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Abstract. We consider non-interacting multi-qubit systems as controllable
probes of an environment of defects/impurities modelled as a composite spin-
boson environment. The spin-boson environment consists of a small number of
quantum-coherent two-level fluctuators (TLFs) damped by independent bosonic
baths. A master equation of the Lindblad form is derived for the probe-plus-
TLF system. We discuss how correlation measurements in the probe system
encode information about the environment structure and could be exploited to
efficiently discriminate between different experimental preparation techniques,
with particular focus on the quantum correlations (entanglement) that build up
in the probe as a result of the TLF-mediated interaction. We also investigate
the harmful effects of the composite spin-boson environment on initially
prepared entangled bipartite qubit states of the probe and on entangling gate
operations. Our results offer insights in the area of quantum computation using
superconducting devices, where defects/impurities are believed to be a major
source of decoherence.
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1. Introduction

Superconducting qubits [1] consist of electronic nanocircuits embedding Josephson junctions
whose dynamics can, in certain parameter regimes, be restricted to a two-dimensional manifold.
These qubits can be used as test-beds for studying quantum mechanics at its most fundamental
level [2], and are also potential candidates for the practical implementation of quantum
information processors [3].

An interesting and challenging aspect of these endeavours is the process of decoherence,
whereby qubits lose their quantum-mechanical nature and are rendered dynamically equivalent
to their classical two-level counterparts. In the case of a superconducting charge qubit, such as
the Cooper-pair box (CPB), dephasing (phase decoherence) is dominated by low-frequency
noise thought to be caused by interactions with two-level fluctuators (TLFs) [4]–[7] in the
local environment. These TLFs may be charge traps caused by defects/impurities in the
Josephson junction or in the substrate. There has been a substantial amount of research on
TLFs causing single qubit decoherence in Josephson junction systems. Theoretical works have
concerned larger ensembles of TLFs, both incoherent [8]–[14] and coherent [5], that randomly
switch between two configurations, producing low-frequency fluctuations in the relevant qubit
parameters. As discussed in detail in all these works, whenever a large number of TLFs are very
weakly coupled to the qubit, their effect can be described by a conventional boson bath with a
suitable chosen spectral density. This is, however, not always the case—there may be situations
when only one or a few impurities are important. Indeed, Neeley et al [6] have demonstrated
the existence of coherent TLFs. Lupaşcu et al [7] provide evidence that these TLFs are in fact
genuine two-level systems. In Neeley’s experiment [6], a single TLF that was coupled to the
qubit led to an avoided crossing in the qubit energy spectrum. The TLF was used as a proof-
of-principle memory qubit, but such TLFs will in general be detrimental to the operation of
superconducting qubits. It is therefore desirable to understand the behaviour of TLFs in the
vicinity of superconducting qubits in order to better-equip quantum information scientists to
manage the challenge of decoherence.
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In view of its importance for understanding decoherence in superconducting nanocircuits,
we study in this paper the effect that a few underdamped, coherent TLFs have on the quantum
dynamics of a charge qubit. A single qubit coupled to a single coherent TLF, that was in turn
(under-)damped by a bosonic bath was already considered in [15]. We find this type of non-
equilibrium environment [16] to be an appealing model of the environment of a Josephson
junction qubit because TLFs may be damped by phonons in the substrate, for example. We refer
to this as a composite spin-boson environment. The case of a few TLFs, which will be considered
here, is rather complex and therefore we resort to extensive numerical calculations. Our
approach represents quite a general strategy for probing a composite spin-boson environment,
whereby we derive a Markovian master equation for the average dynamics of the probe + TLFs
after tracing out the external baths. To allow for the random nature of TLF formation, we select
the TLF Hamiltonian parameters according to probability distributions designated in [5]. Of the
many environmental properties that could be studied in this scenario, we focus on inferring the
presence or absence of coherent coupling between the TLFs. This connectivity of the TLFs has
been identified as important in the decoherence of a bipartite qubit system [17], with further-
reaching importance for quantum computing.

Performing a more thorough treatment of this situation is increasingly important in light
of recent experiments [6, 7] involving superconducting qubits coupling predominantly to only
a small number of TLFs. In these experiments, measurements on the qubit were used to infer
properties of the TLF (although that was not the focus in [6]). That is, the qubit was used as
a probe of the environment [18, 19]. Probing properties of a small collection of TLFs, such as
whether or not they interact with each other, necessitates consideration of the full dynamics of
the probe plus TLFs under the influence of external baths.

