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ABSTRACT This paper presents a new design of an experimental low powerWind Turbine Emulator (WTE)
which has the advantage of being simple and easy to implement in practice. The proposed emulator takes
into account the effect of Wind Turbine (WT) inertia as well as the nonlinearities in the system which make
it suitable for all types of WTs. An efficient Maximum Power Point Tracking (MPpt) algorithm based on
synergetic and backstepping nonlinear control theory has also been proposed to allow the WT to extract
maximum power under a wide range of operating conditions. This is achieved by regulating the current at the
input of the boost converter through these controllers. Furthermore, these nonlinear controllers considerably
reduce the complexity of the design of the control scheme. Several experimental test are conducted to validate
the MPPT strategy and the proposed control scheme using a dSPACE1104 board and MATLAB/Simulink
environment, including different wind profiles and variable electrical load. The results obtained demonstrate
the effectiveness of the designed WTE in reproducing the same mechanical behavior as the real turbine
studied and the good performance achieved by the proposed MPPT control algorithm.

INDEX TERMS Wind turbine emulator, boost converter, MPPT, backstepping control, synergetic control,
dSPACE1104.

NOMENCLATURE
A. LIST OF ACRONYMS
WT Wind Turbine.
WTE Wind Turbine Emulator.
SWT Small Wind Turbine.
MPP Maximum Power Point.
MPPT Maximum Power Point Tracking.
OTC Optimal Torque Control.
PSF Power Signal Feedback.
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TSR Tip Speed Ratio.
P&O Perturb and Observe.
DCM Direct Current Motor.
DCG Direct Current Generator.
PMSM Permanent Magnet Synchronous Motor.
PMSG Permanent Magnet Synchronous Generator.
FPGA Field-Programmable Gate Array.
XSG Xilinx System Generation.
FOC Field-Oriented Control.
VFD Variable-Frequency Drive.
IGBT Insulated-Gate Bipolar Transistor.
IM Induction Motor.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 92225

https://orcid.org/0000-0002-1258-3907
https://orcid.org/0000-0001-8290-6743
https://orcid.org/0000-0002-5924-534X
https://orcid.org/0000-0002-5907-1706
https://orcid.org/0000-0002-2460-1850
https://orcid.org/0000-0001-7123-0688


H. Boudjemai et al.: Experimental Analysis of a New Low Power WTE Using a DC Machine and Advanced Method

SC Synergetic Controller.
BC Backstepping Controller.

B. LIST OF SYMBOLS
Pt ,Pt_opt Mechanical and optimal power of the turbine.
Pe Power at the terminals of the electric load.
S Surface swept by the blades of the turbine.
VwVw Wind speed upstream of the turbine.
ρ Air density.
Cp Power coefficient.
λ Relative speed or speed ratio.
R Radius of the turbine blades.
��t , m Turbine and generator rotation speed.
Jt Inertia of the turbine.
ft Coefficient of friction of the turbine.
Jm Inertia of the generator.
fmfm Coefficient of friction of the generator.
Te Electromagnetic torque of the generator.
Tm Torque supplied by the turbine to the

generator.
J Total moment of inertia.
f Total coefficient of friction.
G Gearbox ratio.
Ra Armature resistance.
k Torque constant of the DC machine.
d Duty cycle.

I. INTRODUCTION
Wind energy has become, nowadays, one of the most
promising renewable energy sources to reduce the depen-
dence on fossil fuel resources and, their negative impact on
the environment [1]. Wind energy conversion systems are
complex, with nonlinear characteristics and subject to various
external disturbances such as intermittent and variable wind
speeds [2]. Therefore, conducting experiments on a real wind
turbine required adequate installation and implied a high
investment cost [3]. Having a wind turbine emulator capable
of reproducing the static and dynamic characteristics of an
actual wind turbine in real-time can be extremely useful to test
and validate various control strategies for speed and torque
regulation, maximum power extraction, etc. in wind energy
conversion systems under different wind speed conditions.

