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Abstract: Distributed space time frequency coding (DSTFC) schemes address problems of perfor-
mance degradation encountered by cooperative broadband networks operating in highly mobile
environments. Channel state information (CSI) acquisition is, however, impractical in such highly
mobile environments. Therefore, to address this problem, designers focus on incorporating dif-
ferential designs with DSTFC for signal recovery in environments where neither the relay nodes
nor destination have CSI. Traditionally, unitary matrix-based differential designs have been used
to generate the differentially encoded symbols and codeword matrices. Unitary based designs are
suitable for cooperative networks that utilize the amplify-and-forward protocol where the relay nodes
are typically required to forego differential decoding. In considering other scenarios where relay
nodes are compelled to differentially decode and re-transmit information signals, we propose a novel
co-efficient vector differential distributed quasi-orthogonal space time frequency coding (DQSTFC)
scheme for decode-and-forward cooperative networks. Our proposed space time frequency cod-
ing scheme relaxes the need for constant channel gain in the temporal and frequency dimensions
over long symbol periods; thus, performance degradation is reduced in frequency-selective and
time-selective fading environments. Simulation results illustrate the performance of our proposed co-
efficient vector differential DQSTFC scheme under different channel conditions. Through pair-wise
error probability analysis, we derive the full diversity design criteria for our code.

Keywords: differential distributed space time frequency coding; co-efficient vectors; unitary matrices;
quasi-orthogonal codes

1. Introduction

The fundamental idea behind space–time–frequency (STF) coding in cooperative
networks is to provide a scheme through which spatial, temporal, and frequency coding is
exploited. This has led to the design of distributed space–time–frequency coding (DSTFC)
schemes. In DSTFC schemes, elements of the codeword matrices are simultaneously
transmitted via relay nodes across multiple orthogonal frequency-division multiplexing
(OFDM) time slots and frequency sub-carriers. The principal objective is to design a
coding scheme that mitigates the performance degradation experienced by distributed
space time coding–orthogonal frequency division multiplexing (DSTC-OFDM) schemes and
distributed space–frequency coding (DSFC) schemes in severe time-selective and frequency-
selective fading channels, respectively. Furthermore, in the DSTC-OFDM schemes of [1–3]
and the DSFC schemes of [4–8], for example, the channel gain on adjacent OFDM [9,10] time
slots and frequency sub-carriers, respectively, is assumed to remain quasi-static to facilitate
signal recovery at the destination. This assumption is impractical when signals with long
symbol duration are transmitted or in cases involving large numbers of cooperating nodes.
However, in the scheme proposed by this study, it is shown that DSTFC can be designed
to mitigate this problem by simultaneously transmitting across OFDM time-slots and
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frequency sub-carriers. Therefore, this ensures that the requirement for constant channel
gain in the temporal and frequency dimensions is more relaxed.

In order to implement cooperation in multi-hop networks generally, the most pop-
ular relaying protocols currently being used are the Decode-and-Forward (DF) [11,12]
and Amplify-and-Forward (AF) [13,14] protocols. In the bid to cater for highly mobile
environments where the nodes are unable to acquire channel state information (CSI), re-
search efforts have been focused on the implementation of differential schemes for data
transmission in non-coherent cooperative networks [15]. For example, a randomized dif-
ferential scheme was proposed for a partially coherent cooperative network in [11] where
the destination has partial CSI as opposed to full CSI. In other words, the source node
is assumed to have CSI for the source–relay link while that of the relay–destination link
cannot be acquired. The research in [16] provides the differential strategy for non-constant
modulus constellations whereby the differential procedure is dependent on both amplitude
and phase transitions. Furthermore, in their work, they focused on the reduction of the
computational complexity of the differential procedure. Similarly, the studies carried out
in [15,17,18] consider differential orthogonal coding schemes where neither the relays nor
the destination are able to acquire CSI.

Fundamentally, when differential strategies are incorporated with coding schemes, a
principal aspect is how to generate the differentially encoded symbols and, subsequently, the
transmission matrix (at the source and relay nodes, respectively) in such a manner that would
ensure their recovery at the destination without the need for CSI. Differential strategies can be
implemented in cooperative networks through the utilisation of differential unitary matrix
design as adopted by the authors in all the aforementioned works [17,19–22]. In contrast
to existing works in the literature [23], differential strategies can also be implemented in
cooperative networks through the use of a differential co-efficient vector design, which
is being proposed in this study. It is evident from [17,24,25] that differential distributed
space time frequency coding (DSTBC) schemes adopting the unitary matrix design are
amenable to the AF protocol. This is because the relay nodes are generally required to
forego CSI acquisition such that differential decoding is only performed at the destination.
However, in contrast, for practical scenarios where the relay nodes are compelled to
differentially decode and re-transmit information signals received from the source node,
the co-efficient vector design is better suited. The co-efficient vector design reflects its
utilisation specifically for applications like Adhoc and sensor networks that require inherent
data correlation at intermediate nodes. The integration of differential schemes with DSTFC
in broadband networks is even more challenging because of the presence of multiple paths
in frequency-selective fading channels and multiple broadcast phases between the source
and destination.

Furthermore, all the aforementioned works employ orthogonal codes and are thus
only capable of providing full code-rate and full diversity for a maximum of two-relay
cooperative networks. In order to cater for high data rate in cooperative networks, our
proposed scheme employs rotated constellation quasi-orthogonal codes, which achieves full
code-rate for any number of relay nodes. In addition, we show how the quasi-orthogonal
codes are constructed from a proper choice of constellation sets. Moreover, the full mapping
scheme and differential recipe for utilizing co-efficient vectors in cooperative networks
are presented.

Motivated by all the aforementioned, we propose co-efficient vector differential dis-
tributed quasi-orthogonal space–time–frequency coding (DQSTFC) for cooperative net-
works. This study thus aims to make the following contributions:

• Due to the involvement of multiple broadcast phases in cooperative networks, our
proposal of designing the STF codes at the source node aims to simplify the operation
of relay nodes. Here, the codewords are carefully distributed in the temporal and
frequency dimensions to relax the assumption that the channel is quasi-static in the
time and frequency domains for long symbol periods;
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• We provide a systematic construction of full rate quasi-orthogonal codes that can
exploit full STF diversity and non-coherent signal detection. The full differential
procedure using our proposed co-efficient vector design is also provided in this work.
Through pair-wise error probability analysis, we derive the necessary conditions for
our code to achieve full STF diversity while the coding gain is maximized as much
as possible;

• The simulation carried out also provides an analytical study of the performance of our
co-efficient vector differential DQSTFC scheme in frequency-selective fading and time-
selective fading environments. We also compare and distinguish between the unitary
matrices and co-efficient vector designs in terms of Bit Error Rate (BER) performance
thus highlighting the robustness of our proposed non-coherent scheme against highly
selective fading environments. In addition, we generalize the co-efficient vector design
to cooperative networks with four, six, and eight relay nodes.

The remaining part of this paper is organised as follows: Section 2 presents the
cooperative system and channel models and showing how the STF codes are designed
at the source node and the relay nodes. Furthermore, Section 3 covers the differential
encoding and decoding procedure using our proposed co-efficient vector design while
Section 4 presents the pair-wise error probability analysis. Finally, Section 5 presents some
simulation results and Section 6 contains the conclusion.

