
Using DIRECT to Solve an Aircraft Routing
Problem �

M.C. Bartholomew-Biggs , S.C. Parkhurst and S.P. Wilson
Numerical Optimisation Centre, University of Hertfordshire

ABSTRACT
In this paper we discuss a global optimization problem arising in the calculation
of aircraft flight paths. Since gradient information for this problem may not be
readily available, a direct-search algorithm (DIRECT), proposed by Jones et al.
[11] appears to be a promising solution technique. We describe some numerical
experience in which DIRECT is used in several different ways to solve a sample
problem.

1 Introduction

The Aircraft Routing Problem involves finding an “optimum” flight path between
various obstacles from a given origin to a given destination. Obstacles would
clearly include geographical features, but might also be more general “no-fly zones”,
used, for instance, to separate incoming and outgoing traffic near an airport. In
military terms a no-fly zone might surround a threat, such as an enemy radar or
missile site. In practice, the routing problem will usually also include constraints
on rendezvous time at the destination (and perhaps at other points on the path); and
obviously any solution must allow for speed and manouevrability limits on the type
of aircraft being used. Many of these aspects are probably similar to those found in
steering problems for other kinds of vehicle or in the planning of paths for cables or
pipelines. More distinctive features of aircraft routing include “one-way” regions
where flight must be in a particular direction. In the military context, a route must
also be assessed in terms of “visibility” (it being desirable to exploit the terrain to
hide the aircraft as much as possible). One way to estimate such visibility would
be to sample the terrain along a number of (possibly randomly chosen) directions
from each point along the aircraft path in order to determine the shortest distance to
high ground that might ofer concealment. In its ultimate form, the routing problem

�This research is supported by BAE SYSTEMS, Rochester, England

1



would be posed for multiple aircraft, possibly of various types and flying different
missions, in the same geographical area.

More discussion about practical aspects of aircraft routing can be found in [9] and
[10] which also describe a heuristic routing algorithm. The present paper is con-
cerned with the application of classical optimization techniques to aircraft rout-
ing; and in this preliminary study we confine ourselves to a relatively simple two-
dimensional representation of the problem. This is used to provide a case-study
in the use of an ingenious direct-search global optimization method proposed by
Jones et al. [11]. This method, described more fully in a later section, uses Lip-
schitz constant arguments to motivate a deterministic search strategy which has
been shown elsewhere [14] to be more effective than random-search techniques on
relevant examples.

2 A basic 2D representation

We shall consider the aircraft routing problem in two dimensions – i.e., we shall
find the ground-plan (flat earth) of a route which avoids a number of no-fly zones
that we shall henceforth call “threats”. A route is defined by given start and end
points and a number of intermediate waypoints. The co-ordinates of these way-
points are the optimization variables; and we shall assume that the flight path fol-
lows straight lines between waypoints. To characterize optimality of a route, we
suppose that we want the distance flown to be as short as possible, subject to suit-
able avoidance of the threats. Therefore, for any choice of waypoints, we must
calculate first the Euclidian length of the corresponding route, denoted by L, say.
We then determine whether the route passes through any of the threats; and, if so,
we calculate the length of path lying inside each one. If the route lies within the
i-th threat for a distance Li, say, then the “cost” of the route can be expressed as a
composite function such as

C = L+∑
i

ρiL
p
i (2.1)

where ρi is a penalty parameter associated with the i-th threat and p is an integer
exponent to be discussed below. Our aim will be to choose the waypoints so as to
minimize C. The balance between reducing the flight path length and respecting
the threats will depend on the choice of the parameters ρi.

Suppose there are n waypoints wj = (w j1;w j2) for j = 1; ::;n. For consistency we
shall denote the starting point as w0 and the destination as wn+1. We can then
consider the whole route in terms of “legs” from wj�1 to wj for j = 1; :::;n+1. We
let uj denote the vector wj �w j�1. Hence a typical leg contributes

l j =
p
(u2

j1+u2
j2)

2



to the total length L. We now need to determine whether leg j passes through any
of the threats.