Several WTEs have been discussed and developed. In the
design of these emulators, the authors rely on several criteria,
in particular: the motor drive and its control, power elec-
tronics converters, simulation software, and data acquisition
boards. For example, in [4] the authors used a Direct
Current Motor (DCM) with an armature current regulation
loop based on a Proportional-Integral (PI) controller. This
control structure is applied on a DC-DC buck converter using
LabView software with Field-Programmable Gate Array
(FPGA). In [5], the authors proposed a PI-based cascade
control for the DCM (speed regulation in series with armature
current regulation). This control is applied to a DC-DC

buck converter. The overall system and control scheme
are modeled in MATLAB/Simulink and, then validated
experimentally using a dSPACE1104 board. In [6], the
authors used a similar system configuration, except that
the cascade regulation is replaced by an armature current
regulation loop based on a fuzzy controller, and the buck
converter is replaced by a boost converter. The authors
in [7], presented a new emulator slightly different from other
emulators developed since it works in open-loop and without
any feedback control signals. The emulator basically consists
of a DCM driven by a buck converter. The DCM drive
is controlled by the MATLAB/Xilinx System Generation
(XSG) environment with the FPGA card. In [8], the DCM
is replaced by a Permanent Magnet Synchronous Motor
(PMSM) with a Field-Oriented Control (FOC) scheme based
on PI controllers. etc.

This study builds upon the work presented in [9] where
the authors proposed an emulator to mimic the mechanical
behavior of a low power WT which operates without load.
Hence, in this paper, a variable electrical load has been
added to assess the WTE under more realistic conditions.
Although, there are several WTEs available in the literature,
the emulator proposed in this paper is different and offers
more desirable features. In summary, the novelty of the
proposed emulator can be summarized as follows:

• Simplicity of implementation: After a thorough search
on WTEs, it has been noticed that for the electrical
part of the WT system, several researchers [10], [11],
[12], [13], [14] have used alongside the WTE very
complex configurations (AC generator (PMSG, DFIG,
etc.) – uncontrolled rectifier – filter – DC-DC con-
verter – battery or electrical load) to perform tests
on a DC load based on the control of a DC-DC
converter. Unlike all these WTE configurations, our
work aims to provide a simple experimental platform
based only on DC machines to facilitate the study of
Small WTs (SWTs). The proposed WTE is design to
capture accurately the characteristics of real WTs. Thus,
through this work, we do not encourage manufacturers
to install Direct Current Generators (DCGs) in small
WT chains like other researchers [15]. It is well known
that this type of machine requires very expensive
maintenance, without forgetting the commutation sparks
on the machine collector due to load variation or
machine shaft vibration, and with that, you can therefore
imagine what would happen in case of turbulent wind
facing a WT based on a DCG.

• The adaptation of the power between the wind turbine
and the engine of the emulator, which is not considered
in other emulators. In some of these WTEs, only the
adaptation of current and/or torque is considered, and
therefore for a given wind speed, the powers of the
turbine and themotor drive of the emulator do notmatch.
In some others, the motor rated power is greater than or
equal to the rated power of the WT. In this paper, with
a simple power adaptation technique, it was possible to
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TABLE 1. Comparative study of different WTE configurations.

mimic the behavior of aWT, which has a nominal power
of about fifteen times the nominal power of the emulator
motor.

• Another advantage is that our emulator contains several
electrical circuits in the form of modules, which greatly
facilitates maintenance in the event of a breakdown or
problem. Also according to the needs one can easily
change the circuits, that is to say if one wants to test
another control algorithm, it suffices to change the
control circuit instead of completely changing the wind
turbine emulator.

• Reasonable cost (simple power electronics circuit).
• As well, several research works propose wind turbine
emulators, but without addressing neither the inertia
effect of the turbine, nor its robustness against load
variations. All these characteristics and features were
considered in the design of the wind turbine emulator
proposed in this work. The characteristics and perfor-
mance of the proposed wind turbine emulator have been
compared to other recent works in Table 1.