From the theory point of view, identifying structural properties in the environment could
be done using some form of noise correlation measurements. Here we focus on inferring
environmental features via the analysis of the entanglement that will build up in a probe
consisting of two non-(directly) interacting qubits whose remote coupling is mediated by the
TLFs present in the surroundings. When the probing is ‘local’, so that each probe qubit couples
to just one single TLF, the absence of quantum correlations build-up would immediately
signal a non-connected environment, given that the probe qubits can only become entangled
if the fluctators would couple to each other. Entanglement swapping in those circumstances
has been discussed in the literature [20]–[22]. When probe qubits are subject to the action
of a few TLFs, as it happens in qubit realizations in the solid state, we will show that the
remote entanglement in the probe bears signatures that can be linked to the connectivity in
the environment and can in some cases be related to monogamy constraints [23]. Given that
bipartite entanglement has been shown [24] to be lower-bounded by combinations of pseudo-
spin observables, we also analyse what information can be extracted from magnetization
measurements along a given direction (in the case considered here the magnetization along
the z-direction corresponds to the average charge) and study the power spectra of magnetization
observables using both single and bipartite probes. We find that a double-qubit probe generally
outperforms a single-qubit probe, a result that could perhaps be expected given the extra degrees
of freedom available in the composite system. We supplement our analysis of correlation
measurements by investigating the decoherence of composite probes initially prepared in a
certain maximally entangled state when subject to a composite spin-boson environment, as well
as the performance of entangling gate operations when performed in the presence of this type
of noise.
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Figure 1. Double-qubit probe schematic. Blue spheres are the probe qubits, Alice
and Bob. Grey spheres are the TLFs. Probe–TLF couplings (ν j ) are depicted as
black lines. TLF–TLF couplings (µ j,k) are specified by red lines. Each fluctuator
is also subject to the action of a bosonic bath at a temperature T . Interactions
between A and B are mediated by the TLFs, which lead to remote (TLF-
mediated) entanglement generation in the probe.

This paper is organized as follows. Section 2 sets the scene by describing our model for the
double-qubit probe and spin-boson environment. A detailed derivation of the proposed master
equation as well as a discussion of its validity domain are presented in the appendix. Numerical
results for probing the connectivity of the spin-boson environment are presented in section 3,
using both probe entanglement and estimated power-spectrum analyses. We summarize and
discuss these results in section 3.3, as well as compare the double-qubit probe to a single-
qubit probe. In section 4, we investigate the decoherence of maximally entangled Bell states
induced by a composite spin-boson environment. The performance of bipartite entangling
gates in the presence of this form of noise is analysed and discussed in section 5. Section 6
concludes.

2. System

The system we consider is illustrated in figure 1. It consists of two charge qubits (blue spheres)
acting as probes of an environment containing TLFs (grey spheres). Each qubit is coupled to a
few TLFs (black lines in the figure) but probe qubits are assumed to not directly couple to each
other. In the numerical calculations, we will consider the case in which there are four TLFs.
Four TLFs is a balance between generating the desired spectral features (requiring an ensemble
of TLFs [5, 12]) and maintaining reasonable computation time (smaller Hilbert space). Also, it
may be the case that only a few TLFs will couple strongly to a Josephson junction qubit, as in
recent experiments [6, 7]. We should stress that the conclusions of our work do not depend on
this choice.

In the charge basis, each qubit/TLF has a local free Hamiltonian consisting of both
longitudinal (σ̂z) and transverse (σ̂x) components: 2Ĥ σ = εσ̂z +1σ̂x. In the eigenbasis, the
corresponding pseudo-spin Hamiltonians are 2Ĥ s =�sŝz, where the spin frequency is �2

s =

ε2 +12. (Throughout this article we denote Pauli operators in the charge basis by σ̂ , and in the
pseudo-spin basis by ŝ.) For simplicity, we ‘engineer’ the probe qubit Hamiltonians to have only
longitudinal components (1P = 0).
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Probe: We label the identical probe qubits A and B. Choosing uncoupled probe qubits for
reasons that will become clear later, the total Hamiltonian for the probe is the sum 2Ĥ P =

�P(ŝA
z + ŝB

z ).

Impurities: We label the four TLF impurities with j = 1, 2, 3, 4. The total Hamiltonian for the
TLFs is then 2Ĥ TLF =

∑4
j=1� j ŝ( j)

z + V̂TLF, where V̂TLF describes coherent couplings between
the TLFs, if they exist (defined below). Note that the pseudo-spin basis for the impurities is
different to the probe (the ŝ( j)

z -axis is rotated relative to ŝz) because the probe and TLF energies
will differ, in general. Recent theoretical work [5] suggested specific distributions of these TLF
energies in order to account for both low-and high-frequency noise observed in superconducting
quantum systems. In our numerical study, we have adopted these distributions to determine the
TLF bias energies ε j (linear distribution) and tunnel amplitudes 1 j (log-uniform distribution).
Throughout the paper we will refer to 1 j as the local field. Again, note that our results are
independent of the specific choice of frequency distribution and the same qualitative results can
be derived when using a different functional form, e.g. a linear or a uniform distribution in a
selected interval around the qubit frequency.

Interactions: It is sensible to expect that the dominant interaction in a system of coherent two-
level charges is an electrostatic one [10, 25]. That is, charge–charge interactions. We therefore
assume bipartite ZZ interactions (σ̂z ⊗ σ̂z) between subsystems. Within the TLFs we assume
nearest-neighbour ZZ interactions of strength µ j,k , where k = ( j mod 4)+ 1. We assume no
direct interaction between the probe qubits A and B. So, V̂TLF =

∑4
j=1 µ j,k σ̂

( j)
z σ̂ (k)z . For coupling

strength ν j between the j th impurity and the probe qubits, we have V̂P =
∑4

j=1 ν j(σ̂
A
z + σ̂B

z )σ̂
( j)
z .