In the test examples discussed in this paper we shall, for convenience, use circular
threats; but in general we shall need to deal with no-fly zones and geographical
obstacles which have irregular boundaries. Therefore we must calculate threat
violations using a sampling process along each leg of a route. We suppose that
it is possible to determine whether any point (x; y) is inside or outside a threat
but that no explicit expression is available for the threat boundary. (For example,
if a threat is simply an area of high ground then a geographical database which
provides terrain height for given longitude and latitude will enable us to determine
whether some constant altitude flight-path is feasible or not.)

In the algorithm below we use linear interpolation to estimate the points at which
leg j intersects threat i. In order to implement the algorithm we can consider σmax

to be a maximum step size to be used in sampling a leg of a route. This will imply
that the number of sampling points along leg j can be taken as Kmax = dl j=σmaxe.
We let δλ = 1=Kmax and suppose that uk denotes a sampled point in leg j, i.e.

uk = w j�1+ kδλ(w j�w j�1)

where k goes from 0 to Kmax. Suppose that Ti is a function of position such that
Ti(uk) � 0 indicates that uk is inside threat i while Ti(uk) > 0 confirms that uk is
outside. Then an algorithm for calculating the “in threat” length lji is as follows.

Compute l j as length of leg j. Set lji = 0
Set k = 0, Kmax = (δλ)�1

If Ti(u0)� 0 then λb = 0
For k = 1; ::;Kmax

If Ti(uk)� 0 and Ti(uk�1)> 0 then
set κ = Ti(uk)=(Ti(uk)�Ti(uk�1)), λb = (k�κ)δλ

If Ti(uk)> 0 and Ti(uk�1)� 0 then
set κ = Ti(uk)=(Ti(uk)�Ti(uk�1)), λe = (k�κ)δλ
set l ji = l ji+(λe�λb)l j

If Ti(uKmax)� 0 then
set l ji = l ji+(1�λb)l j

In what follows we use a version of the function (2.1) which includes two extra
features to make our examples a little more realistic. We do not permit routes which
involve sharp turning manoeuvres; and furthermore we do not allow waypoints to
be too close together. Therefore our cost function includes penalty terms connected
with these quantities. The angles φj between successive legs are given by

φ j = cos�1
f

uT
j u j+1

jjuj jjjjuj+1jj
g

If φmax is the limiting turn angle and lmin denotes the least acceptable leg-length

3



then we can extend the cost function definition (2.1) as

C =

n+1

∑
j=1

(l j +µ((lmin� l j)+)
2
+

m

∑
i=1

ρil
p
ji)+

n

∑
j=1

ν((φ j �φmax)+)
2 (2.2)

where µ and ν are positive penalty parameters. The penalty terms involving the
bounds on turn angle and leg length are standard quadratic loss functions. How-
ever, the choice of the exponent in the penalty term for threat violations is dis-
cussed in [14], using an argument based on the analytical calculation of lji for
circular threats. It can be shown that, provided p � 3, there is continuity in the
first derivatives of C in the limiting case when changes in waypoint position cause
a leg to enter or leave the i-th threat. This is essentially because the in-threat leg-
length calculation for lji involves a square root. Numerical experience in [14] also
suggests that it is preferable to use p = 3 rather than p = 4 in (2.2). We assume
that these observations carry over to more general situations where threats have
irregular boundaries.

We note that the sampling and linear interpolation method of calculating the lji
means that it will be difficult to evaluate first derivatives of C with respect to the
waypoint co-ordinates. Hence it might be appropriate to consider gradient-free
methods for minimizing (2.2). (This remark has more force if we take account of
the “visibility” constraints, mentioned in the introduction, which appear in more
realistic versions of the routing problem. These constraints are typically computed
on the basis of random probes from the current aircraft position to locate the nearest
regions of high ground and such computations seem unlikely to be differentiable.)
Furthermore we need a global minimization method, since experience reported in
[14] shows that the function (2.2) may have several local minima. This is easy to
visualise if we think of a problem with just one circular threat and one waypoint.
Typically if the “best” route passes the threat on the left (say) we can expect there
to be another, at least locally, “best” route which skirts it on the right. Waypoint
positions between these two solutions will cause the route to pass through the threat
and hence incur high values of C. Thus we have the classic case of two regions with
low function value separated by a ridge with larger values of C.