Despite the enormous environmental and economic bene-
fits that the exploitation of wind energy systems brings, their
integration into the electrical networks can be a challenge
due to several factors such as the random variation of the
wind profile or the variation of the electrical load. Several
Maximum Power Point Tracking (MPpt) algorithms have
been proposed to maximize the power captured by the WT
and improve it efficiency. Among the MPPT techniques
proposed in the literature, those in [11], [21], [22], and [23]

require an exact model of theWT such as for example; Power
Signal Feedback (PSF), Optimal Torque Control (OTC), and
Tip Speed Ratio (TSR). Other MPPT techniques which do
not require any prior knowledge of WT parameters have
also been proposed such as the Perturb & Observe (P&O)
or based on fuzzy logic, control by the search for extremum,
etc. This paper presents an MPPT based on Optimal Torque
Control (OTC-MPpt). However, several authors who applied
this technique to the mechanical part of the WT in their
simulation studies did not address the effect of the inertia
of the WT nor the effect of the variation of the electrical
load. TheWTE considered in this paper takes into account all
these aspects. A simple control scheme based on nonlinear
control theory is employed to force the WT to extract the
maximum power from the wind regardless of the operating
conditions. Among the different nonlinear control strategies
that have received a lot of attention in recent years in various
applications, we can mention synergistic control (SC) [28],
[29], [30], [31] and backstepping control (BC) [32], [33],
[34], [35]. Because these control techniques can be applied
directly to the nonlinear model of the system to be controlled,
in this work, we have chosen to use them alongside the
OTC-MPPT to control a boost converter and improve the
efficiency of the studied WTE.

The main objective behind developing a wind emulator
is to facilitate the study of wind energy conversion systems
and conduct real-time experiments to test and validate new
control designs or power converter topologies under various
operating conditions without the need to access real turbines
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FIGURE 1. Block diagram of the proposed WTE.

which avoids the risk of damaging the actual system, saving
time and increasing the quality of system development. As in
our case, we used it to evaluate the feasibility of many MPPT
techniques.

The remaining of the paper is organized as follows:
Section II presents a detailed description of the main compo-
nents of the proposed WTE. Section III presents the structure
of the proposed OTC-MPPT and derive the equations of
the nonlinear controllers. The validation scenarios and the
discussion of the experimental results obtained are detailed
in Section IV. Finally, the conclusion of the paper and the
proposed future research works are summarized in Section V.

II. MODELING OF THE WIND TURBINE EMULATOR
The WTE proposed in this paper for the study of SWTs is
illustrated in Fig. 1. As mentioned earlier, this emulator is
based on the work done in [9] (Part A). In this paper, we have
designed Part B which consists of a DC Generator (DCG)
followed by a boost converter and a variable electrical load.
The WTE can be divided into two parts: Mechanical part and
Electrical part not only expresses the mechanical part of the
WT, but can be divided into two sub-emulators which are:

A. MECHANICAL PART OF THE WTE
This part seeks to reproduce the mechanical behavior of the
studiedWT by controlling the DCmotor. All the components
of the turbine (the blades, the slow shaft, the gearbox, and the
fast shaft) are modeled on MATLAB/Simulink software then
implemented on the dSPACE1104 card in order to control a

Buck converter and generate the real WT torque signal, but at
a reduced scale [9].

It is well known that when the wind blows, WTs can only
capture part of the power of the wind which is given by the
following relationship:

Pt =
1
2
ρSV 3

wCp(λ) (1)

The small power wind turbine used in this work is of
the Darrieus type. This type of turbine rotates with a blade
tip speed greater than the actual wind speed, so the relative
speed λ is greater than 1. Thus, it uses the lift force to
produce the rotation of the blades. It is well known that wind
turbines using this type of force spin faster and are able to
extract more power from the wind than those using drag force
(ex: Savonius type turbine). Furthermore, because the energy
conversion devices (generator, gearbox, power electronics,
etc.) are placed at the foot of the wind turbine, it is easier
to carry out maintenance operations. The main parameters
of the turbine are summarized in Table 2, and the power
coefficient of this turbine can be expressed by the following
relationship [10]:

Cp(λ) = 0.00054λ4 − 0.01098λ3 + 0.057456λ2

− 0.02493λ+ 0.110898 (2)

With

λ =
R�t

Vw
(3)

Moreover, the mechanical power recovered by theWT (the
slow shaft) is transmitted to the generator (the fast shaft) from
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FIGURE 2. Mechanical coupling between WT and generator.