Notation: A bold-face upper case letter denotes a matrix while a bold-face lower
case letter denotes a vector; (·)∗,(·)T ,(·)H denote conjugate, transpose, and conjugate-
transpose, respectively; A

⊙
B denotes the Hadamard product or entry-wise product of

the matrices A and B; A
⊗

B denotes the Kronecker product of the matrices A and B;
tr(·) is a trace function; E(·) and var(·) represent expectation and variance of a random
variable, respectively; ‖X‖F denotes the Frobenius norm of the matrix X; |x| denotes the
absolute value of x; det(X) stands for the determinant of X; diag([x0, x1, . . . , xN−1]) denotes
an N × N diagonal matrix with diagonal entries x0, x1, . . . , xN−1; bxc denotes the largest
integer smaller than x; IN is an N × N identity matrix; and finally, superscript CT×N gives
the dimension of a complex matrix.

2. Distributed Space–Time–Frequency Coding
2.1. System Model

The cooperative network consists of a source node, a destination node, and P relay
nodes as shown in Figure 1. Each node is equipped with a single antenna, which is
used for both transmission and reception. The transmission from the source node to
the destination is divided into the ‘transmit’ and ‘cooperate’ stages. In the ‘transmit’
stage, the source node sends information signals to the cooperating relay nodes while
in the ‘cooperate’ stage, the source node keeps silent and the cooperating relay nodes
decode and forward the information signals to the destination. We address the problem of
differential encoding and decoding where the relay nodes and the destination are unable
to acquire CSI. Our investigation in this work is carried out under the assumption of
perfect inter-relay synchronization. It is noteworthy that the use of cyclic prefix can provide
robustness against synchronization errors at the relays. This benefit, which is owed to
the employment of OFDM transmission, is applicable to our proposed DQSFC scheme.
This assumption is, however, critical in practice due to the distributive nature of relays
in space. Asynchronous transmission of the relays may result in degradation in diversity
gain. Specifically, the impact of synchronization errors have been studied in [26] based
on analytical and simulation results. Unlike STF coding in multiple-antenna systems, STF
coding in cooperative networks must be implemented in two distinct stages, namely coding
at the source node and coding at the relay nodes. We first describe how the coded data is
designed at the source node.
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The cooperative system is based on OFDM modulation with 𝑁 sub-carriers and 𝑇  
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Since the source node transmits the data vector 𝒙  to 𝑃  relay nodes simultaneously 
across  𝑃𝑇 OFDM time slots and 𝑃𝑁 frequency sub-carriers, then the source node code 
is capable of achieving a diversity of order Γ = 𝑁𝑇 at each relay node. The criteria for 
achieving this diversity order will be clarified further on in this paper. The elements of 𝒙  
are normalized such that  𝐸(|𝒙|ଶ) = 1. 

2.3. Multipath Channel Model 
The channel at the tth OFDM time slot between the source node and the pth relay 
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Figure 1. P-relay Cooperative Network.

2.2. Space Time Frequency Coding at the Source Node

The cooperative system is based on OFDM modulation with N sub-carriers and T
OFDM time slots. At the source node, a stream of NT modulated symbols,
s = [s(0), s(1), . . . , s(NT − 1)], are generated from an MPSK constellation. The NT sym-
bols are simultaneously distributed across n = 0, 1, . . . , N − 1 sub-carriers and
t = 0, 1, . . . , T − 1 OFDM time slots. In the frequency dimension, the N sub-carriers
are grouped into K = bN/Nbc blocks. Similarly, in the temporal dimension, the T OFDM
time slots are grouped into K = bT/Tbc blocks. Thus, each kth block, k = 1, 2, . . . , K is of
length Γ = NbTb, where Nb and Tb denote the number of frequency sub-carriers and time
slots, respectively, per block. Based on this, the coded source node data is constructed:

x = [x(0), x(1), . . . , x(NT − 1)] =
[
xT

1 , xT
2 , . . . , xT

K, 0T
NT−KPΓ

]T
(1)

where xk = [xk(1), . . . , xk(PΓ)]T ∈ CPΓ×1 and (NT − KPΓ) zeros are padded into x if
NT is not an integer multiple of KPΓ. The coded source node data can be viewed as a
concatenation of information symbols in the temporal and frequency dimensions since the
elements of xk are stacked simultaneously unto PNb adjacent data sub-carriers and PTb
OFDM time slots. Assuming the system is perfectly synchronized in the time and frequency
domains, the PΓ× 1 data vector transmitted by the source node in the kth block can be
written as xk = [xk,t,n(1), . . . , xk,t,n(PΓ)]T ∈ CPΓ×1, where xk,t,n(i), i = 1, 2, . . . , PΓ denotes
the ith symbol transmitted on the nth sub-carrier within the tth OFDM time slot. Since
the source node transmits the data vector xk to P relay nodes simultaneously across PTb
OFDM time slots and PNb frequency sub-carriers, then the source node code is capable of
achieving a diversity of order Γ = NbTb at each relay node. The criteria for achieving this
diversity order will be clarified further on in this paper. The elements of x are normalized
such that E

(
|xk|2

)
= 1.

2.3. Multipath Channel Model

The channel at the tth OFDM time slot between the source node and the pth relay node
is described by the impulse response vector fp,t =

[
fp,t(0), . . . , fp,t(LSR − 1)

]T . Similarly,
the channel at the tth OFDM time slot between the pth relay node and the destination is
described by the impulse response vector gp,t =

[
gp,t(0), . . . , gp,t(LRD − 1)

]T , where LSR
and LRD denote the number of independent channel taps on the source–relay link and
relay–destination link, respectively. The multipath fading channel between the source
node and the pth relay node is modelled as fp(t) = ∑LSR−1

l=0 fp,t(l)δ(t− αl). Similarly, the
multipath fading channel between the pth relay node and the destination is modelled
as gp(t) = ∑LRD−1

l=0 gp,t(l)δ(t− βl), where the complex amplitudes fp,t(l) and gp,t(l) are
assumed to be independent zero-mean complex Gaussian random variables with variances
E
(∣∣ fp,t(l)

∣∣2)= σ2
SR(l) and E

(∣∣gp,t(l)
∣∣2) = σ2

RD(l), respectively. The delay of the lth path is
denoted by αl and βl while δ(·) is the Dirac delta function.
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2.4. Space Time Frequency Coding at the Relay Nodes

If the data vector generated by the source node is of the form
√

ESPΓxk, where ES
denotes average transmit-power, the signal received at the pth relay node in the kth block
after cyclic prefix (CP) removal and fast Fourier transform (FFT) demodulation is given in
vector form by:

rk,p =
√

ESPΓxk � fk,p + nk,p (2)

where r_(k, p) = [r_(k, p)(1),. . ., r_(k, p)(Γ), . . . , r_(k, P)(1), . . . , r_(k, P)(Γ)]̂T ∈ Ĉ(PΓ×1),
f_(k, p) = [ f _(k, p, t, n)(1),. . ., f _(k, p, t, n)(PΓ)]̂T, fk,p,t,n(i) is the channel gain at the nth
sub-carrier of the pth relay node during the tth time slot, and nk,p = [nk,p(1), . . . , nk,p(Γ), . . . ,
nk,P(1), . . . , nk,P(Γ)]T is the zero-mean complex Gaussian noise vector with covariance N0 IPΓ.
The multipath fading channel fp,k,t,n(i) between the source node and the pth relay node is

modelled as fp,k,t,n(i) = ∑LSR−1
l=0 fp,t(l)e−j2πln/N =fp,t

Tω, ω =
[
1, e−j2πn/N , . . . , e−j2πLn/N

]T
.