DIRECT is a gradient-free global minimization method proposed by Jones et al.
[11]. It is a deterministic approach which systematically searches within an initial
“hyperbox” in the space of the variables, exploration being focussed on regions
which are judged to be “potentially optimal” on the basis of tests involving Lips-
chitz constants. This approach is outlined in the next section

3 An outline of DIRECT

This section provides a general description of DIRECT, giving sufficient detail to
support our later discussion of different ways in which it can be applied to the

4



route-finding problem. A fuller discussion, including implementation issues, can
be found in [11].

DIRECT searches for the minimum of a function f (x) within a hyperbox defined
by li � xi � ui for i = 1; :::;n. It proceeds by systematic subdivision of this initial
region into smaller hyperboxes. The distinctive feature of the algorithm is the
method of choosing which boxes to subdivide on each iteration.

At the start of a typical iteration of DIRECT, the initial exploration region will
be completely covered by (say) K hyperboxes of differing sizes. Specifically, the
size of each box is represented by δi; i = 1; :::;K the distance from the centre to a
corner. Function values fi; i= 1; ::;K are known at the centre of each box. Box i is
regarded as potentially optimal if there exists a Lipschitz constant L such that both

fi�Lδi < f j �Lδ j for j = 1; ::; i�1; i+ i; ::K (3.1)

and
fi�Lδi < fmin� εj fminj (3.2)

(where fmin is the least value of f found so far and ε is a small, positive, user-
supplied constant). Condition (3.1) indicates that it is possible for a point in box i to
have a smaller function value than a point in any other box. Condition (3.2) ensures
that points in box i also have the possibility of making a non-trivial improvement
on the best point found so far.

Any hyperbox which is identified as potentially optimal is then subdivided. The
simplest way of doing this involves splitting its longest side into three parts and
hence produces two new function evaluations. (More complicated rules for subdi-
vision are described in [11] for hyperboxes with more than one longest side.)

It is worth noting that, in practice, the number of potentially optimal boxes on a
particular iteration is usually quite a small fraction of K. Hence the subdivision
costs are typically not excessive. Furthermore, the process of determining whether
box i satisfies conditions (3.1) and (3.2) need not be as computationally expensive
process as might at first appear, since [11] explains that it is not necessary to per-
form the test (3.1) explicitly for all j 6= i. If the number of different box sizes is
K̂ (usually << K) then we only need to make comparisons between the K̂ boxes
which have the smallest centre-values for their size.

Computational experience with DIRECT has shown it to be quite efficient. In the
numerical tests reported in [11], DIRECT outperforms several other direct search
optimization methods in terms of numbers of function values needed to find global
solutions to some standard test problems. Preliminary experience of applying DI-
RECT to the route-finding problem in [14] shows that it minimizes (2.2) more
efficiently than than the methods in [1] and [5] which employ random searching.
The use of DIRECT in aerospace design problems (with quite large numbers of
variables) is reported in [2], [3], [4], [6], [7], [12] and [13]. In [7], in particu-
lar, it is noted that it does better than a trajectory-following approach on functions

5



with deep and widely spaced minima. This remark is relevant to the route find-
ing problem because the various locally optimum routes are likely to be clearly
distinguishable by virtue of passing on different sides of at least one of the threats.

The value of the parameter ε in (3.2) is a user-choice to be made in setting up
DIRECT. It is in fact almost the only such choice – which means that it is quite an
easy algorithm to use. The other parameter that has to be selected is the number
of iterations to be performed. Although the authors provide a proof of ultimate
convergence of DIRECT in [11], they do not suggest a practical stopping rule for
the algorithm and merely suggest that a fixed number of iterations be done. This
strategy can lead to uneccessary work being done in some cases, while on other
problems the global solution may not be found. It might be somewhat better –
though certainly not an infallible test – to continue until no significant improvement
in f has been found for (say) fifty iterations.