We define V̂ ≡ V̂P + V̂TLF. In the numerical simulations, noting that we expect distant TLFs
to have very little impact, we have assumed all couplings µ j,k = µ and all ν j = ν to avoid
unnecessarily cumbersome results. Our conclusions are valid even when small variations in the
parameters, of the order of 5–10%, are considered.

2.1. Master equation

The impurities are coupled to independent reservoirs of bosons (e.g. phonons in the substrate),
leading to dissipation (damping) as in the spin-boson model [26]. Under appropriate weak-
coupling assumptions (see appendix A for our derivation), the dissipative dynamics of the
composite system (qubits plus damped TLFs) can be expressed in the following Born–Markov
master equation for the joint state ρ(t) of the probe plus impurities:

ρ̇(t)= −i[Ĥ , ρ(t)] +
∑

j

(D( j)
z +D( j)

+ +D( j)
− )ρ(t), (1)

where the total Hamiltonian is

Ĥ = Ĥ P + Ĥ TLF + V̂ . (2)

The D superoperators [27] represent decoherence in the TLFs due to coupling with the
bosonic baths, which are at temperature T . The decoherence consists of dephasing D( j)

z ρ =

0( j)
z [ŝ( j)

z ρ ŝ( j)
z − ρ], emission into the baths D( j)

− ρ = 0
( j)
− [ŝ( j)

− ρ ŝ( j)
+ − (ŝ( j)

+ ŝ( j)
− ρ + ρ ŝ( j)

+ ŝ( j)
− )/2],

and absorption from the baths D( j)
+ ρ = 0

( j)
+ [ŝ( j)

+ ρ ŝ( j)
− − (ŝ( j)

− ŝ( j)
+ ρ + ρ ŝ( j)

− ŝ( j)
+ )/2]. The TLF

decoherence rates 0( j)
z,± are proportional to the respective dephasing, emission and absorption

rates γz,± (see appendix A), which are functions of the temperature and spectral properties of the
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j th bosonic bath (with absorption dramatically reduced at low temperatures). Further, the TLF
decoherence rates are also functions of the ratio of local field to bias, tan θ j ≡1 j/ε j [28]. To
get a feel for the influence of this ratio, if we assume dissipation-limited dephasing (γz = γ−/2)
and sufficiently low temperature (γ+/γ− → 0), then tan θ j dictates the dominance of pure
dephasing or relaxation in each TLF. Specifically, 0( j)

z /0
( j)
− = 1/tan2 θ j so that pure dephasing

dominates the TLF decoherence for weak local fields, and relaxation dominates for strong local
fields. Following [5], we distribute the random TLF parameters ε j , 1 j , and γ ( j)

z,± as per the
distributions P(ε j)∝ ε j , P(1 j)∝ 1/1 j , P(γ ( j)

z,±)∝ 1/γ ( j)
z,±. We choose these parameters to take

values within the following moderate ranges: ε j ∈ (1 ± 0.5)ε̄ j ; 1 j ∈ 1̄ j ± 0.5 min(�P, 1̄ j);
γ
( j)
z,± ∈ [�min/6, �min/2], where �min is the minimum spin frequency amongst the TLFs. We are

free to select sensible values for the overbar quantities ε̄ j and 1̄ j , which we will reference to
the tunable probe frequency �P. Importantly, the TLFs are underdamped (therefore requiring a
quantum-mechanical description), so γ ( j)<� j . We take the probe–TLF coupling to be uniform
(ν j = ν) and weak compared with all of the TLF frequencies: ν =�min/3. Our assumption of
weak probe–TLF coupling simplifies the master equation derivation significantly (see equation
(A.1); a detailed discussion of an analogous situation can be found in [29]), and is in addition
to the standard Born–Markov approximation of weak TLF-bath coupling. Weak probe–TLF
coupling is in accord with the recent experiments of [6, 7], as well as the experiment of [4]
(see [9]) where ν j ∼MHz and � j ∼�P ∼ GHz. The TLF–TLF coupling is also assumed to be
uniform µ j,k = µ. Note that the authors of [5] point out that ν must also be randomly distributed
in order to realize 1/ f noise in the probe. Generating the correct statistics is not within the scope
of this paper as we are interested in describing effects when the environment is dominated by
only a few fluctuators.

2.2. Observable quantities

We restrict our knowledge to the probe subsystem (as would be the case in an experiment). A
notable observable quantity on the probe is the magnetization, which is related to a simple sum
of Pauli operators: M̂x(t)= ŝA

x + ŝB
x . The appeal of considering the probe magnetization is that

it requires only tractable, local measurements on each probe qubit. That is, our results may be
easily tested in an experiment. It is worth noting that a result of Audenaert and Plenio [24] shows
that measuring correlations Cxx/zz = 〈σ̂x/z ⊗ σ̂x/z〉 along the XX and ZZ ‘directions’ suffice
to give a lower bound on the probe entanglement. This can remove the requirement for full
tomographic (entanglement) measurements when verifying or quantifying entanglement in the
probe.