The average signal-to-noise ratio (SNR) of the channel between the source node and the pth
relay node is given by YSR = ESPΓ/N0.

The procedures through which the STF codes are constructed at the relay nodes are
described below. Given that the pth relay node receives rk,p ∈ CPΓ×1 in (2), it differ-

entially decodes the received signal and obtains
∼
xk =

[∼
xk,t,n(1), . . . ,

∼
xk,t,n(PΓ)

]T
, where

∼
xk is the differentially decoded version of the source node signal xk. The differential
procedure is explained in the next section. In our STF coding scheme, we configure
the pth relay node to forward a subset of the decoded signal

∼
xk, which we define as

∼
xk =

[∼
xk,p,t,n(1), . . . ,

∼
xk,p,t,n(Γ)

]T
∈ CΓ×1, while the remaining (PΓ− Γ) symbols are dis-

carded. Note that
∼
xk,p,t,n(i) denotes the ith symbol transmitted by the pth relay node on

the nth sub-carrier of the tth OFDM time slot in the kth block. Based on this, the received
signal at the pth relay node can be rewritten as follows:

rk,p =
√

ESPΓxk � fk,p + nk,p (3)

where xk = [xk(1), . . . , xk(Γ)]
T , fk,p = [ fk,p,t,n(1), . . . , fk,p,t,n(Γ)]T and nk,p = [nk,p(1), . . . ,

nk,p(Γ)]T . In our DQSTFC scheme, the P relay nodes are designed to construct Γ× P quasi-
orthogonal signal matrices at the destination. In order to achieve this, each pth relay node
is equipped with a Γ× Γ unitary matrix Mp, which we refer to as the ‘relay matrix’. The
relay matrix is a matrix of 1 s and 0 s, which enable the relay nodes to generate codewords
with a quasi-orthogonal structure at the destination. The structure of the relay matrix is
given in Sections 3 and 4 of [27] for cooperative networks with different number of relay
nodes. Specifically, it is assumed that J relay nodes are programmed to multiply their

relay matrix by the decoded signal [
∼
xk,p,t,n(1), . . . ,

∼
xk,p,t,n(Γ)]T while the remaining P− J

relay nodes are programmed to multiply their relay matrix by the conjugate of the received

signal [
∼
xk,p,t,n(1)

∗
, . . . ,

∼
xk,p,t,n(Γ)

∗
]T . Thus, in the kth block, the pth relay node transmits a

Γ× 1 vector tk,p given by:

tk,p =

√
EC

ES + 1
Mp
∼
xk,
∼
xk ∈

{[∼
xk,p,t,n(1), . . . ,

∼
xk,p,t,n(Γ)

]T
,
[∼

xk,p,t,n(1)
∗
, . . . ,

∼
xk,p,t,n(Γ)

∗]T
}

(4)

Since each pth relay node transmits the data vector tk,p to the destination on Γ = NbTb
sub-carriers/time slots, then all the P relay nodes can jointly achieve a diversity of order
PΓ at the destination.
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Assuming the relay nodes are synchronized at symbol level such that the nodes can
transmit simultaneously, the signal received at the destination in the kth block after CP
removal and FFT demodulation is given by:

yk,i = ∑P
p=1 tk,p � gk,p + zk,i, i = 1, 2, . . . , Γ (5)

where yk,i = [yk,i(1), . . . , yk,i(Γ)]
T , gk,p = [gk,p,t,n(1), . . . , gk,p,t,n(Γ)]T , and

zk,i = [zk,i(1), . . . , zk,i(Γ)]
T is the zero-mean complex Gaussian noise term with covariance

N0 IΓ. The frequency response of the channel at the nth sub-carrier between the pth relay
node and the destination during the tth time slot is denoted by
gk,p,t,n(i) = ∑LRD−1

l=0 gp,t(l)e−j2πln/N = gp,t
Tω. The average SNR of the channel between

the pth relay node and the destination is given by YRD = EC/N0. Substituting for tk,p in (4),
(5) becomes:

yk,i = ∑P
p=1

√
ECESNC
ES + 1

Mp
∼
xk � gk,p + zk,i, i = 1, 2, . . . , Γ (6)

The signal received at the destination in the kth block can be written in compact form as:

Yk =
√

ρXkGk + Zk (7)

where ρ = ECES NC
ES+1 , Yk = [yk,1, . . . , yk,Γ] ∈ CΓ×Γ, yk,i = [yk,i(1), . . . , yk,i(Γ)]

T ,

Xk = [M1
∼
xk, . . . , MJ

∼
xk, MJ+1

∼
xk

*
, . . . , MP

∼
xk

*
] ∈ CΓ×P, Gk = [gk,1, . . . , gk,Γ] ∈ CP×Γ,

gk,i = [gk,t,n(1), . . . , gk,t,n(P)]T =
(
IP ⊗ωT)g, g = [g1,t(0), . . . , g1,t(L− 1), .., gP,t(0), . . . ,

gP,t(L− 1)]T , and Zk = [
∼
zk,1, . . . ,

∼
zk,Γ] ∈ CΓ×Γ,zk,i = [zk,i(1), . . . , zk,i(Γ)]T .

The P× Γ quasi-orthogonal channel matrix Gk captures the channel coefficients be-
tween the P relay nodes and the destination. Here, it is assumed that the channel coefficient
between the P relay nodes and the destination remain quasi-static, at least, across Tb adja-
cent OFDM time slots and Nb adjacent frequency sub-carriers. Therefore, this means that
the channel is constant during the transmission of Γ symbols, that is, gk,n is constant for
i = 1, 2, . . . , Γ. Thus, the requirement for constant channel gain during the transmission
of Γ symbols is relaxed across Γ/2 time slots and Γ/2 sub-carriers. Further on, this paper
will show the robustness of our scheme under certain fading conditions in comparison
to STBC-OFDM and SFBC schemes where the channel coefficients are required to remain
constant across Γ time slots and Γ sub-carriers, respectively, during the transmission of
Γ symbols.