This question of a stopping rule is one of the issues we explore in the next section
where we consider a number of different ways of applying DIRECT to the aircraft
routing problem.

4 The routing problem - a case study

In this section we shall use some experiments with DIRECT to illustrate some
important issues in solving the aircraft routing problem. These issues include the
initial choice of waypoints – both their number and their guessed position. Once we
have decided how many waypoints to use, a possible “automatic” strategy might
be to place these at equal intervals along the straight line joining the departure
and destination points. This could provide a useful initial bias towards the dis-
tance minimization component of the cost function, leaving it subsequently to the
penalty terms to steer the aircraft around the threats in an efficient manner. It is
also important to consider the choice of values for the penalty parameters in (2.2),
since it is well-known that minimization becomes numerically difficult if these are
chosen “too large”. We seek to shed some light on these matters by describing
several approaches to a test problem which involves the following threats

centre(km) radius(km)
75,29 9
80,66 15

95,115 22.5
135,131 20
140,67.5 37.5
197,125 30

We shall consider the calculation of a route from (50, 30) to (167, 107) and back,
imposing a minimum stage length of 10 km and a maximum turning angle of 42:5o

6



(which ensures that the return journey cannot simply retrace the outward one).

4.1 Approach 1 - separate calculation of outward and return legs

We first consider the application of DIRECT to the outward journey. Let us assume
that two waypoints will be sufficient and as an initial guess we shall place them
both near the midpoint of the line joining the departure point and destination. This
is obviously a very poor starting estimate. Specifically we use

(108�60;68�40); (109�60;69�40) (4.1)

which allows the optimization procedure to search throughout a rectangle slightly
larger than the one with corners at the departure point and destination.

If we use penalty parameters µ = ν = ρi = 1 in (2.2) and do 64 iterations of DI-
RECT then the best route found has waypoints at (68,77) and (125,105) with a
length of 155.6 km (and no threat violation). The maximum turn angle is between
stage one and stage two and is 43:2o. This result costs 1343 function calls.

If we let DIRECT run for 128 iterations (3917 function calls) from starting guess
(4.1) then the maximum turn angle is reduced to 43o at the expense of a slight
increase in route length and a threat violation of about 0.14 km. However we can
also operate DIRECT in a restart mode, whereby we run it again from an initial
guess centred upon the best point found in the first 64 steps. Thus, if we restart
from

(68�60;77�40) (125�60;105�40) (4.2)

and do a further 64 iterations (1845 function calls) we get a feasible route of length
155.6 km with no threat violations and a maximum turning angle of 43o. This is
slightly better than we got by 128 iterations from the original guess (4.1) and the
cost is 3198 function calls as opposed to 3917.

Since DIRECT is a global optimization method, a change in starting point should
not influence the solution it ultimately obtains. The benefit of a restart lies in the
possibility that it will cause DIRECT to approach the global solution more quickly
and cheaply. As explained earlier, each iteration of DIRECT examines the current
set of hyperboxes to determine which are potentially optimal. The number of boxes
to be examined (and probably the number of boxes to be subdivided) gets larger as
the number of iterations increases. After a restart based upon the current best point,
the iterations of DIRECT will be cheaper than they would have been without the
restart. Moreover, because DIRECT will now have one box which is centred on a
“good” function value, it may be that fewer boxes will be found to be potentially
optimal in the second and subsequent runs of DIRECT. Certainly the experience of
this first example is that two lots of “cheap” iterations can be better value than an
equivalent number of increasingly expensive ones. (Note that in restarting DIRECT
from (4.2) we have chosen to keep the initial hyperboxes the same size as at the

7



start. A case could be made for making them smaller and we shall return to this
idea later on.)

Since the turning angle constraint has not yet been satisfied, a possible strategy
would be to increase the parameter ν in (2.2). However it may be easier just to
insert an extra waypoint and solve the problem again. This remark is well worth
making because further experiments (not reported in detail here) suggest that it is
not possible to obtain a feasible route with just two waypoints. Specifically, when
ν is increased, DIRECT is able to find approximate minima of (2.2) which involve
smaller turning angles; but this happens only at the expense of threat violations.
This illustrates the fact that is quite easy to pose routing problems which have
no feasible solution. It is worth mentioning, however, that DIRECT can be used
to check whether a problem has a feasible point. This is done by treating the
maximum constraint violation as the objective function and finding whether or not
it has a global minimum of zero.