FIGURE 3. Schematic diagram of the principle of WTs.

FIGURE 4. WT characteristics: (a) turbine power as a function of rotational speed, (b) power coefficient as a function of relative speed.

a gearbox (Fig. 2). The mechanical coupling between the two
systems can be described by (4).

J
d�m

dt
= Tm − Te − f�m (4)

With

J =
Jt
G2 + Jm (5)

f =
ft
G2 + fm (6)
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FIGURE 5. Structure of a small power WT chain.

FIGURE 6. Electrical schema of the boost converter.

Bymodeling the mechanical shaft, it is possible to quantify
the real impact of inertia on the dynamics of the WT. Despite
the importance of inertia, many researchers [4], [5], [6], [36]
did not consider it in their design of WTEs.

The complete model of the WT is illustrated in Fig. 3. The
main characteristics describing the aerodynamic behavior of
the studied WT are plotted in Fig. 4.

B. ELECTRICAL PART OF THE WTE
For the electrical part of the WT, several research works
were based on a Permanent Magnet Synchronous Generator
(PMSG) connected directly to the WT without the intermedi-
ary of a gearbox [10], [11], [14], [24], [26], [37], as illustrated
in Fig. 5. This solution has the advantage of being more
efficient, with less mechanical losses and low maintenance
cost [38], [39], [40]. In addition, a PMSG is characterized
by higher efficiency compared to other machines [41], [42].
On the other hand, the main reason in using a DC generator in
this work is to reduce the complexity and cost of the designed
wind turbine emulator while capturing the behavior of a real

wind turbine. Such a topology which consists of transforming
the model of a PMSG and uncontrolled rectifier into an
equivalent model of a DC machine has been studied in [43].
Moreover, with a DC generator, the same performance can be
achieved as compared to the system (wind turbine + PMSG
+ uncontrolled rectifier) described in reference [1].
Another important component in the electrical part of the

WT system is the power converter. A boost converter was
used because of its simple design (Fig. 6) and ease of control
which can be easily implemented in practice. This converter
is controlled by the MPPT technique so as to force the WT
to operate at the optimum power point and also guarantees a
better transfer of energy to the electrical load. The operation
of the boost converter can be described by the following
mathematical model:


dvin
dt

=
Iin
C1

−
iL
C1

diL
dt

=
vin
L

− (1 − d)
Vout
L

(7)
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FIGURE 7. Structure adopted for the study of SWTs based on the control of the optimal current as a solution to extract the maximum power
from the wind.

where vin is the input voltage,Vout denotes the output
voltage,Iin represents the input current, iL is the coil current,
and d ∈ [0; 1[.

III. DESIGN OF MPPT
As seen in Fig. 4, the best transfer of aerodynamic energy
to the generator (Fig. 4-a) only takes place at the optimum
operating point (Cp_opt = 0.388 et λopt = 4.94) of the
characteristic Cp(λ) of the WT (Fig. 4-b).This is why it is
necessary to add MPPT techniques in WT systems. The
OTC-MPPT technique used in this work, is simple and easy
to implement in practice, but it requires knowledge of the
optimal point of the characteristic Cp (λ), which must be
determined beforehand. The operating principle of the OTC
method is formulated as follows:

First, the optimal power generated by the WT can be
written as follows:

Pt_opt = kopt .�3
t_opt (8)

With

kopt =
1
2

·
Cp−opt · ρ · s · R3

λ3opt
(9)

The torque relationship that must be imposed on the DCG
to help the WT operate at the optimum power point is given
by:

Tm_opt =
Tt_opt
G

=
kopt
G
.�2

t_opt (10)

Since the torque value can be deduced from the measure-
ment of the current generated by the generator, therefore the
torque control is replaced with the current control Iin at the
generator output, as shown in Fig. 7. The optimal reference
current is calculated as follows:

Iin_opt =
Tm_opt
k

=
kopt
Gk

.�2
t_opt (11)

Note:The WT that we are going to study in this paper delivers
465.3 w for a wind speed of 10 m/s (test limit), on the other
hand, the DC motor used to reproduce the same mechanical
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FIGURE 8. Schematic of the principle of the proposed WTE.

behavior as the studied turbine, delivers a nominal power of
100 w. So, to stay within the power limits acceptable by the
experimental bench, we decided to apply a ratio of 10 between
the power of the WT and the power of the DCM. This power
adaptation solution is detailed in reference [9].
So, the optimal current imposed on the DCG becomes:

Iin_opt =
kopt

10 · G · k
�2
t_opt (12)

Regarding the controllers used in Fig. 7. In this study we
have chosen to evaluate the effectiveness of two non-linear
controllers; synergetic and backstepping. Hence, a new idea is
introduced to control the current at the Boost converter input
through these controllers.