The matrix Xk that is generated at the destination by the P relay nodes is a Γ× P quasi-

orthogonal signal matrix containing either complex information symbols {
∼
xk,p,t,n(1), . . . ,

∼
xk,p,t,n(Γ)} or their conjugates {

∼
xk,p,t,n(1)

∗
, . . . ,

∼
xk,p,t,n(Γ)

∗
}. Thus, Xk in (7) can be rewritten

as Xk = [
∼
xk,1

T
, . . . ,

∼
xk,P

T
] ∈ CΓ×P,

∼
xk,p =

[∼
xk,t,n(1), . . . ,

∼
xk,t,n(Γ)

]
, where

∼
xk,p is the pth

column of Xk. In other words, the pth relay node transmits the pth column vector of Xk.
In order to recover information symbols at the destination without CSI, two consecutive
quasi-orthogonal signal matrices Xk and Xk+1 must be received at the destination in the kth
block and (k + 1)th block, respectively. The first signal matrix Xk is termed the ‘reference’
quasi-orthogonal matrix because it is only required for differential decoding and, thus,
contains no valid data while the subsequent quasi-orthogonal signal matrix Xk+1 conveys
the valid data. From the structure of Xk, it is clear that the codeword guarantees one
complex-valued symbol per time slot/per sub-carrier use when the relay nodes transmit to
the destination, which is referred to here as a full code rate.
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3. Co-Efficient Vector Differential Procedure
3.1. Co-Efficient Vector Generator

Our proposed co-efficient vector differential procedure is explained in this section.
The design typically comprises three sub-systems, including the co-efficient vector gen-
erator, the mapper, and the feedback sub-system as illustrated in Figure 2. Given Γm
input bits, the source node constructed a length 2Γm co-efficient vector set given by
v =

{
[v1,1, . . . , vΓ,1]

T , [v1,2, . . . , vΓ,2]
T , . . . ,

[
v1,22m , . . . , vΓ,22m

]T
}

. The co-efficient vector set

v was made up of 22m unit-length distinct vectors [v1,d, . . . , vΓ,d]
T , d ∈

{
1, 2, . . . , 22m}; m

was the spectral efficiency. Then, a pseudo-random one-to-one mapping scheme P(.) was
defined for any m = log2M M-PSK signal constellation such that the Γm input bits were
mapped onto v. Note that M was the constellation size. The Γm input bits arriving at the
encoder in the (k + 1)th block were used to select the corresponding Γ× 1 vector from the
co-efficient vector set v. In other words, the co-efficient vector selected from v was exclu-
sively dependent on the input bits generated and the pseudo-random one-to-one mapping
scheme P(.). Given any random set of input bits, the selected co-efficient vector could be
written as vk+1 = [v1, . . . , vΓ]

T . The elements of vk+1, given by {v1, . . . , vΓ}, represented
the valid transmitted information symbols that had to be recovered at the destination
without CSI.
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This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

3.2. Quasi-Orthogonal Code Construction

We now show how the elements of the co-efficient vector vk+1 were rotated to ensure
quasi-orthogonality. Given that the stream of Γm input bits were mapped into Γ symbols de-
noted by vi, i = 1, 2, . . . , Γ, the symbols were then combined as v1 = v1 +

∼
v3, v2 = v2 +

∼
v4,

v3 = v1 −
∼
v3, v4 = v2 −

∼
v4, and so on. Let Φ = D · diag

[
1, ejθ1 , . . . , ejθ(Γ/2)−1

]
, where D

was a (Γ/2)× (Γ/2) Hadamard matrix, the information symbols were then constructed
as [v_(k + 1)(1), v_(k + 1)(3), . . . , v_(k + 1)(Γ− 1)]̂T = Φ · [v_1, v_3, . . . , v_(Γ− 1)]̂T and
[v_(k + 1)(2), v_(k + 1)(4), . . . , v_(k + 1)(Γ)]̂T = Φ · [v_2, v_4, . . . , v_Γ]̂T. Thus,
[vk+1(1), vk+1(2), . . .]T were mapped onto a signal constellationA of size 2m while [vk+1(3),
vk+1(4), . . .]T were mapped onto a signal constellation Ar, which was a rotated version of
A. The rotation angles θ of the information symbols ensured that the codes achieve full
diversity, see Chapter 5 of [28] for further explanation on constellation rotation.

3.3. Differential Encoding Using Co-Efficient Vectors

The STF coded data vector xk+1 to be transmitted by the source node in the (k + 1)th
block was generated from the STF coded data vector xk = [xk(1), . . . , xk(PΓ)]T transmitted
by the source node in the kth block. We first discussed how the data vector in the (k + 1)th
block was generated using the co-efficient vector and the information signals transmitted
in the kth block. The first step was for the source node to compute the Γ× 1 data vector
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xk+1 for the (k + 1)th block using the transmitted information signals in the kth block and
the selected co-efficient vector as follows:

xk+1 = Xkvk+1 (8)

where vk+1 = [v1,i, . . . , vΓ,i]
T and Xk was the ‘reference’ quasi-orthogonal signal ma-

trix that was generated by the P relay nodes in the kth block. It was assumed that
the source node had prior knowledge of the relay matrices

{
M1, . . . , MJ , MJ+1, . . . , MP

}
.

The source node also knew xk = [xk(1), . . . , xk(Γ)]
T ; hence, it could compute Xk =[

M1xk, . . . , MJxk, MJ+1xk
∗, . . . , MPxk

∗] in (8). Then, finally, using xk+1 in (8), the source
node constructed the PΓ× 1 data vector xk+1 = [xk+1,t,n(1), . . . , xk+1,t,n(PΓ)]T ; note that
xk+1,t,n(i), i ≤ Γ represented the original symbols while xk+1,t,n(i), i > Γ were replicas of
the original symbols, which would be forwarded by the relay nodes.

[v1, . . . , vΓ]
T = xk+1Xk

H (9)

The selected coefficient vector could be represented using (9), such that given all the
possible outcomes of xk+1, there existed 2Γm corresponding coefficient vectors. In other
words, there was a one-to-one mapping between the coefficient vectors and the input bits.
Note that there was no difference between the differentially encoded symbols generated
by our co-efficient vector design in (8) and those generated by the unitary matrices design
in [29,30] for example.

Provided that the differential scheme was designed such that all nodes in the network
have prior knowledge of the co-efficient vector set v and the mapping scheme P(·), the
relay nodes could simply recover the elements of the co-efficient vector set using (10) and
then using (8) for differential encoding:

[∼
v1, . . . ,

∼
vΓ

]
= argmin

∣∣∣∣rk+1,prk,p
T −

∣∣∣fk,p

∣∣∣2[v1, . . . , vN ]

∣∣∣∣2 (10)

where rk+1,p =
√

ESPΓxk+1 � fk+1,p + nk+1,p was the signal received at the pth relay node
in the (k + 1)th block. The differential decoding protocol employed by our scheme relied
on the assumption that the channel co-efficients remain unchanged for transmissions in
consecutive blocks; in other words, fk,p

∼= fk+1,p. In our proposed scheme, the relay nodes
only recovered the elements of the co-efficient vector set as implemented in (10), without
recovering the original information bits. This approach ensured that the computational
complexity of the encoder was reduced because the relay nodes avoided the mapper block
and co-efficient vector generator block in Figure 2. To be precise, the number of comparisons
c at each relay node was reduced by 1 ≤ c ≤ 2Pm. This issue is further explained in the
simulation section.