In order to find a 3-waypoint route from (50,30) to (167, 107) we use the previous
best result to provide the starting guess

(68�5;77�5) (97�30;91�14) (125�5;105�5) (4.3)

Notice that we have put fairly small boxes around the two “known” points and
placed an extra point midway between them. The solution we now get has an
overall length of 154.9 km. It is obtained in 4622 function calls with the 2� 64
restart version of DIRECT and the waypoints are

(67:4;75:1) (76;82) (131:4;104:5) (4.4)

In this case a very similar solution can be obtained in 128 iterations and 4609
function calls without a restart.

We now consider the return part of the route. In order to prevent there being too
tight a turning angle at (167, 107) we include the last outward leg in our calcu-
lation and seek a route from (131.4, 104.5) to (50, 30), forcing it to pass through
(167,107) by enclosing this waypoint inside a very small box. Thus we take the
starting guess for DIRECT as

(167�0:1;107�0:1) (109�100;67�50) (108�100;66�50)

(107�100;65�50) (106�100;64�50) (4.5)

Here we have assumed five waypoints will be sufficient; and the unknown way-
points have been placed near the midpoint of the line from (167, 107) to (50, 30).
Note that the boxes enclosing these waypoints are substantially bigger than would
be necessary to allow them to move within the rectangle with the starting point
and destination at its corners. Experience has shown that we can miss the global
optimum if we do not give the waypoints enough freedom.

8



For the return route problem we have used ν= 10 in (2.2). This increase in penalty
parameter associated with the turning angle limit is motivated by experience: the
homeward flight path needs to turn through a total angle of about 120o, and the
waypoints which minimize (2.2) imply some unacceptably sharp turn angles if we
retain the previous choice ν = 1. We are of course free to use different penalty
parameter values in the outward and return calculations because, at present, we
are effectively treating them as separate problems. Our purpose in mentioning the
need to increase ν is to point out that the appropriate choice of penalty parameters
in (2.2) is problem-dependent.

Table 1 shows details of the best points found after different numbers of DIRECT
iterations starting from (4.5).

itns fns route length threat violation max turn angle
128 7141 244.7 0 43.6
256 16531 242.7 0 43.0
512 36619 242.7 0 43.0

Table 1: Return routes from DIRECT with initial guess (4.5)

Table 2 shows that the restart mode of DIRECT can obtain a good feasible route
which satisfies the turn angle constraint in fewer iterations and function calls than
those quoted in Table 1. In the best return route, corresponding to the last row of

itns fns route length threat violation max turn angle
2�64 6602 252.6 0 42.5
4�64 15552 248.2 0 < 42:5
6�64 24574 242.4 0 42.5

Table 2: Return routes from DIRECT using restart and initial guess (4.5)

Table 2, the calculated waypoints between (167, 107) and (50,30) are

(177:5;98:6) (183:5;65:2) (161;30) (93;11:3) (4.6)

Putting together the routes defined by (4.4) and (4.6) we get a total route length of
361.6 km (recalling that the calculated outward and return routes have covered the
stage from (131.4, 104.5) to (167, 107) twice).

4.2 Approach 2 - simultaneous calculation of outward and return legs

The approach we have used in the previous section is unlikely to yield a global
optimum for the full round-trip problem, although it should provide a useful first
approximation. We can seek a further refinement of the route found in the previous
subsection by running DIRECT on the whole outward and return problem with

9



a starting guess given by (4.4) and (4.6) and using a margin of �5 km on each
waypoint coordinate. In this case we use ν = 10 for for turning angles on both
the outward and return stages. After 128 iterations (15961 function calls), small
adjustments have been made to the waypoints which reduce the route length to
358.8 km. This seems to be near-optimal, since no significant improvement is
obtained by allowing DIRECT to run for 256 iterations.