The time series resulting from measuring the probe’s X-magnetization is M(t)= 〈M̂x(t)〉.
The mean-square power spectrum of M̂(t) is given by

S(ω)=

∫
∞

−∞

R(τ )e−iωτdτ, (3)

where the reduced auto-correlation function is R(τ )≡ 〈M̂(t + τ)M̂(t)〉 − 〈M̂(t + τ)〉〈M̂(t)〉.
The angle brackets here denote the expectation value of an operator 〈x̂〉 = Tr [x̂ρ(t)]. In reality,
M(t) is a discrete quantity (the data are time series), and so the power spectrum obtained is
an estimate (the Fourier transform of the reduced autocorrelation of the time series M(t)).
This estimate of average power as a function of frequency can theoretically be improved (by
increasing the duration of the experiment, for example), but this may not be practical in reality.
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Strictly speaking, M(t) must be a wide-sense stationary process (time-independent first and
second moments) for the power spectrum to exist.

3. Results: detecting the presence of coupling between the TLFs

Can probe observables reveal the degree of connectivity of a composite spin-boson
environment? In this section, we present numerical results showing that this is indeed the case.
Observable quantities we consider are the probe magnetization, its estimated power spectrum,
and the remote entanglement between the probe qubits. Entanglement generated between probe
qubits that are initially in a separable state is primarily due to the structure of the spin-boson
environment (e.g. the presence or absence of TLF–TLF interactions in the surroundings of the
probe).

Initially, we set the probe to be in a state orthogonal to the ŝz eigen-axis: |ψP(0)〉 =

|+〉A|+〉B. The TLFs are assumed to be initially in a zero-temperature thermal state, i.e. the
ground state of Ĥ TLF, which we denote as |g〉. So, |φTLF(0)〉 = |g〉. We plot observable quantities
as a function of the ratio of TLF–TLF coupling strength to probe–TLF coupling strength, µ/ν,
which is often believed to be small (see [19], for example).

Section 3.1 considers the estimated power spectrum of 〈M̂x(t)〉. Section 3.2 considers the
build up of entanglement in the probe.

3.1. Power spectrum of 〈M̂ x〉

3.1.1. TLFs with weak local fields. Consider the case of ‘weak’ local fields in the spin-boson
environment where tan θ j ∼ 1/3 (specifically 1̄ j/ε̄ j = 1/3, where TLF dephasing dominates
relaxation: 0z/0− ∼ 10). In our probing of TLF connectivity, we tune the ratio of probe–TLF
splitting εP/ε̄ j to 10, 3 and 1, corresponding to figures 2(a)–(c), respectively. We observe two
effects: (i) for weaker TLF interconnectivity µ/ν . 0.6, a decrease is observed in the height of
the single dominant peak in the spectrum; (ii) for stronger TLF interconnectivity µ/ν ≈ 1, the
spectrum splits into multiple peaks, the most dominant of which is shifted in frequency relative
to µ/ν = 0. This is visible in figure 2 where the gold traces (µ/ν = 1) are the most qualitatively
different from the blue traces (µ= 0). The power in the signal 〈M̂x(t)〉 redistributes from one
dominant frequency for unconnected TLFs (µ= 0), to multiple frequencies as µ/ν approaches
unity (highly connected TLFs). Remarkably, the most dominant peak for highly connected TLFs
µ/ν = 1 is qualitatively similar to the case of an isolated probe (figure 2(d))—a single peak at
ω =�P—although the peak visibility (height) is noticeably less than the isolated probe.

3.1.2. Effect of TLF local field. Above we have established that we can distinguish between
highly connected TLFs (µ= ν) and unconnected TLFs (µ= 0) for weak local field strength
1 j < ε j . It is interesting to ask how stronger local fields affect our ability to distinguish these
two values of µ. To explore this, we increase the ratio of TLF field strength to splitting:
tan θ̄ j = 1̄ j/ε̄ j , which was less than 1 in figure 2. This varies the range for 1 j , which (we
remind the reader) we have taken to be 1̄ j ± 0.5 min(1̄ j , �P). This range ensures a sensible
variation in the TLF local field strengths of no greater than one-half of the probe frequency. (We
assume that the TLF energies are distributed over a relatively small range as might be expected
for systematically formed impurities/defects.)
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(d) Control spectrum: ν = 0.

Figure 2. Estimated power spectrum of 〈M̂ x(t)〉 for weak local fields tan θ̄ j =

1/3 with the initial probe state |ψ(0)〉 = | + +〉. Sampling parameters (units of
�P = εP): δ f = 1/200, ts = 0.05, fN = 10. Figure 2(d) is the power spectrum
for an isolated probe. The insets show the smaller peaks magnified. The relative
heights and positions of the peaks can be used to distinguish unconnected TLFs
(µ= 0, thick solid blue line) from highly connected TLFs (µ→ ν, thick dashed
gold line).

