mock classification schemes, with the true value of w indicated by a
brown vertical line. We note that the ‘random’ classifier’s constraints
in the DDF underestimate w by so much that they cannot be shown on
these axes. As the constraints are not very sensitive to the sample size,

we can safely use a cosmological sample of 3000 light curves in our
tests.

DDF with SN II skews the mean @ beyond the 1-o0- error bars
of the pure sample, whereas even 5% SN Ibc or SN Iax do not.
Critically, the bias due to even a low DDF contamination rate by
SN II is on par with what would result from the realistic ‘fidu-
cial’ classifier, a concern mirrored in the response of the metrics
of the posterior PDFs of w from StanIa.
For visualisation purposes, Figure 4 displays error bars cor-
responding to the greatest deviation from the mean across the
ten trials rather than the standard deviation, except for the FOM3
metric, which lacks error bars because it is the same across all
trials by construction. The most striking effect in Figure 4 is
that the variation in metric values due to the random sample of
included WFD light curves dominates over the impact of the dif-
ferent contaminant identities; there is a large range of light curve
quality under the WFD observing strategy, and our relaxed sam-
ple selection criteria permit what amounts to only a few light
curves to sway the cosmological constraints. Beyond that, we
observe that 1% and 2% contamination by all classes are indis-
tinguishable under the WFD by all cosmology metrics and do not
induce a bias inconsistent with a pure sample nor the ‘fiducial’
mock classifier, a reassuring discovery. Though there is a weakly
class-dependent effect at higher contamination rates according
to the estimated mean and standard deviation on w by both fit-
ting methods, which shows that 5% contamination with SN Iax is
worse than 5% contamination by SN Ibc or SN 1II, the effect only
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Fig. 3. Metrics summary for the DDF, with metric values on the x-axes and light curve samples on the y-axis, grouped by contaminant (shape
and light purple backgrounds) and ranked by contamination fraction (color) aside from the ‘perfect’, ‘fiducial’, and ‘random’ light curve samples
defined in Section 2.2, using the same colors for the named mock samples as in Figure 2. Reference values (vertical lines; dash-dotted black for the
pure sample with 1-o- error regions in gray and solid brown for the truth) are provided where appropriate. The constraints on w (central two panels)

include both the mean, 1, and standard deviation, 2.
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Fig. 4. Equivalent of Figure 3 for the WFD based on ten realisations of each sample. The plotted uncertainties in the constraints on w (central two
panels) correspond to the largest o2 out of the ten trials. Similarly, the plotted uncertainties on the posterior PDFs on w (rightmost two panels) and
the Fisher Matrix fractional difference (second panel from left) indicate the maximum and minimum metric values out of the ten trials.

persists at 10% contamination for wfit and at 25% for StanIa,
suggesting a need for more WFD trials.

Figure 5 directly compares the relative response of the FOMj3
classification metric and the KLD and EMD of posterior sam-
ples of the cosmological parameters for subsamples of varying
contamination rate and contaminant within the DDF and WFD
observing strategies. The clustering of points at discrete values
of FOM3 are a result of its insensitivity to contaminant class, and
the differentiation within each group demonstrates the sensitivity
of the resulting cosmological parameter constraints to the type
of contaminant at the same contamination rate. As is observed

in Figures 3 and 4, we see stratification of cosmology metric
values by contaminant class, somewhat suppressed in the WFD.
This visualisation more directly highlights the conclusions from
Figures 3 and 4, namely: (1) at a constant contamination rate,
there are systematic, quantifiable differences in the derived cos-
mology depending on the contaminant class; (2) the effect
establishes that contamination by SN II more strongly impacts
the derived cosmology; (3) the variation between contaminant
class is subdominant to the quality of the light curves under each
observing strategy; (4) and both metrics of posterior samples of
w are in qualitative agreement.
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Fig. 6. Hubble diagram (upper) and residuals (lower) showing the ACDM model (solid black line) and two others depicting extreme dark energy
behaviors (w = -2 - dashed, and w = 0 — dot-dashed). The gray points correspond to 2970 randomly selected SNe Ia from the available sample plus
the low-z anchor SNe Ia, and the contaminants are shown at 1% contamination (class-specific shapes and colors) in DDF (left) and WFD (right).
While some individual contaminant light curves have SALT2mu fit parameters far from those of the true SNe Ia, there is nontrivial overlap that
would preclude simply classifying by eye to remove them from a sample entirely as expected given the selection criterion of a convergent SALT2mu
fit); in the DDF, this effect is noticeable among the SN-Iax contaminants as well as SN-Ibc and SN-II at z > 0.8, whereas in the WFD, the problem
is more severe, affecting all contaminants except CART and at redshifts as low as z > 0.2.