We could, of course, have attempted the whole routing problem in one go, without
obtaining the partial solutions (4.4) and (4.6) first. We now perform this calculation
(assuming we already know that a total of eight waypoints is sufficient). We take
(50, 30) as both departure point and destination and include (167, 107) as a way-
point with effectively zero tolerance on the components. If we follow the precedent
of starting guess (4.5) and put the other guessed waypoints near the midpoint of the
line between (50, 30) and (167, 107) with margins �100;�50 on the coordinates
then we get results from DIRECT as shown in Table 3.

itns fns route length threat violation max angle min leg
128 7927 356.9 55.8 44.7 1.4
256 20423 362.4 17.9 42.8 9.0
384 35851 368.9 16.9 < 42:5 > 10
512 49963 368.9 16.5 < 42:5 > 10

Table 3: Routes from DIRECT on the out and return problem

It is clear that DIRECT has some difficulty in avoiding the threats. We therefore
try the algorithm in restart mode, this time allowing 128 iterations in each cycle.
Results appear in Table 4 and these are considerably better than what we obtained
without restarts. The threat violations are much reduced and the best route length
is a little less than was obtained when starting from the initial guess given by (4.4),
(4.6). Nevertheless, these tables (and other numerical tests not reported in detail)
suggest that DIRECT experiences more difficulty and uses more effort to solve the
full out-and-home routing problem “from scratch” than it does when the problem
is considered in two separate phases.

itns fns route length threat violation max angle min leg
2�128 23726 366.8 0.2 < 42:5 > 10
3�128 41913 359.6 0.3 42.5 > 10
4�128 59936 357.7 0 < 42:5 > 10

Table 4: Routes from DIRECT using restart on the out and return problem

4.3 Approach 3 - building a complete route by adding waypoints

We can use experience from the preceding subsections to automate the process of
building a route, including the question of whether to add extra waypoints. The

10



approach outlined below is partly motivated by the encouraging performance of
restart mode DIRECT.

We begin a route-finding solution by performing M iterations of DIRECT on the
full out-and-return problem, but using only a small number of waypoints. (These
can be placed initially at some convenient point such as the midpoint of the route,
although it is important that a large enough box is defined to allow movement any-
where within the geographical region of interest.) The route obtained by DIRECT
is then examined, and an extra waypoint is added at the midpoint of any leg which
passes through threats. The enclosing box for this new waypoint is made large
enough to allow movement between the “old” ones on either side of it. DIRECT
is then allowed to run for a further cycle of M iterations. The “old” waypoints
continue to be optimization variables for the next cycle of DIRECT, but the box
surrounding them is reduced by a factor κ in each coordinate direction. A sim-
ilar addition of waypoints is permitted at the next stopping point from DIRECT
– although we note that waypoints are not added within legs whose length is less
than 2lmin. This process continues until two successive cycles of DIRECT produce
essentially the same value of the objective function.

We now show how this approach works on the complete out-and-home problem
introduced above. We begin with a three waypoint guessed solution

(109�100;67�50); (167;107); (109�100;67�50) (4.7)

and the following table shows progress when 64 DIRECT iterations are allowed in
each cycle and the box scaling factor κ is taken as 0.7.

itns fns route length threat violation max angle min leg
64 1335 373.5 62.5 107.1 > 10
128 2648 370.2 21.8 47.9 > 10
192 3953 370.9 9.6 43.2 > 10
256 5860 368.3 0 42.7 10
320 7537 363.5 0.6 < 42:5 10
384 9276 363.8 0.1 < 42:5 10

Table 5: DIRECT with restart (κ = 0:7) and adding waypoints

We see, by comparing Tables 4 and 5, that this approach has yielded a good solution
which is comparable with what could be obtained using between two and three
cycles of DIRECT in restart mode with a constant number of waypoints. In fact the
number of waypoints introduced by the strategy outlined in this section is twelve,
which is somewhat more than was shown to be strictly necessary using previous
approaches. The numbers of function calls quoted in Table 5 are cumulative; and
these figures are very much less than the numbers appearing in Table 4. Moreover
the run-time for 3� 128 iterations of DIRECT in Table 4 is about 70 seconds
whereas the solution quoted in Table 5 only took 12 seconds.