A. SYNERGETIC CONTROLLER
The inputs of the SC are the optimal current Iin_opt and the
measured current Iin. But, the model of the boost converter

given in (7) that we seek to control depends only on the
voltage vin and the coil current iL . Therefore, to introduce
the term Iin into the model of this converter, the following
calculations are performed:

The voltage at the output of the DCG is given by:

vin = k�m − RaIin (13)

So

Iin =
k�m

Ra
−
vin
Ra

(14)

Differentiating (14) with respect to time, gives:

dIin
dt

=
k�̇m

Ra
−

Iin
RaC1

+
iL

RaC1
(15)
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FIGURE 9. The complete experimental diagram adopted for the study of SWTs and the validation of the proposed OTC-MPPT structure
(synergetic controller case).

Consider the following system: ẋ1 = x2

ẋ2 =
k�̈m

Ra
−

x2
RaC1

+
vin

LRaC1
− (1 − d)

Vout
LRaC1

(16)

With: x1 = Iin and x2 =
dI in
dt .

The first step in synergistic controller design, is the choice
of the macro-variable which is given by:

ψ = µ · e+ ė (17)

With e = Iin_opt − x1 and ė = İin_opt − x2
So

ψ = µ.Iin_opt − µx1 + İinopt − x2 (18)

where µ is a large positive constant.
Then, the objective of the synergetic control is to force the

macro-variable to converge toward zero using the following
convergence law:

T ψ̇ + ψ = 0 (19)

where T is a positive constant which defines the speed of
convergence of the states of the system studied towards the
macro-variable.

Differentiating (18) with respect to time leads to:

ψ̇ =
dψ
dt

=
dψ
dx

dx
dt

=
dψ
dx

ẋ =
dψ
dx1

ẋ1 +
dψ
dx2

ẋ2 (20)

So

ψ̇ = −µ.x2 −
k�̈m

Ra
+

x2
RaC1

−
vin

LRaC1
+ (1 − d)

Vout
LRaC1

(21)

Substituting (21) into (19) and rearranging, leads to the
synergetic control law (22).

d = 1 −
1

Vout

(
−ψLRaC1

T
+ (µ · LRaC1 − L) x2

+kLC1�̈m + vin
)

(22)

With µ = 20 and T = 0.001.
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FIGURE 10. Experimental test bench for the proposed WTE.

B. BACKSTEPPING CONTROLLER
Consider the following system:

ẋ1 =
k�̇m

Ra
−

x1
RaC1

+
x2

RaC1

ẋ2 =
vin
L

− (1 − d)
Vout
L

(23)

With x1 = Iin and x2 = iL .
Since the system (23) is of order two, then the backstep-

ping algorithm is carried out in two steps:
- Step 1 The aim is to regulate the current at the input of
the boost converter. Therefore, the first error variable to
be defined is given by:

e1 = x1 − Iin_opt (24)

Taking the derivative of (24) with respect to time, gives:

ė1 = ẋ1 − İin_opt =
k�̇m

Ra
−

x1
RaC1

+
x2

RaC1
− İin_opt (25)

In order to ensure asymptotic stability in the sense of
Lyapunov. The following Lyapunov function is used [44]:

V (e1) =
1
2
e21 (26)

Such as

V̇ (e)1 = e1ė1 = e1

(
k�̇m

Ra
−

x1
RaC1

+
x2

RaC1
− İin_opt

)
(27)

For asymptotic stability, the Lyapunov function must be
positive definite and its time derivative must be negative
definite.