Figure 6 shows that the severity of bias in the estimated cos-
mological parameters as a function of the contaminant class is
also related to how far off the estimated distance moduli are from
the truth when fitting non-SN Ia with the SN Ia standardisation
model, as expected. More importantly, it shows that individ-
ual contaminating light curves cannot, in general, be isolated
from the SN Ia sample based on their fitted absolute magnitude,
particularly at higher redshifts and under the WFD observing
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strategy. In effect, our mock sample generation procedure probes
the most extreme bias that could be caused by each contaminant
class. This test effectively includes redshift-dependent misclassi-
fication, which would lead to more of the brightest contaminants
at higher redshift and those most similar to SN Ia in lower red-
shifts, thus imposing a more subtle bias in the cosmological
parameter constraints that would nonetheless not be reflected in
the classification metrics alone.
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5. Conclusions

Metrics of SNe Ia classification often serve as proxies for met-
rics of cosmological constraints derived from samples of light
curves classified as SNe Ia, particularly in applications assessing
the performance of light curve classifiers intended for cosmolog-
ical analyses. In this work, we test the strength of the assumption
underlying this usage and find that classification metrics are
not always an appropriate substitute for metrics of cosmologi-
cal parameters; the metrics of cosmological constraining power
are sensitive to the composition of the contaminating popula-
tions as well as the contamination rate, but only the latter is
probed by classification metrics. We thus recommend the use
of cosmology-based metrics in place of classification metrics
when optimising analysis pipeline designs, despite their asso-
ciated computational expense (except when the light curves are
noise-dominated).

In the context of RESSPECT, the above results confirm that
relevant information is encapsulated in a metric of impact on
cosmological constraints and must thus be considered as a factor
in selecting spectroscopic follow-up candidates for inclusion in
the training set within the active learning pipeline. More generi-
cally, as astronomical classifications are of course used for many
other population-level studies, including and beyond transients,
we encourage a healthy skepticism to those aiming to use such
classifications in further scientific analyses. It would be prudent
to confirm any correspondence between classification perfor-
mance and metrics tailored to a specific science case prior to
any decision-making on analysis approaches.

Acknowledgements. This paper has undergone internal review in the LSST
Dark Energy Science Collaboration. The authors would like to thank Renée
HloZek, Alex Kim, and Maria Vincenzi for serving as the LSST-DESC pub-
lication review committee, as well as David O. Jones, for his comments and
suggestions that improved the quality of this manuscript. AIM acknowledges
support during this work from the Max Planck Society and the Alexander von
Humboldt Foundation in the framework of the Max Planck-Humboldt Research
Award endowed by the Federal Ministry of Education and Research. A.LM.
is supported by Schmidt Sciences. M.D. is supported by the Horizon Fellow-
ship at the Johns Hopkins University. S.G.G. acknowledges support by FCT
under Project CRISP PTDC/FIS-AST-31546/2017 and UIDB/00099/2020. L.G.
acknowledges financial support from the Spanish Ministry of Science and Inno-
vation (MCIN) under the 2019 Ramon y Cajal program RYC2019-027683 and
from the Spanish MCIN project HOSTFLOWS PID2020-115253GA-100. This
work is financially supported by CNRS as part of its MOMENTUM programme
under the project Adaptive Learning for Large Scale Sky Surveys. The Cosmo-
statistics Initiative (COIN, https://cosmostatistics-initiative.org/)
is an international network of researchers whose goal is to foster interdisci-
plinarity inspired by Astronomy. The DESC acknowledges ongoing support
from the Institut National de Physique Nucléaire et de Physique des Partic-
ules in France; the Science & Technology Facilities Council in the United
Kingdom; and the Department of Energy, the National Science Foundation,
and the LSST Corporation in the United States. DESC uses resources of the
IN2P3 Computing Center (CC-IN2P3-Lyon/Villeurbanne — France) funded by
the Centre National de la Recherche Scientifique; the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231; STFC DiRAC HPC Facilities, funded by UK BIS
National E-infrastructure capital grants; and the UK particle physics grid, sup-
ported by the GridPP Collaboration. This work was performed in part under
DOE Contract DE-AC02-76SF00515. Author contributions. A.l. Malz: concep-
tualisation, formal analysis, investigation, methodology, software, validation,
visualisation, writing — original draft, writing — review & editing; M. Dai:

data curation, formal analysis, investigation, methodology, software, validation,
writing — review & editing; K.A. Ponder: conceptualisation, formal analysis,
investigation, methodology, software, validation, visualization, writing — original
draft; E.E.O. Ishida: conceptualisation, data curation, formal analysis, funding
acquisition, project administration, resources, software, supervision, validation,
visualisation, writing — original draft, writing — review & editing; S. Gonzalez-
Gaitain: conceptualisation, methodology, software, writing — review & editing;
R. Durgesh: software; A. Krone-Martins: funding acquisition, project administra-
tion, resources, software, supervision; R.S. de Souza: funding acquisition, project
administration, resources, supervision; N. Kennamer: software, methodology;
S. Sreejith: software; L. Galbany: conceptualisation.

References

Albrecht, A., Bernstein, G., Cahn, R., et al.
[arXiv:astro-ph/0609591]

Astier, P., Guy, J., Regnault, N., et al. 2006, A&A, 447, 31

Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002

Betoule, M., Kessler, R., Guy, J., et al. 2014, A&A, 568, A22

Boone, K. 2019, AJ, 158, 257

Carrick, J. E., Hook, I. M., Swann, E., et al. 2021, MNRAS, 508, 1

Dark Energy Survey Collaboration (Abbott, T., et al.) 2016, MNRAS, 460,
1270

DES Collaboration (Abbott,
[arXiv:1811.02374]

Gris, P., Regnault, N., Awan, H., et al. 2023, ApJS, 264, 22

Guy, J., Astier, P., Baumont, S., et al. 2007, A&A, 466, 11

Hinton, S., & Brout, D. 2020, J. Open Source Softw., 5, 2122

Hlozek, R., Kunz, M., Bassett, B., et al. 2012, ApJ, 752, 79

Hlozek, R., Malz, A. 1., Ponder, K. A, et al. 2023, ApJS, 267, 25

Holtzman, J. A., Marriner, J., Kessler, R., et al. 2008, AJ, 136, 2306

Hounsell, R., Scolnic, D., Foley, R. J., et al. 2018, ApJ, 867, 23

Ishida, E. E. O. 2019, Nat. Astron., 3, 680

Ishida, E. E. O., Beck, R., Gonzalez-Gaitan, S., et al. 2019, MNRAS, 483, 2

Jones, D. O., Scolnic, D. M., Riess, A. G, et al. 2018, ApJ, 857, 51

Jones, D. O., Scolnic, D. M., Foley, R. J., et al. 2019, ApJ, 881, 19

Kalmbach, J. B., VanderPlas, J. T., & Connolly, A. J. 2020, ApJ, 890, 74

Kennamer, N., Ishida, E. E. O., Gonzilez-Gaitan, S., et al. 2020, in 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), 3115

Kessler, R., & Scolnic, D. 2017, ApJ, 836, 56

Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009, PASP, 121, 1028

Kessler, R., Bassett, B., Belov, P., et al. 2010, PASP, 122, 1415

Kessler, R., Narayan, G., Avelino, A., et al. 2019, PASP, 131, 094501

LSST Science Collaboration (Abell, P. A., et al.) 2009, arXiv e-prints
[arXiv:0912.0201]

Malz, A. 1., Marshall, P. J., DeRose, J., et al. 2018, AJ, 156, 35

Malz, A. 1., HloZek, R., Allam, T., J., et al. 2019, AJ, 158, 171

Marriner, J., Bernstein, J. P., Kessler, R., et al. 2011, ApJ, 740, 72

Moews, B., Schmitz, M. A., Lawler, A. J., et al. 2021, MNRAS, 500, 859

Moller, A., & de Boissiere, T. 2020, MNRAS, 491, 4277

Muthukrishna, D., Narayan, G., Mandel, K. S., Biswas, R., & Hlozek, R. 2019,
PASP, 131, 118002

Pasquet, J., Pasquet, J., Chaumont, M., & Fouchez, D. 2019, A&A, 627, A21

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565

PLASTiCC-Modelers 2019, https://doi.org/10.5281/zenodo.2612896

Popovic, B., Scolnic, D., & Kessler, R. 2020, ApJ, 890, 172

Rest, A., Scolnic, D., Foley, R. J., et al. 2014, ApJ, 795, 44

Riess, A. G., Filippenko, A. V., Challis, P,, et al. 1998, AJ, 116, 1009

Rose, B. M., Baltay, C., Hounsell, R., et al. 2021, arXiv e-prints
[arXiv:2111.03081]