We continue our discussion on differential encoding at the relay nodes by illustrating how
the co-efficient vector design was implemented with M-PSK constellations for P relays. Note
that we assumed that the relay nodes could perfectly compute the elements of the coefficient vec-
tor set. Considering an M-PSK modulation scheme with spectral efficiency m, the encoder at
each relay node generated Γ modulated signals from Γm information bits. Let the set of recov-
ered information bits at the encoder be given as bl , l = 1, 2, . . . , 22m, and the co-efficient vector
set is computed as: v

{
[v1,1, . . . , vΓ,1]

T , [v1,2, . . . , vΓ,2]
T , . . . ,

[
v1,22m , . . . , vΓ,22m

]T
}

. Thus, the
mapping scheme P(.) for each set of information bits to a co-efficient vector set was de-
fined by:

P{(b1), (b2), . . . , (b22m)} =
{
[v1,1, . . . , vΓ,1]

T , [v1,2, . . . , vΓ,2]
T , . . . ,

[
v1,22m , . . . , vΓ,22m

]T
}

(11)
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3.4. Differential Decoding Using Co-Efficient Vectors

Similar to (7), the received signal matrix in the (k + 1)th block was given by:

Yk+1 =
√

ρXk+1Gk+1 + Zk+1 (12)

where ρ = ECES NC
ES+1 , Yk+1 = [yk,1, . . . , yk,Γ] ∈ CΓ×Γ, yk,i = [yk,i(1), . . . , yk,i(Γ)]

T , Xk+1 =

[M1
∼
xk+1, . . . , MJ

∼
xk+1, MJ+1

∼
xk+1

∗
, . . . , MP

∼
xk+1

∗
] ∈ CΓ×P, Gk+1 = [gk+1,1, . . . , gk+1,Γ] ∈

CP×Γ, gk+1,i = [gk+1,i,t,n(1), . . . , gk+1,i,t,n(P)]T =
(
IP ⊗ωT)g, g = [g1,t(0), . . . ,

g1,t(L− 1), . . . , gP,t(0), . . . , gP,t(L− 1)]T , and Zk+1 = [
∼
zk+1,1, . . . ,

∼
zk+1,Γ] ∈ CΓ×Γ, zk+1,i =

[zk+1,i(1), . . . , zk+1,i(Γ)]T . As far as the destination was concerned, consecutive Γ× P quasi-
orthogonal signal matrices Xk and Xk+1 had been received in two consecutive transmission
blocks k and k + 1 based on (7) and (12). The received signals at the destination could thus
be rewritten as:

yk,i = Xkgk,i + zk,i = [(Mp
∼
xk)Gk + zk,i]

T

yk+1,i = Xk+1gk+1,i + zk+1,i = [(Mp
∼
xk+1)Gk+1 + zk+1,i]

T

i = 1, 2, . . . , Γp = 1, .., J, J + 1, . . . , P

(13)

Using the signals received in (13) in the kth block and (k + 1)th block, respectively,
the estimate of the elements of the co-efficient vector

{∼
v1, . . . ,

∼
vΓ

}
could be recovered

pairwisely at the destination without CSI. For example, for a cooperative network with
P = 4 relay nodes and Γ = 4, in order to recover

{∼
v1,
∼
v2, . . . ,

∼
v4

}
, we first obtained the

quasi-orthogonal signal and channel matrices for two consecutive transmission blocks as
follows:

Xq =


∼
xq,1,0,0(1)

∼
xq,2,0,0(2)

−
∼
xq,1,0,1(2)

∗ ∼
xq,2,0,1(1)

∗

∼
xq,3,0,0(3)

∼
xq,4,0,0(4)

−
∼
xq,3,0,1(4)

∗ ∼
xq,4,t,0,1(3)

∗

−
∼
xq,1,1,0(3)

∗
−
∼
xq,2,1,0(4)

∗

∼
xq,1,1,1(4) −

∼
xq,2,1,1(3)

∼
xq,3,1,0(1)

∗ ∼
xq,4,1,0(2)

∗

−
∼
xq,3,1,1(2)

∼
xq,4,1,1(1)



Gq =


gq,1,0,0(1) gq,2,0,0(2)

∗

gq,1,0,1(2) −gq,2,0,1(1)
∗

gq,3,0,0(3)
∗ gq,4,0,0(4)

gq,3,0,1(4)
∗ −gq,4,0,1(3)

gq,1,1,0(3) gq,2,1,0(4)
∗

gq,1,1,1(4) −gq,2,1,1(3)
−gq,3,1,0(1)

∗ −gq,4,1,0(2)
−gq,3,1,1(2)

∗ gq,4,1,1(1)


where Xq ∈ CΓ×P and Gq ∈ CP×Γ, q ∈ {k, k + 1}were quasi-orthogonal signal and channel
matrices, respectively. The ith information signal transmitted by the source node, through
the pth relay node on the nth sub-carrier during the tth OFDM time slot, was denoted

by
∼
xq,p,t,n(i), and gq,i,t,n(p) captured the channel gain on the nth sub-carrier during tth

OFDM time slot between the pth relay node and the destination. Since it was assumed that
the channel was constant during the transmission of Γ symbols, gq,i,t,n(p) was therefore

constant for i = 1, 2, . . . , Γ; similarly,
∼
xq,p,t,n(i) was constant for p = 1, 2, . . . , P since all the

cooperating relay nodes transmitted identical information signals. Thus, it could be implied

that gq,1,t,n(p) =, . . . ,= gq,4,t,n(p) = gq,t,n(p) and
∼
xq,1,t,n(i) =, . . . ,=

∼
xq,4,t,n(i) =

∼
xq,t,n(i).

Based on this, we computed:

XjXG
j =


X1 0 0 X2
0 X1 −X2 0
0 −X2 X1 0

X2 0 0 X1

 GjGG
j =


G1 0 0 G2
0 G1 −G2 0
0 −G2 G1 0

G2 0 0 G1
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where X1 = ∑4
i=1 |

∼
xq,t,n(i)|2 was the signal power, and X2 = 2Re(

∼
xq,t,n(1)

∼
xq,t,n(4)

∗
−
∼
xq,t,n(2)

∼
xq,t,n(3)

∗
) was a self-interference parameter. Similarly, G1 = ∑4

p=1
∣∣gq,t,n(p)

∣∣2 was the chan-
nel power, and G2 = 2Re

{
gq,t,n(1)gq,t,n(4)

∗ − gq,t,n(2)gq,t,n(3)
∗} was a self-interference

parameter. The elements of the co-efficient vector vk+1 = [v1, . . . , v4] were then recovered
as follows:

yk+1,1yk,1
H = (

∼
xk+1Xk H

)Gk+1gk,1
H + Z1

= (vk+1XkXk
H)Gk+1gk,1

H + Z1
= v1(X1G1 + X2G2) + v4(X1G2 + X2G1) + Z1
= v1 A + v4B + Z1

(14)

Similarly,

yk+1,1yk,2
H = (

∼
xk+1Xk H

)Gk+1gk,2
H + Z2

= (vk+1XkXk
H)Gk+1gk,2

H + Z2
= v2 A− v3B + Z2

(15)

yk+1,1yk,3
H = (

∼
xk+1Xk H

)Gk+1gk,3
H + Z3

= (vk+1XkXk
H)Gk+1gk,3

H + Z3
= −v2B + v3 A + Z3

(16)

yk+1,1yk,4
H = (

∼
xk+1Xk H

)Gk+1gk,4
H + Z4

= (vk+1XkXk
H)Gk+1gk,4

H + Z4
= v1B + v4 A + Z4

(17)

where Zn was the noise, A = X1G1 + X2G2, and B = X1G2 + X2G1, and we referred to A
and B as the differential decoding parameters required to recover vk+1. The differential
decoding parameters were computed at the destination as:

yk,1yk,4
H = XkXk

Hgk,1gk,4
H +

∼
Z4 = A +

∼
Z4

yk,1yk,1
H = XkXk

Hgk,1gk,1
H +

∼
Z1 = B +

∼
Z1

(18)