As the local field increases tan θ̄ j > 1, two different effects occur: (i) larger local fields
cause relaxation to dominate over dephasing in the TLF decoherence; (ii) the TLF eigenstates
increasingly align towards the σ̂x-axis, and seem to have a decreasing effect on the probe,
perhaps because the interaction is of the σ̂z ⊗ σ̂z type. Evidence to support this is shown in
figure 3, which shows a peak visibility (height) reduction of about one order of magnitude as
tan θ̄ j is increased by one order of magnitude from 1/3 to 3 [3(a) to 3(b)]. So, although extra
features appear in the power spectrum, they become increasingly difficult to observe. Despite
this, there is at least one plot in each column for which µ= 0 and ν are distinguishable. Thus,
it is apparent that tuning the probe frequency (selecting a row in figure 3) allows these TLF
connectivities to be distinguished for a wide range of values of the TLF local field strength (we
obtained similar results for tan θ̄ j = 1).
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Figure 3. Estimated power spectrum of 〈M̂ x(t)〉 for εP/ε̄ j = 10 (top row), 3
(second row) and 1 (third row). As the local field strength tan θ j =1 j/ε j

increases from figures 3(a) to 3(b), TLF relaxation dominates TLF dephasing.
See text for discussion.

3.2. Probe entanglement

Interactions between probe qubits are mediated by the TLFs and entanglement between
the probe qubits can be generated in this indirect way. We now consider using the probe
entanglement to distinguish between connected and unconnected TLFs. We use the logarithmic
negativity as a measure of bipartite entanglement between the probe qubits, defined as [31]

EP ≡ log2 ||ρ
TA
P ||1, (4)

where || · ||1 denotes the trace norm, and ρT A is the partial transpose of ρ.
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Figure 4. Entanglement (logarithmic negativity) in the probe as a function of
probe cycles, for small TLF local field strength tan θ̄ j = 1/3. Note the distinct
difference between strongly interacting TLFs (µ≈ ν) and non-interacting TLFs
(µ= 0).

3.2.1. TLFs with weak local fields. Figure 4 shows the logarithmic negativity of ρP(t) for the
same data sets as in figure 2 (weak local fields tan θ̄ j = 1/3). We make two observations. Firstly,
tuning the probe frequency provides only one benefit for distinguishing µ= 0 from µ 6= 0. This
is evidenced by the remarkable qualitative similarity between figures 4(a)–(c). The benefit is
the number of probe qubit cycles required to distinguish the two cases (time is shown in units
of probe qubit cycles). Secondly, it is clear that strongly coupled TLFs (the gold line) cause
less entanglement to generate within the probe. This can be explained by invoking the concept
of entanglement monogamy [23, 30]. As the TLF–TLF connectivity increases, the indirect link
between the two probe qubits is weakened, and so remote entanglement generation slows. It
is important to emphasize which partitions one should consider when invoking monogamy
arguments. The relevant quantity is the entanglement shared between each probe qubit and a
given TLF; this is the quantity that is sensitive to entanglement sharing in two ways: (i) it
decreases as the entanglement in the probe builds up, independently of the connectivity in the
TLF environment; (ii) it ‘feels’ the TLF–TLF coupling in the sense that, within a selected time
interval, the stronger the fluctuators couple, the smaller the entanglement between probe qubit
and TLF becomes. As a result, remote entanglement builds up more slowly when fluctuators
couple so that it quickly degrades in a decohering environment, as illustrated by results in
figure 5.

3.2.2. Effect of the TLF local field. Unlike the power spectrum (figure 3), the probe
entanglement EP(t) remains useful for distinguishing µ= 0 from µ 6= 0 for strong local fields
in the TLFs where tan θ̄ j > 1. Figure 5 shows the probe entanglement as a function of time
for the same data sets as in figure 3. It is clear that entanglement is generated within the
probe for some time, before the TLF decoherence causes it to dissipate. As argued before, this
loss of generated probe entanglement occurs faster for highly connected TLFs with µ/ν = 1,
as one might expect, even without no explicit mention of monogamy constraints, since these
TLF–TLF connections provide more links between the probe qubits and the TLF decoherence
channels. This faster dissipation of generated entanglement for highly connected TLFs allows
us to distinguish between µ/ν = 0 and 1 after 10–50 probe qubit cycles, depending on the TLF
parameters. Similar conclusions can be drawn for tan θ̄ j = 1.
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Figure 5. Entanglement (logarithmic negativity) between the probe qubits for
εP/ε̄ j = 10 (top row), 3 (second row) and 1 (third row). The cases µ= 0 (solid
blue line) and µ= ν (dashed gold line) are qualitatively distinguishable unless
both ε̄ j/εP = 1 and tan θ̄ j > 1. Note that the upper limits of the axes change
between plots. Same data sets as in figure 3.

3.3. Discussion of the results

Since we are performing local measurements on each probe qubit, one might ask if there are any
advantages of using a double-qubit probe. An obvious advantage is that entanglement within
the probe becomes an accessible quantity that is not possible in a single-qubit probe. This is
important for detecting the TLF–TLF connectivity, as we have seen that this task was achievable
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Figure 6. Lower bounds on the probe entanglement as described in [24]. Only the
optimal bound C ′

2 (dotted red line) provides a good approximation to the probe
entanglement. Parameters are tan θ̄ j = 1/3, εP/ε̄ j = 1, and |ψ(0)〉 = | + +〉.

over a wider range of TLF parameters using the probe entanglement than the power spectra of
the probe magnetization (which yielded qualitatively similar results for both types of probes).