The PLASTIiCC team, Allam, T. Jr., Bahmanyar, A., et al. 2018, arXiv e-prints
[arXiv:1810.00001]

The LSST Dark Energy Science Collaboration, Mandelbaum, R., Eifler, T., et al.
2018, arXiv e-prints [arXiv:1809.01669]

Villar, V. A., Hosseinzadeh, G., Berger, E., et al. 2020, ApJ, 905, 94

Vincenzi, M., Sullivan, M., Moller, A., et al. 2022, MNRAS, 518, 1106

Wood-Vasey, W. M., Miknaitis, G., Stubbs, C. W., et al. 2007, ApJ, 666,
694

2006, arXiv e-prints

T. M. C., et al) 2018, arXiv e-prints

A130, page 9 of 9


https://cosmostatistics-initiative.org/
https://arxiv.org/abs/astro-ph/0609591
http://linker.aanda.org/10.1051/0004-6361/202346891/2
http://linker.aanda.org/10.1051/0004-6361/202346891/3
http://linker.aanda.org/10.1051/0004-6361/202346891/4
http://linker.aanda.org/10.1051/0004-6361/202346891/5
http://linker.aanda.org/10.1051/0004-6361/202346891/6
http://linker.aanda.org/10.1051/0004-6361/202346891/7
http://linker.aanda.org/10.1051/0004-6361/202346891/7
https://arxiv.org/abs/1811.02374
http://linker.aanda.org/10.1051/0004-6361/202346891/9
http://linker.aanda.org/10.1051/0004-6361/202346891/10
http://linker.aanda.org/10.1051/0004-6361/202346891/11
http://linker.aanda.org/10.1051/0004-6361/202346891/12
http://linker.aanda.org/10.1051/0004-6361/202346891/13
http://linker.aanda.org/10.1051/0004-6361/202346891/14
http://linker.aanda.org/10.1051/0004-6361/202346891/15
http://linker.aanda.org/10.1051/0004-6361/202346891/16
http://linker.aanda.org/10.1051/0004-6361/202346891/17
http://linker.aanda.org/10.1051/0004-6361/202346891/18
http://linker.aanda.org/10.1051/0004-6361/202346891/19
http://linker.aanda.org/10.1051/0004-6361/202346891/20
http://linker.aanda.org/10.1051/0004-6361/202346891/21
http://linker.aanda.org/10.1051/0004-6361/202346891/21
http://linker.aanda.org/10.1051/0004-6361/202346891/22
http://linker.aanda.org/10.1051/0004-6361/202346891/23
http://linker.aanda.org/10.1051/0004-6361/202346891/24
http://linker.aanda.org/10.1051/0004-6361/202346891/25
https://arxiv.org/abs/0912.0201
http://linker.aanda.org/10.1051/0004-6361/202346891/27
http://linker.aanda.org/10.1051/0004-6361/202346891/28
http://linker.aanda.org/10.1051/0004-6361/202346891/29
http://linker.aanda.org/10.1051/0004-6361/202346891/30
http://linker.aanda.org/10.1051/0004-6361/202346891/31
http://linker.aanda.org/10.1051/0004-6361/202346891/32
http://linker.aanda.org/10.1051/0004-6361/202346891/33
http://linker.aanda.org/10.1051/0004-6361/202346891/34
https://doi.org/10.5281/zenodo.2612896
http://linker.aanda.org/10.1051/0004-6361/202346891/36
http://linker.aanda.org/10.1051/0004-6361/202346891/37
http://linker.aanda.org/10.1051/0004-6361/202346891/38
https://arxiv.org/abs/2111.03081
https://arxiv.org/abs/1810.00001
https://arxiv.org/abs/1809.01669
http://linker.aanda.org/10.1051/0004-6361/202346891/42
http://linker.aanda.org/10.1051/0004-6361/202346891/43
http://linker.aanda.org/10.1051/0004-6361/202346891/44
http://linker.aanda.org/10.1051/0004-6361/202346891/44

	Are light curve classification metrics good proxies for SN Ia cosmological constraining power?
	1 Introduction
	2 Data
	2.1 Light curves and distance moduli
	2.1.1 PLAsTiCC light curves
	2.1.2 Low-z anchor light curve sample
	2.1.3 Distance modulus estimation

	2.2 Mock SN Ia classification
	2.2.1 Mock classifiers
	2.2.2 Cosmological sample size

	2.3 Cosmology constraints

	3 Methods
	3.1 Metrics of classification
	3.2 Metrics of cosmology constraints

	4 Analysis and results
	5 Conclusions
	Acknowledgements
	References