This implied that yk,1yk,4
H ≈ A and yk,1yk,1

H ≈ B since Zn ≈
∼
Zn. It was thus obvious

from (18) that the scheme did not require CSI to recover vk+1. The non-coherent recovery
of vk+1 rather depended on consecutively received signals in the kth block and (k + 1)th
block. Once A and B were computed at the destination using (18), the information signals
in (14) to (17) can be recovered pair-wisely. Obviously, all the decision signals were only a
function of a pair of input signals, which existed with dissimilar constellation angles. This
offered the possibility of decoding in pairs. We could decide for each pair of recovered
symbols independently using a pair-wise least square decoder as follows:(∼

v1,
∼
v4

)
= argmin

[∣∣∣yk+1,1yk,1
H − (v1 A + v4B)

∣∣∣2 + ∣∣∣yk+1,1yk,4
H − (v1B + v4 A)

∣∣∣2] (19)

(∼
v2,
∼
v3

)
= argmin

[∣∣∣yk+1,1yk,2
H − (v2 A− v3B)

∣∣∣2 + ∣∣∣yk+1,1yk,3
H − (v3 A− v2B)

∣∣∣2] (20)

The pair-wise least square decoder performed an exhaustive search over all possible
combination of constellation points to determine the pair of signals that minimized the
terms in (19) and (20). This decoding was equivalent to finding the minimum Euclidean
distance between the noisy received signals and the known constellation points.

The resultant elements of the co-efficient vector in (19) and (20) could be interpreted
as noisy versions of elements of the scaled co-efficient vector set. The scaling, A and B,
however, have a negligible effect on the geometry of the detection region. Since all the
elements of the co-efficient vector set v had equal lengths, the destination selected the
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closest co-efficient vector to
[∼

v1, . . . ,
∼
vΓ

]T
from v as the detector output. Then, inverse

mapping was applied to recover the information bits. The complexity of this process was
equivalent to 2M+1 since this was the number of constellation points to be examined.

The pairwise detection algorithm described so far for P = 4 could be used for any
cooperative network with u relays (2 ≤ u ≤ P). The only difference in design was in the
structure of the channel matrix Gk and Gk+1. In this case, the path gain gq,t,n(p), p > u
between the pth relay node and the destination was set to zero. In other words, the design
for a 3-relay network could be achieved from the design for a 4-relay network simply by
setting the path gain gq,t,n(4) between the 4th relay and the destination to zero. Similarly,
cooperative networks with five, six, and seven relays could derive their designs from the
design for 8-relay networks.

4. Pairwise Error Probability Analysis

We then proceeded to develop sufficient conditions based on the PEP analysis for
our code to achieve full diversity of order PΓ while the coding gain was maximized as
much as possible. Since each of the K blocks contained arbitrary symbols, which were
independently distributed across the relay nodes, only a single block k is required for our
PEP analysis, which was valid for any k = 1, 2, . . . , K. It was assumed that the path gains
fp,t(l) and gp,t(l) were independent for different transmission paths such that the P relay
nodes form spatially uncorrelated channels between the source node and the destination.
Thus, PΓ information symbols are simultaneously distributed in the spatial, temporal, and
frequency dimensions. Based on this, and the analysis of [31], the achievable diversity
order of our code could be determined as the product of the number of relay nodes, the
rank of the temporal correlation matrix, and the number of delay paths, when sufficient
conditions were reached. These conditions were discussed below.

The frequency response vector between the source node and the relay nodes was
denoted by fk = [ fk(1), . . . , fk(PΓ)]T . Similarly, the frequency response vector between
the relay nodes and the destination was gk = [gk,1(1), . . . , gk,1(Γ), . . . , gk,P(1), . . . , gk,P(Γ)]

T .
The correlation matrix of the channel frequency response could be found as
R = E

{
hkhk

H
}
= E

{
(fk � gk)(fk � gk)

H
}

. Unlike the case of multiple antenna systems,
the cooperative network had the ‘transmit’ and ‘cooperate’ stages; thus, R could be decom-
posed as R = R1 �R2. It can easily be shown that R, R1, and R2 were full rank based on
the following:

R1 = E
{

fkfk
H
}

= W1E
{

fp,tfp,t
H
}

W1
H

= W1diag
(
σSR

2(0), . . . , σSR
2(LSR − 1)

)
W1

H
(21)

R2 = E
{

gkgk
H} = W2E

{
gp,tgp,t

H
}

W2
H

= W2diag
(
σRD

2(0), . . . , σRD
2(LRD − 1)

)
W2

H
(22)

W1 =
[
wα0 T , . . . , wαL−1 T

]
, W2 =

[
wβ0

T , . . . , wβL−1
T
]
,

w =
[
1, ω1, . . . , ω(PΓ−1)

]
, ω = e−j2π∆ f

(23)

where fp,t =
[

fp,t(0), . . . , fp,t(LSR − 1)
]T and gp,t =

[
gp,t(0), . . . , gp,t(LRD − 1)

]T , and
∆ f = 1/T was the sub-carrier spacing. From (23), if W1 and W2 were unitary matri-
ces (valid if all LSR and LRD fall within the sampling instances of the relay nodes and
destination respectively [31], then W1 and W2 have full rank. Furthermore, based on the
theorem in Section 1.2.4 of [32], which stated that; if R1 and R2 were positive definite, then
R was itself a positive definite (full rank correlation matrix), R, R1, and R2 could thus be
verified as positive definite (full rank correlation matrices).

Since it was established that R had full rank, we then proceeded to discuss the criteria
in order to achieve maximum diversity. Statistically independent samples of the source-
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relay channel were defined as f = [ f1,t(0), . . . , f1,t(LSR − 1), . . . , fP,t(0), . . . , fP,t(LSR − 1)].
Similarly, statistically independent samples of the relay–destination channel were defined
as g = [g1,t(0), . . . , g1,t(LRD − 1), . . . , gP,t(0), . . . , gP,t(LRD − 1)]. Under the assumption
that all fp,t(l) and gp,t(l) were independent identically distributed complex Gaussian
variables, it could be implied that h = [h1,t(0), . . . , h1,t(L− 1), . . . , hP,t(0), . . . , hP,t(L− 1)],
hp,t(l) = fp,t(l) · gp,t(l). For any kth block, the STF codeword could be viewed as a collection
of symbols transmitted across Γ time/frequency slots by P relay nodes. Based on this, the
consecutively received signals at the destination in the kth block and (k + 1)th block could
be rewritten as (24) under the constraint that the sub-channel gain of adjacent transmission
blocks was almost constant.