In section 3, we were able to distinguish between composite spin-boson environments with
high connectivity from those with low connectivity. The parameter ranges for which our findings
were robust are: εP/ε̄ j = 1, 3, 10 (tunable), 1/36 tan θ̄ j 6 3. Other parameters (0, etc) are
restricted to lie within the ranges that ensure validity of the master equation—see appendix A.

For all numerical calculations in this paper, we have assumed effectively zero-
temperature bosonic baths where n̄ j = [exp(h̄� j/kBT )− 1]−1

� 1. The relevant frequencies
for experiments with Josephson qubits are in the vicinity of 10 GHz [4, 6, 7, 32], with cryostat
temperatures of the order of 30 mK [4]. These values give n̄ ∼ 0.1, so the low-temperature
approximation is good.

In general, determining the probe entanglement would require full quantum-state
tomography. Here we consider estimating the probe entanglement from measurements less
costly than full quantum state tomography, as described in [24] (and references within). The
result is lower bounds on the entanglement—we refer the reader to [24] for details.

For all parameter regimes considered in this paper we found that one of the lower bounds
given in [24]—the optimal one given in (5)—provided a remarkably good approximation to
the probe entanglement for all times. The other lower bounds C1,2 in [24] did not approximate
the probe entanglement well for any time. An example is shown in figure 6. The solid line is
the entanglement within the probe (logarithmic negativity), and the dotted line shows the lower
bound given by

C ′

2(ρP)= max[0, log2(1 + |λ1| + |λ2| + |λ3|)− 1], (5)

where λ1,2,3 are the eigenvalues of the matrix

3=

cxx cxy cxz

cyx cyy cyz

czx czy czz

 . (6)

The matrix 3 is formed from probe observables ci j
= Tr [ŝA

i ⊗ ŝB
j ρP] (i, j = x, y, z). Note that

ci j
= c j i due to the symmetry of the problem.
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4. Decoherence of entangled states

Entanglement has been identified as a key resource for quantum information processing. It is
therefore important to study the loss of entanglement induced by coupling with an environment,
as this coupling is generally unavoidable. In this section, we reconsider our double-qubit
probe as a double-qubit register (DQR) interacting with the same spin-boson environment
(four damped TLFs) as above. Starting the DQR in an entangled pure state, and the TLFs
in their ground state (as before) with weak local fields tan θ̄ j < 1, we numerically investigate
the behaviour of the logarithmic negativity as a function of time. Specifically, we consider the
lifetime of distillable entanglement (for which the logarithmic negativity is an upper bound).
We compare our results to previous studies of entanglement decay [33, 34], all of which used
rather less sophisticated models for the environment. Nevertheless, we find some qualitative
similarities between our results and previous work.

Aolita et al [33] consider multiqubit states whereby each qubit is damped by independent
baths. We refer to this as ‘direct’ damping, by an equilibrium environment (a reservoir). In our
non-equilibrium spin-boson environment, the damping is mediated by the TLFs and we refer to
this as ‘indirect’ damping of the DQR. Aolita et al [33] parameterize time via the probability
for a qubit to exchange a quantum of energy with its bath (in the absence of pure dephasing),
p(t)= 1 − exp[−γ (2n̄ + 1)t/2]. Here γ is the zero-temperature damping rate, and n̄ is the mean
number of excitations in the bath (n̄ = 0 is zero temperature). When the DQR logarithmic
negativity falls below an arbitrarily small fraction of its initial value, ε�1, the distillable
entanglement can be considered zero. The time at which this occurs is tε . For generalized GHZ
states (requiring>3 qubits), and for three different types of direct damping, [33] found that
p(tε)∝ −log ε (although they were looking at it from a slightly different perspective, as we
comment later). Remarkably, we find numerical evidence of the same qualitative behaviour for
the decay of the |φ±

〉 Bell states in a DQR (see figure 7).
For low temperature T ∼mK (as we have considered throughout this paper unless

otherwise noted), weak TLF local field tan θ̄ j = 1/3, and TLFs with relatively small charge:
εP = 3ε̄ j , we consider the DQR to be initially in each of the four Bell states in turn: |φ±

〉 =

(|00〉 ± |11〉)/
√

2, |ψ±
〉 = (|01〉 ± |10〉)/

√
2. Figure 7 shows the DQR logarithmic negativity

as a function of time, as well as p(tε)= 1 − exp(−tε/2) for a DQR initially in the states |φ±
〉.

It is evident that p(tε)∝ −log ε for |φ±
〉. Further, we can see that interacting TLFs (the gold

traces) tend to reduce the DQR entanglement faster. This is expected since interacting TLFs
provide more connections between the DQR and the baths. For the chosen set of parameters
(particularly 1= 0 for the DQR), the states |ψ±

〉 commute with Ĥ P + V̂P and so do not evolve,
nor couple to the TLFs. We found the same qualitative behaviour for εP/ε̄ j = 1 and 10 when
the TLF local fields were not strong: tan θ̄ j . 1. For strong local fields tan θ̄ j & 3, the linear
relationship p(tε)∝ −log ε did not hold in general. This was because the probe entanglement
tended to exhibit quite erratic behaviour, such as multiple collapses and revivals.