Therefore:

V̇ (e1) = −k1e21 = e1

(
k�̇m

Ra
−

x1
RaC1

+
x2

RaC1
− İinopt

)
(28)

So

−k1e1 =
k�̇m

Ra
−

x1
RaC1

+
x2

RaC1
− İinopt (29)

Thereafter

−k1RaC1e1 = C1k�̇m − x1 + x2 − RaC1 İinopt (30)

Hence

x2 = β = −k1RaC1e1 − C1k�̇m + x1 + RaC1 İinopt (31)

The procedure of backstepping encourages considering β
as a first virtual control. Where k1 is a positive constant.

- Step 2:As in the first step, the reference to follow is β.
So, the regulation error signal is given by:

e2 = x2 − β (32)

Differentiating (32) gives:

ė2 = ẋ2 − β̇ =
1
L
(vin − (1 − d)Vout)− β̇ (33)

Such as

V (e2) =
1
2
e22 (34)
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FIGURE 11. Experimental results of the first test: (a) wind profile, (b) rotation speed, (c) WT power coefficient, (d) relative speed,
(e) WT power, (f) power at the terminals of the electric load, (g) comparison between the current at the input and at the output of
the boost converter, (h) comparison between the voltage at the input and at the output of the boost converter, (i) comparison
between the optimal current and the current at the input of the boost converter, (j) duty cycle of the DC-DC converter.
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FIGURE 11. (Continued.) Experimental results of the first test: (a) wind profile, (b) rotation speed, (c) WT power coefficient, (d) relative
speed, (e) WT power, (f) power at the terminals of the electric load, (g) comparison between the current at the input and at the output
of the boost converter, (h) comparison between the voltage at the input and at the output of the boost converter, (i) comparison
between the optimal current and the current at the input of the boost converter, (j) duty cycle of the DC-DC converter.

Finally, to force the errors e1 and e2 converge to zero and
ensure the stability of the overall system, the global Lyapunov
function is defined as follows:

Vt = V (e1) + V (e2) (35)

The derivative of Vt is given by:

V̇t = e1ė1 + e2ė2 (36)

Then

ė1 =
k�̇m

Ra
−

x1
RaC1

+
1

RaC1
(e2 + β) − İin_opt

ė1 =
k�̇m

Ra
−

x1
RaC1

+
e2

RaC1
+

β

RaC1
− İin_opt

ė1 = −k1e1 +
e2

RaC1
(37)

Hence

V̇t = e1 (−k1e1 +
e2

RaC1

)
+ e2

(
1
L
(vin − (1 − d)Vout)− β̇

)
(38)

Or

V̇t = −k1e21 + e2

(
e1

RaC1
+

1
L
(vin − (1 − d)Vout )

− β̇) (39)

Thus, for the Vt function to be positive definite and its time
derivative to be negative, the following must hold:

−k2e2 =
e1

RaC1
+

1
L
(vin − (1 − d)Vout )− β̇ (40)

where k2 is a positive constant.
After reducing (40), the backstepping control law is

defined as follows:

d = 1 +
1

Vout

(
−Lk2e2 −

L
RaC1

e1 − vin + Lβ̇
)

(41)

The constants are fixed to k1 = 2000 and k2 = 10.

IV. EXPERIMENTAL VALIDATION
In order to demonstrate the feasibility and efficiency of
the proposed WTE and its ability to reproduce the same
mechanical and electrical behavior as a real WT, several
experimental tests have been carried out using different wind
profiles and electrical loads. Figs. 8, 9 and 10 show the
electrical and mechanical parts of the studied WTE, the
control schemes, and the components used. The software and
hardware parts are briefly described below:

A. SOFTWARE PART
So, you can use the software LabVIEW, and LTspice,
as you can also use MATLAB/Simulink. In our case,
we chose the latter, because it remains simple and gives the
possibility of implementing the command modeldirectly on
the dSPACE1104 card. Fig. 9 presents a detailed structure
of the control scheme of the wind turbine emulator as
implemented on the dSPACE board. This figure consists of
two main parts: Part A is needed to mimic the mechanical
behavior of thewind turbine by controlling theDCmotor. The
armature of this machine is powered by a Buck-type DC-DC
converter. Part B is specific to the OTC-MPPT model used to
force the wind turbine to extract the maximum energy from
the wind. To operate the system, an ADC block interface is
also required to retrieve the measured signals.