11



We can obtain a better solution at somewhat greater cost if we allow 96 DIRECT
iterations per cycle. In this case a feasible route of length 361.1 km (involving 11
waypoints) is found in 21 seconds. If we increase the number of iterations in each
cycle to 128 then we obtain much the same solution in a time of 35 seconds.

We now consider the factor κ used to shrink the boxes around existing waypoints.
The results quoted so far have been obtained with κ = 0:7. If we reduce κ to 0.5
and use 96 DIRECT iterations per cycle we are able to obtain a feasible route with
length 354.2 km in only 17 seconds. Somewhat surprisingly, if we take only 64
iterations per cycle we get the results shown in the table below, which yields the
best route that has been found for the example problem by any of the approaches.
This calculation took just 11 seconds.

itns fns length threat violation max angle min leg waypoints
64 1335 373.5 62.5 107.1 > 10 3
128 2327 369.2 17.6 53.7 > 10 7
192 3781 369.7 3.0 52.7 > 10 8
256 5092 361.8 0 < 42:5 8.6 9
320 6853 353.7 0.3 < 42:5 10 9
384 8198 352.8 0.3 < 42:5 9.9 9
448 9461 352.8 0 < 42:5 > 10 9

Table 6: DIRECT with restart (κ = 0:5) and adding waypoints

5 Discussion and further work

Our numerical experience with DIRECT on the routing problem has been quite
encouraging. In particular the use of restarts and the facility for adding extra way-
points seem to enhance the performance of the algorithm. Periodic restarts enable
us to preserve the current best solution while avoiding some of the costs associated
with increasing numbers of hyperboxes. It should be noted that there are other
ways, more in the spirit of DIRECT, to reduce work per iteration. The source pa-
per [11] points out that the user-selected parameter ε in (3.2) can be used to control
the balance between rapid local convergence and global exploration. More recent
implementations (e.g. [8]) have considered ways of automatically adjusting this
balance in order to improve the efficiency of the algorithm.

We acknowledge that, at present, the promising Approach 3 can only be justified as
a pragmatic solution to the problem of knowing in advance how many waypoints
will be sufficient. One difficulty in establishing its convergence to a global solution
to the original problem is that (even if the boxes are not shrunk) the shape of the
feasible region is changed after every re-start. This might turn out be an advantage
if the original feasible region had been drawn “too small”; but it does make it harder

12



to analyse the behaviour of the algorithm. It is also true that the incautious shrink-
ing of the boxes could prevent the approach from getting to the required global
solution. It is probably worth observing however that, from an operational point of
view, a method which provides good feasible routes quickly may be preferable to
one which locates a precise global optimum but requires more computing effort.

The example reported in the previous section now needs to be followed up by more
systematic testing on a wider range of problems to establish good general values
for M and κ. Consideration of M, the number of iterations of DIRECT to be per-
formed between restarts, will entail further investigation into practical stopping
rules for the algorithm as discussed briefly at the end of Section 3. We also need
to experiment with the choice of the DIRECT threshold parameter ε appearing in
(3.2). In the above examples we have used the typical value 5� 10�4, which is
smaller than the value recommended in [11] but which seems necessary for the
route-finding problem in order to force the method to approach the global solu-
tion. One other parameter which has an important effect on runtimes for solving
the aircraft routing problem is the value σmax used in the exploration of each leg to
determine threat violations. For the above examples we have used σmax = 4 km,
which might be considered rather coarse but which nevertheless seems to give re-
sults in good agreement with routes obtained with a smaller step size. In general, it
might be advisable to decrease σmax on each cycle of DIRECT as the stage lengths
tend to become shorter.