A comment on the previous work in [33, 34] is appropriate here. In those works, the
decay of N -particle entanglement was considered as a function of N . In [33], it was found
that p(t)∝ −(1/N )log ε. Here we have fixed N = 2 and found that p(t)∝ −logε. Our focus
is slightly different, but it is interesting that the loss of distillable entanglement (logarithmic
negativity) is qualitatively the same for direct and indirect damping of bipartite qubit states
(within the parameter regimes discussed in the previous paragraph). It is important to remark
that the coincidence with the predictions for the decoherence of multipartite states subject to
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Figure 7. Decay of entanglement (logarithmic negativity) in a DQR initially in
the Bell states |φ+

〉 (top row) and |φ−
〉 (second row) for uncoupled TLFs (µ= 0,

solid blue line) and coupled TLFs (µ= ν, dashed gold line). Other parameters
are tan θ̄ j = 1/3 and εP/ε̄ j = 3. See text for discussion.

independent reservoirs should not be considered as a general result given that we analysed
a very special case, which is the one of two entangled qubits in selected parameter regimes.
What is relevant for our purposes is the fact that the agreement with the analytical prediction
in [33] for direct decoherence points out a sharp asymmetry in the processes of entanglement
‘destruction’ and (remote) entanglement generation in a composite environment, so that there
are circumstances where the TLF systems may be essentially invisible when analysing the
decoherence of initially entangled probe states, while the presence of the TLFs would be
revealed when monitoring entanglement creation in the probe.

5. Effect of spin-boson environment on entangling gate operations

In this section, we investigate the effects of the composite spin-boson environment on the
performance of entangling gates. Starting the DQR in the separable state |ψP(0)〉 = | + +〉, we
consider two entangling gates: a ZZ gate (ŝA

z ⊗ ŝB
z ); and an XX+YY gate [ŝA

x ⊗ ŝB
x + ŝA

y ⊗ ŝB
y ]. In

the ideal case, there are no TLFs and bipartite entanglement (quantified again by the logarithmic
negativity) is generated between the isolated register qubits in an oscillatory fashion as shown
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Figure 8. Entanglement (logarithmic negativity) between the register qubits for
|ψ(0)〉 = | + +〉, εP/ε̄ j = 1 generated by XX + YY (top row), and ZZ (bottom
row) gates. The presence of TLFs (blue dashed and green dotted lines)
diminishes the performance of the entangling gates, as would be expected.

by the solid red curves in figure 8. In the presence of four TLFs, the entangling gate performance
is clearly reduced, and further modified depending on the strength of the local fields in the TLFs.
This may be understood as follows. We have argued that the presence of a coherent coupling
between the TLFs leads to a decrease in the effective interaction strength between the qubits in
the probe, i.e. the ‘effectiveness’ of the indirect link between probe qubits is diminished, a result
that can be interpreted in terms of monogamy constraints leading to a slow down in the process
of remote entanglement creation. In the case of the entangling gates, one could perhaps argue
similarly, considering now a bipartition separating the probe qubits. The higher the connectivity
in the environment, the slower the entangling gate can operate, as illustrated in figure 9.

At longer times (the order of 100 register-qubit cycles and greater), the DQR appears to
approach an entangled steady state for weak local fields tan θ̄ j = 1/3. This is shown in figure 9
for the ZZ gate (the same qualitative behaviour occurred for the XX + YY gate). We were
unable to obtain analytical results to verify the presence of steady-state entanglement in the
DQR generated by either gate (ZZ or XX + YY), when coupled to four TLFs. Our numerical
study found that entanglement generated in the DQR was dissipated more rapidly (in less probe
qubit cycles) for strong local fields in the TLFs.
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Figure 9. Long-time entanglement (logarithmic negativity) between the register
qubits generated by a ZZ gate, for |ψ(0)〉 = | + +〉, εP/ε̄ j = 1 and tan θ̄ j = 1/3.

6. Conclusion

We have considered superconducting qubits that are subject to decoherence dominated
by low-frequency noise thought to be produced by interactions with a small number of
defects/impurities. We model these impurities as coherent TLFs that are under-damped by
baths of bosonic modes (e.g. phonons). We probed such a composite spin-boson environment
by making measurements on a pair of non-interacting qubits that each interact directly with the
TLFs. Our extensive numerical study revealed that the presence or absence of coherent coupling
(connectivity) between the TLFs can be discriminated in two ways: from the estimated power
spectrum of the probe magnetization (requiring relatively long-time measurements) and from
entanglement generated within the probe, mediated by the spin-boson environment. We argue
that entanglement monogamy considerations [23] allow the interpretation of our results in terms
of an effective decrease in the remote interaction strength when the environment is connected,
which yields to a creation of quantum correlations on a much larger timescale as compared with
the uncoupled fluctuator case.