B. HARDWARE PART
The hardware part is depicted in Fig. 10. The set-up consists
of DC power supplies, two DC machines, two DC-DC
converters controlled in real-time by the dSPACE1104 board,
the electrical load composed of two lamps connected in
parallel: Lamp 1: 220 V, 0.4 A, 75 W & Lamp 2: 220 V,
0.19 A, 40 W. Voltage and current measurements are read
from voltage and current sensors and an incremental encoder
is used to measure the speed of rotation. However, these
signals from the sensors contain a lot of noise, and hence
low-pass type filters with a cut-off frequency ωc = 100rad/s
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FIGURE 12. Experimental results of the second test: (a) wind profile, (b) rotation speed, (c) WT power coefficient, (d) relative speed,
(e) WT power, (f) power at the terminals of the electric load, (g) comparison between the current at the input and at the output of
the boost converter, (h) comparison between the voltage at the input and at the output of the boost converter, (i) comparison
between the optimal current and the current at the input of the boost converter, (j) duty cycle of the DC-DC converter.
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FIGURE 12. (Continued.) Experimental results of the second test: (a) wind profile, (b) rotation speed, (c) WT power coefficient, (d) relative
speed, (e) WT power, (f) power at the terminals of the electric load, (g) comparison between the current at the input and at the output of
the boost converter, (h) comparison between the voltage at the input and at the output of the boost converter, (i) comparison between the
optimal current and the current at the input of the boost converter, (j) duty cycle of the DC-DC converter.

are used to guarantee the proper functioning of our WTE and
the implemented MPPT technique.

A series of experiments are performed to demonstrate the
feasibility of proposed WTE and the effectiveness of the
implemented MPPT control technique. They are discussed
below:
Experiment 1:In this scenario, a wind profile with four

consecutive abrupt changes in the wind speed between 6 m/s
and 10 m/s, as shown in Fig. (11. a). With this wind profile,
we seek to verify the feasibility and efficiency of our WTE
to accurately reproduce the same behavior as the real WT
studied. We also seek to evaluate the stability, response time,
and accuracy of the studied MPPT technique when searching
for the optimal points mentioned in Fig. 4. In addition, the
robustness of the studied MPPT is also assessed with a
variable electrical load. During this experiment, the wind
speed set to 8 m/s and at time t = 210 s, the electrical load
is varied. In addition, during this test, the effect of the inertia
of the turbine is taken into consideration, to demonstrate the
influence of this parameter on the operation of the WT and
the performance of the MPPT algorithm. The measurements
recorded from the sensors are stored in a MATLAB file of
type (.mat) from a dSPACE1104 board. The results obtained
in this experiment are shown in Fig. 11.
Experiment 2: In this experiment, a fixed electrical load

consisting of a single connected lamp of 75 W is used and
the wind profile was based on a real wind speed as shown in
Fig. (12.a) [9] for to get closer to the behavior of a real WT
and on the other hand to evaluate the ability of the studied
MPPT technique to stabilize the operation of the WT on the
point of maximum power despite the turbulent nature of the
wind, which includes many oscillations and a lot of noise.
The experimental results obtained are shown in Fig. 12.
First of all, although the DCmotor used in the design of the

WTE is characterized by a nominal power fifteen times less
than the nominal power of the turbine studied, we managed
to reproduce accurately the same mechanical behavior as the
real WT studied. Based on these results, it can concluded that

the designed WTE works perfectly and remains valid for all
types of WTs, regardless of their power.

Furthermore, the MPPT technique studied in this paper
showed very good performance under variable wind speeds,
hence all the optimal points of (power coefficient, relative
speed and turbine power) obtained by simulation (Fig. 4),
were accurately reproduced during the experimental tests. For
example, for a wind speed of 10 m/s, the maximum power
of the turbine is 46.53 W (see Fig. 11.e). If we apply the
power adaptation ratio of 1/10, we find the maximum turbine
power of about 465.3 W for a rotation speed of 49.82 rad/s
(see Fig. 11.b). This good tracking of the maximum power
point is observed even in the case of a variable electric load,
from where we clearly notice that when we changed the
electric load in the time period 210 s and although the wind
remains constant during this period, the duty cycle (Fig. 11.j)
is decreased to respond to the change in electrical load and
also maintains the operation of the WT at the optimum power
point.