As a final and more general observation, we note that DIRECT has some similar-
ities with interval arithmetic methods of global optimization (see the recent sur-
vey by Wolfe [15], for example) in that it selects potentially optimal hyperboxes
on the basis of estimated bounds on the objective function. In principle, evaluat-
ing an interval extension of f on a hyperbox will yield valid bounds on f rather
than speculative ones involving unknown Lipschitz constants. However, this ap-
parent advantage must be set against (a) the relatively high cost of interval compu-
tations compared to standard real arithmetic and (b) the fact that interval arithmetic
bounds, although valid, are often pessimistic. Moreover, it is not clear that interval
arithmetic arithmetic is applicable to the calculation of lji by sampling as discussed
in section 2. However, for objective functions whose interval extension is available,
an interesting topic for further study, therefore, would be a numerical comparison
of DIRECT with some of the interval techniques outlined in [15].

References

[1] K.S. Al-Sultan and M.A. Al-Fawzan, A Tabu Search Hooke and Jeeves Al-
gorithm for Unconstrained Optimization, European Journal of OR, 103, 198-
208, 1997

13



[2] C.A. Baker, L.T. Watson, B. Grossman, R.T.Hafka and W.H. Mason, Paral-
lel Global Aircraft Configuration Design Space Exploration, Proceedings of
the High Performance Computing Symposium 2000 (ed A.Tentner), 101-106,
Society for Computer Simulation International, San Diego, 2000.

[3] C.A. Baker, L.T. Watson, S.E. Cox, B. Grossman, R.T.Hafka and W.H. Ma-
son, Study of a Global Design Space Exploration Method for Aerospace Ve-
hicles, 5th NASA High Performance Computing and Communicationa Com-
putational Aerosciences Workshop, NASA, Mountain View, 2000.

[4] C.A. Baker, L.T. Watson, B. Grossman, W.H. Mason and R.T. Hafka, Parallel
Global Aircraft Configuration Design Space Exploration, Int. J. Comput. Res.
(to appear).

[5] R. Chelouah and P. Siarry, Tabu Search Applied to Global Optimization, Eu-
ropean Journal of OR, 123, 256-270, 2000

[6] S.E. Cox, R.T. Hafka, C.A. Baker, B. Grossman, W.H. Mason and L.T. Wat-
son, Global Optimization of a Highh Speed Civil Transport Configuration,
3rd World Congress of Structural and Multidisciplinary Optimization, Buf-
falo, 1999.

[7] S.E. Cox, R.T. Hafka, C.A. Baker, B. Grossman, W.H. Mason and
L.T.Watson, Global Multi-disciplinary Optimization of a High Speed Civil
Transport, J. Global Optim (to appear)

[8] J.M. Gablonsky, An Implementation of the DIRECT Algorithm, Tech. Re-
port CRSC-TR98-29, Center for Research in Scientific Computation, North
Carolina State University, Raleigh, NC, 1998.

[9] C. Hewitt and S.A. Broatch, A Tactical Navigation and Routeing System
for Low-level Flight, Technical Report, GEC-Marconi Avionics, Rochester,
Kent, U.K. (AGARD, Italy, 1992)

[10] C. Hewitt and P. Martin, Advanced Mission Management, Technical Report,
GEC-Marconi Avionics, Rochester, Kent, U.K. (IEE - FITEC, 1998)

[11] D.R.Jones, C.D. Perttunen and B.E.Stuckman, Lipschitzian Optimization
without the Lipschitz Constant, Jounal of Optimization Theory and Appli-
cations, 79, 157-181, 1993

[12] L.T. Watson and C.A. Baker, A Fully Distributed Parallel Global Search Al-
gorithm, 10th SIAM Conference on Parallel Processing for Scientific Com-
puting, SIAM, Philadelphia, 2001.

[13] L.T. Watson and C.A. Baker, A Fully Distributed Parallel Global Search Al-
gorithm, Engrg. Comput., (to appear)

14



[14] S.P. Wilson, S.C. Parkhurst and M.C. Bartholomew-Biggs, The Aircraft Rout-
ing Problem, Technical Report 331, Numerical Optimisation Centre, Univer-
sity of Hertfordshire, December 2000

[15] M.A. Wolfe, Interval Mathematics, Algebraic Equations and Optimization, J.
Computational and Applied Mathematics, 124, 263-280, 2000

15