Yk = Xk
Λh + Zk

Yk+1 = Xk+1
Λh + Zk+1

(24)

where Yk = [yk
1, . . . , yk

Γ]
T , yk

i = [yk(1), . . . , yk(Γ)]T , Yk+1 = [yk+1
1 , . . . , yk+1

Γ ]T , yk+1
i =

[yk+1(1), . . . , yk+1(Γ)]T , Xk
= diag[xk,1, . . . , xk,Γ], xk,i = [xk,n(1), . . . , xk,n(P)], Xk+1

=
diag[xk+1,1, . . . , xk+1,Γ], xk+1,i = [xk+1,i(1), . . . , xk+1,i(P)], Λ = [Λ(1), . . . , Λ(Γ)]T , Λ(i) =
IP ⊗ωT , ω = [1, e−j2πn/N , . . . , e−j2πL−1n/N ]T . Using the following notations:

Y = [YkT
, Yk+1T

]T , Vk+1 = diag[vk+1,1, . . . , vk+1,Γ], vk+1,i = [vk+1,i(1), . . . , vk+1,i(P)],

X = [IPΓ
T , Vk+1T

], Z = [ZkT
, Zk+1T

]T , and the recursion Xk+1
=

{
Vk+1Xk, k ≥ 1

IPΓ, k = 0
.

We could write:
Y = XWh + Z (25)

The conditional probability density function of the receive signal matrix Y was:

p(Y|Vk+1) =
exp(−tr{Y(IPΓ + YXΛRΛHXH

)−1YH})
πPΓdet(IPΓ + YXΛRΛHXH

)
(26)

where Cv =
(

IPΓ + YXΛRΛHXH
)

was the covariance matrix of Y, tr denoted the trace

function, and Y was the average SNR of the received signal given as Y = PYSRYRD
1+YSR+PYRD

. Thus,
the non-coherent ML decoder was given by:

V̂k+1
= arg max

Vk+1∈V
p
(

Y
∣∣∣Vk+1

)
(27)

Substituting Yk into Yk+1 in (24) and using Xk+1
= Vk+1Xk, we had Yk+1 = Vk+1Yk +

Z̀k+1, where Z̀k+1
= Zk+1−Vk+1Zk. The non-coherent ML decoder could thus be simplified

as:
V̂k+1

= arg max
Vk+1∈V

∥∥∥Yk + Vk+1H
Yk+1

∥∥∥ (28)

where ‖·‖ was the Frobenius norm. The Chernoff bound on the PEP of mistaking Vk+1 by
V́k+1 could be given as [33].

PEP
(

Vk+1 − V́k+1
)
=

1
2


det
[
λ
(

IPΓ + YXΛRΛHXH
)
+ (1− λ)

(
IPΓ + YX́ΛRΛHX́H

)]
λ

det
(

IPΓ + YXΛRΛHXH
)
·det(1−λ)

(
IPΓ + YX́ΛRΛHX́H

)
 (29)
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where X and X́ were two distinct codewords, X́ =
[
IPΓ

T , V́k + 1T
]

and λ =

E
{

exp
(

λ
[
lnp
(

Y
∣∣∣Vk+1

)
− p

(
Y
∣∣∣V́k+1

)])}
was used to get the tightest bound. By simple

algebraic manipulation (29) could be simplified as

PEP(Vˆ(k + 1) −V́ˆ(k + 1))
= 1/2

{
det
[
I_PΓ + YΛRΛ̂H

(
XλXˆH + X́(1− λ)X́ˆH

)]
/det[I_PΓ

+2YΛRΛ̂H]}
(30)

Since the relay nodes in our scheme linearly processed their received signals, our
achievable diversity order was bounded by L = min{LSR, LRD} and τ = min(τSR, τRD)
where τ was the rank of the channel temporal correlation matrix. Thus, targeting maximum
diversity order Γ = Lτ was chosen. Other values of Γ may be desirable, for example, when
targeting minimum decoding complexity or when high SNR is considered. It could be
deduced from (30) that for all values of k, if V́k+1 − Vk+1 or similarly if X́− X had full
rank, then our scheme would achieve a diversity order of PLτ. At high SNR, the term
in (30) could be further bounded as (31), where λ = 1/2 was selected to get the tightest
bound [27].

PEP
(

Vk+1 − V́k+1
)
≤
(

Y
8

(
det
(

ΛRΛH
)

det
[(

V́k+1 − Vk+1
)H(

V́k+1 − Vk+1
)]) 1

PL
)−PL

(31)

From (31), it was observed that the performance of our code was determined by

R,ΛHΛ and
(

V́k+1 − Vk+1
)H(

V́k+1 − Vk+1
)

. It has already been established that R had
full rank; thus, our scheme would achieve maximum diversity strictly on the condition

that ΛHΛ and
(

V́k+1 − Vk+1
)H(

V́k+1 − Vk+1
)

had full rank. Since of our main focus was
to maximise diversity whilst ensuring maximum coding gain, the code had to be designed
such that V́k+1 − Vk+1 had full rank PΓ over all possible pairwise errors. When maximum
diversity was achieved, V́k+1 − Vk+1 had full rank; the coding gain was only determined

by det
(
ΛHΛ

)
and det

[(
V́k+1 − Vk+1

)H(
V́k+1 − Vk+1

)]
. In order to maximize the coding

gain, the first step was to provide PΓ uncorrelated channels such that det
(
ΛHΛ

)
was

maximized. For the second step, we considered the diversity product ζc, which measured

the quality of the code given as ζc = 1
2 min

V́k+1 6=Vk+1∀V

∣∣∣det
(

V́k+1 − Vk+1
)∣∣∣ 1

PL where ζc > 0

achieved maximum diversity. Thus, the coding gain was maximized when we maximized
ζc under the constraint that: 0 ≤ ζc ≤ 1 and

(
V́k+1 − Vk+1

)
, ∀V́k+1 6= Vk+1.

5. Performance Evaluation

The performance of the co-efficient vector differential DQSTBC scheme with coop-
erating relay nodes over severely fading multi-path channels is evaluated via simulation.
The fading is assumed to vary identically during the transmission of at least two con-
secutive information blocks. Here, it is assumed that the cooperating nodes [34–36] and
the destination are unable to acquire CSI. Thus, they recover the transmitted bits from
consecutively received signals. We set P = 4 and m = 1 to form the basis for comparing the
BER performance of our co-efficient vector design with that of the unitary matrices design.
So far in this study, our literature search for a differential DQSTFC scheme for comparison
has been unsuccessful. We thus independently simulate the differential DQSTFC scheme
using the unitary matrices design and the co-efficient vector design. Also compared is the
differential orthogonal scheme of [29], where the unitary matrix design is utilized, with
the co-efficient vector based differential orthogonal scheme. A similar DQSTFC scheme is
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also independently simulated for P = 4 cooperating nodes in coherent networks that can
acquire perfect CSI. The results for BPSK are presented in Figure 3.
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Figure 3. Comparison of Unitary Matrices and Co-efficient Vector Designs.

From the results of the simulated schemes, it is evident that, compared to the unitary
matrices AF protocol, the performance of the differential DF scheme using co-efficient
vectors is slightly better than that obtained using unitary matrices in the low SNR region
while the performance improves significantly in the high SNR region. For example, at
10−4 BER, the performance gain is about 1.2 dB.