Thus, from the results of Fig. 11, the significant influence
of the inertia of the studied WT can be clearly observed.
It generates for each variation of the wind speed a somewhat
large response time of around 20 s (similar results were
observed in reference [10]). This justifies the delay in the duty
cycle response (Fig. 11.j & Fig. 12.j).
Moreover, the low-pass filters used in the control scheme

(see Fig. 9), have significantly reduced the noise in the
measured signals (voltage, current and rotational speed).
With this, we were able to guarantee the proper functioning
of our WTE and the proper functioning of the studied MPPT
technique. This also allowed us to obtain a good quality
of electrical energy produced. Furthermore, between the
mechanical power generated by the WT and the electrical
power measured at the output of the boost converter, there
is a certain difference due to the losses in the machines
of the test bench and the losses in the power electronics
devices which was not compensated in experimental tests.
For example, for a wind speed of 8 m/s, the electrical power
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TABLE 2. Parameters used during experimental validation.

obtained is approximately 16.73 W (see Fig. 11.f). While the
mechanical power generated by the WT is equal to 23.81 W
(see Fig. 11.e).

On the other hand, the tests carried out with a stochastic
wind signal (see Fig. 12.a), confirm the ability of the
designed WTE and the proposed MPPT technique studied to
operate correctly even under turbulent wind conditions which
includes a lot of fluctuation and a lot of noise.

Furthermore, the controllers used alongside the MPPT
technique have achieved very good performance for tracking
the optimal current reference (see Figs. 11.i and 12.i),
whether in terms of speed of response, stability, and precision.
In addition, the comparison between the results obtained by
the two controllers shows similar performance, except that at
the level of the duty cycle signal (see Figs. 11.j and 12.j), the
SC has less noise compared to the BC.

V. CONCLUSION
A new low cost wind emulator has been presented in this
work to facilitate the study of small wind turbines. A power
maximization strategy based on optimal current control
was also validated during this work by different nonlinear
controllers.

The results obtained clearly show the feasibility and effi-
ciency of the OTC-MPPT technique and its high performance
for maximum power point tracking. The nonlinear controllers
used alongside this control strategy provided very good
performance for maximum power point tracking. But despite
this, the control law obtained by these control techniques
(synergetic and/or backstepping) remains a bit complex,

requires prior knowledge of certain system parameters and
some parameters that enter into the design of the controller
itself. In addition to this, the control signal generated by these
control techniques has a lot of noise. On the basis of this study,
we see that the advantage of this type of controller does not
appear except that they are directly applicable to the nonlinear
model of the system that we want to control.

Finally, despite all the obstacles (the permanent absence of
wind, the high cost of WTs, etc.) which initially prevented
us from carrying out experimental tests on real WTs. In this
work, we were able to study it successfully thanks to the
proposed WTE. Frankly, this platform has helped us a lot
to validate many MPPT techniques without the need to
access the real turbines or to know their natural resources.
Considering the excellent results obtained, we can say that
our WTE remains a very important piece of equipment for
teaching and doctoral research at the university. In order
to improve this work even more, future work will consider
replacing the dSPACE1104 cardwith amicrocontroller-based
electronic card (ex: a dsPIC) to reduce more than the cost
of designing a WTE. In addition, we are also looking to test
another controller alongside the OTC-MPPT which requires
fewer measurements and less information on the controlled
system, we are talking exactly about the Fuzzy controller.
In addition, during the experimental tests carried out in the
laboratory, only a resistive variable electrical load was used
but the wind emulator can also be connected to other types
of loads such as inductive. There are also future plans to
synchronize and connect the wind turbine to the electrical
network. Thus, test a new diagnostic approach that makes
it possible to detect, locate and identify in advance any
fault that could alter the operation of the WT or the MPPT
algorithm [45], [46].

APPENDIX
See Table 2.
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