A notable difference between the designs is observed in terms of the computation
complexity of the decoder at the relay nodes and the destination. For designs utilizing
unitary matrices, a simple pairwise decoder recovers the information bits at the relays and
the destination by conducting c = 2m comparisons, m is the number of bits. In contrast,
designs utilizing co-efficient vectors rely on an exhaustive search over all possible elements
of the co-efficient vector. The most complex method is to perform a full search over all
possible combinations in the co-efficient vector set. This equates to c = 22m comparisons to
recover the elements of the co-efficient vector set, with a further 1 ≤ c ≤ 22m comparisons
required for mapping and inverse mapping at the encoder and decoder, respectively. It is
thus clear that the decoding complexity limitation of the co-efficient vector based design is
due to the constellation size. To counter this, suitable optimum detection schemes, such as
those proposed in [37,38], which are independent of constellation size, can be utilized.

Next, we analyse the performance of our proposed scheme in frequency-selective
and time-selective channels. Specifically, we set our simulation parameters for different
Doppler frequencies fD ranging from 40 Hz to 200 Hz and different root mean square delay
spreads τrms between 0.1 µs and 4 µs, the Doppler frequencies correspond to mobile speeds
between 22 km/h and 108 km/h. For the quasi-orthogonal codes, the rotation angles are
set to θ/M, where M is the constellation size.

For different channel conditions, the performance of our proposed differential DQSTFC
scheme is compared with the differential quasi-orthogonal DSTC-OFDM and DSFC schemes
(whose parameters are simulated in our environment). We study the effects of Doppler
spread and delay spread on the aforementioned coding schemes using different simulation
parameters. We first set τrms to a low value of 0.1 µs such that the effect of delay spread
is negligible. To study the influence of Doppler spread, we investigate BER performance
at different Doppler frequencies. The SNR is fixed at 12 dB, the symbols are chosen from
a QPSK constellation, and all the coding schemes have the same transmission rate of
2 bits/s/Hz.
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From Figure 4, it can be seen that for values of fD between 78 Hz and 135 Hz, the
BER performance of our proposed differential DQSTFC scheme is better than that of the
differential quasi-orthogonal DSTC-OFDM and DSFC schemes. This is because at such
values of fD the coherence time tc and coherence bandwidth bc of the channel are large
enough to satisfy the requirements of constant channel gain across adjacent time slots
and adjacent subcarriers. The BER performance of DSTC-OFDM is better than that of our
proposed scheme only at values of fD below 78 Hz. At such values of fD, the coherence
time is large, and tc ≥ Γ can be satisfied. Thus, DSTC-OFDM schemes, which require
constant channel gain in the temporal dimension for the entire duration of Γ = 4 symbols,
have the best BER performance. When the Doppler spread increases and fD is between
78 Hz and 135 Hz, the coherence time reduces and tc ≥ Γ can no longer be satisfied;
however, the coherence time is still large enough to satisfy tc ≥ Γ/2. Thus, the BER
performance of DSTC-OFDM degrades beyond that of our proposed scheme. When the
Doppler spread is severe and fD is above 135 Hz, coding in the temporal dimension
introduces a significant amount of inter-symbol interference; thus, our proposed scheme
and the DSTC-OFDM scheme experience performance degradation. However, the BER
performance of the DSFC scheme is better in this situation because the delay spread is
low and the coherence bandwidth is large enough to satisfy bc ≥ Γ. Thus, DSFC schemes
that require constant channel gain in the frequency dimension for the entire duration of
Γ = 4 symbols has the best BER performance. In contrast with DSTC-OFDM and DSFC
schemes, where the requirements for constant channel gain must be satisfied for the entire
duration of Γ = 4 symbols, our scheme only requires constant channel gain during the
transmission of Γ = 2 symbols. Therefore, we can conclude that for cooperative networks
operating in environments where CSI cannot be acquired, our proposed scheme is robust
against a practical range of Doppler spread.
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Figure 4. Co-efficient Vector DQSTFC in Frequency Selective Fading Channels.

We then set fD to a fixed value of 50 Hz such that the influence of Doppler spread is
low and compare the performance of all the aforementioned coding schemes at different
levels of delay spread. The SNR is fixed at 12 dB, and all the coding schemes have identical
transmission rate of 2 bits/s/Hz. From Figure 5, we observe that our proposed scheme
outperforms the other coding schemes when the value of τrms is between 0.8 µs and 3.2 µs.
This is because at such values, the coherence time and coherence bandwidth of the channel
is large enough to satisfy the requirements of constant channel gain across adjacent time
slots and adjacent sub-carriers. When the delay spread is low and τrms is below 0.8 µs, the
coherence bandwidth is large and bc ≥ Γ can be satisfied. Thus, DSFC schemes that require
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constant channel gain across Γ sub-carriers outperform the DSTC-OFDM scheme and our
proposed DQSTFC scheme. When the delay spread increases, the coherence bandwidth
reduces and bc ≥ Γ can no longer be satisfied; however, bc ≥ Γ/2 can still be satisfied. Thus,
our proposed scheme exhibits improved BER performance compared to the DSFC scheme.
When τrms is higher than 3.2 µs, the coherence bandwidth is very low such that coding in
the frequency dimension introduces inter-carrier interference; thus, the BER performance
of our proposed scheme and the DSFC scheme degrade significantly. In this condition,
however, DSTC-OFDM outperforms the other schemes.
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Figure 5. Performance comparison between proposed Co-efficient Vector DQSTFC, DSTC-OFDM
and DSFC in Time Selective Fading Channels.

6. Conclusions

As opposed to traditional unitary matrix-based differential designs amenable to the
AF cooperative protocol, we propose co-efficient vector based differential designs for DF
cooperative networks where the relay nodes are required to differentially decode and re-
transmit information signals. We employ full rate full diversity quasi-orthogonal codes to
meet the demands of high data rate transmission. We present the generalized STF mapping
scheme and differential recipe for utilizing co-efficient vectors in cooperative networks
with any number of relays. Through PEP analysis, we derive sufficient design criteria for
our scheme to achieve full spatial, temporal, and frequency diversity. Using simulation
results, we compare and contrast the unitary matrices and co-efficient vector designs in
terms of computational complexity and BER performance.

From the results, it is evident that, compared to the unitary matrices AF protocol,
the performance of the differential DF scheme using co-efficient vectors is slightly better
than that obtained using unitary matrices in the low SNR region while the performance
improves significantly in the high SNR region. For example, at 10−4 BER, the performance
gain is about 1.2 dB. Additionally, it can be seen that for values of fD between 78 Hz and
135 Hz the BER performance of our proposed differential DQSTFC scheme is better than
that of the differential quasi-orthogonal DSTC-OFDM and DSFC schemes.

We then study the performance of our differential DQSTFC scheme in severe multipath
fading conditions. When τrms is higher than 3.2 µs, the coherence bandwidth is very low,
such that coding in the frequency dimension introduces inter-carrier interference; thus, the
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BER performance of our proposed scheme and the DSFC scheme degrade significantly. In
this condition, however, DSTC-OFDM outperforms the other schemes.

Future Work

The reconfigurable intelligent surface (RIS) technology has generated considerable interest
due to its advantages of low cost, easy deployment, and high controllability [39–41]. To
further attempt to improve the performance of our proposed co-efficient vector differential
DQSTFC scheme under different channel conditions, a RIS-assisted differential DQSTFC
scheme will be investigated.
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