We also showed that this remotely generated entanglement can be well estimated by a
lower bound [24] that requires less experimental effort than the full quantum state tomography
required to evaluate the entanglement. The upshot is that this connectivity of the TLFs should
be discernible using tractable measurements in a real experiment. This result is important
for studies of quantum-mechanical phenomena in Josephson devices (including quantum
computing) where it is desirable to minimize the effects of decoherence, for which the TLF–TLF
connectivity may play a significant role [17].

When considering the effects of the spin-boson environment on a DQR initially prepared
in a maximally entangled (Bell) state, we showed that the presence of TLFs may be
unnoticeable in certain parameter regimes, in the sense that entanglement degradation there is
well approximated by the same decrease law as for direct decoherence. This fact emphasizes
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the possible usefulness of monitoring the reverse process of entanglement generation for
environmental probing.

The presence of TLF–TLF coupling also showed a reduction in the performance of
entangling gate operations performed on the register. Our extensive numerical study can be
supplemented by an analytical treatment of a simpler situation valid for short times, where TLF
decoherence can be ignored. These results will be presented elsewhere [35].

Acknowledgments

We are very grateful to Simone Montangero for discussions on several aspects of the simulations
and to Shash Virmani for discussions on monogamy constraints. This work was supported by
the EU through the STREP project CORNER, the Integrated project on Qubit Applications
QAP, and the Integrated project EuroSQIP. AR acknowledges support from a University of
Hertfordshire Fellowship.

Appendix A. Derivation of the master equation

Consider a single charge qubit ‘system’ coupled to a finite number of independent charged
impurities that fluctuate coherently between two configurations. These coherent TLFs are
coupled to independent bosonic baths (phonons in the substrate, for example) that produce
damping. The total Hamiltonian is the sum of free Hamiltonians for the single qubit, the TLFs,
and the baths, and the interaction Hamiltonians:

Ĥ = Ĥ sq + Ĥ TLF + Ĥ B + V̂sq−TLF + V̂TLF−B.

The free Hamiltonians are Ĥ sq = (εσ̂z +1σ̂x)/2, Ĥ TLF =
∑

j(ε j σ̂
( j)
z +1 j σ̂

( j)
x )/2, Ĥ B =∑

j,` ω`â
†
`, j â`, j (the baths can be assumed to be identical so ω`, j = ω`). The coupling

Hamiltonians are V̂sq−TLF =
∑

j ν j σ̂
( j)
z σ̂z (Coulomb interactions), V̂TLF−B =

∑
j,` λ`σ̂

( j)
z (â`, j +

â†
`, j) (similarly to ω`, the couplings are assumed to be independent of the baths: λ`, j = λ`). We

denote the charge-basis Pauli operators by σ̂x,y,z. At this stage, the TLFs are not interacting.
The TLF-related energies ε j , 1 j and ν j are randomly distributed following independent

distributions discussed in [5]. The details of these distributions are critical for realizing the
experimentally observed 1/ f noise spectrum of the qubit voltage/bias.

We refer to the eigenbases of Ĥ sq and Ĥ TLF as the pseudo-spin bases, and denote the
corresponding Pauli operators as ŝx,y,z. The Hamiltonians in the pseudo-spin basis are

Ĥ sq =
1
2�ŝz,

Ĥ TLF =
1

2

∑
j

� j ŝ
( j)
z ,

V̂sq−TLF =

∑
j

ν j(cos θ j ŝ
( j)
z − sin θ j ŝ

( j)
x )(cos θ ŝz − sin θ ŝx),

V̂TLF−B =

∑
`, j

λ`(cos θ j ŝ
( j)
z − sin θ j ŝ

( j)
x )

(
a`, j + a†

`, j

)
,
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where tan θ j ≡1 j/ε j . In order to obtain the master equation we move to an interaction picture
with respect to the Hamiltonian

Ĥ 0 = Ĥ sq + Ĥ TLF + Ĥ B + V̂sq−TLF.

In this picture, the evolution equation for the total system is:

dρ̃tot(t)

dt
= −i[ṼTLF−B(t), ρ̃tot(t)]

where

ρ̃tot(t)= exp(iĤ 0t)ρtot exp(−iĤ 0t),

ṼTLF−B(t)= exp(iĤ 0t)V̂TLF−B exp(−iĤ 0t).

By iterating once the above equation as usual [29, 36] we obtain

dρ̃(t)

dt
= −Tr env

∫ t

0
dt ′[ṼTLF−B(t), [ṼTLF−B(t

′), ρ̃tot(t
′)]],

where Trenv denotes the trace over all of the baths. By assuming a factorized initial state of the
form ρtot(0)= ρ(0)

⊗
j ρb, j , with ρ(0) the initial state of the ‘qubit + TLFs’ and ρb, j a thermal

state of the j th bath, we may make a Born approximation in the coupling constants λ`. The
evolution equation becomes

dρ̃(t)

dt
' −Trenv

∫ t

0
dt ′

[
ṼTLF−B(t),

[
ṼTLF−B(t

′), ρ̃(t ′)
⊗

j

ρb, j

]]
.

Since the baths are independent and they are all in a thermal state (diagonal in the number basis),
by inserting the expression for ṼTLF−B(t) it is easy to check that

dρ̃(t)

dt
= −Trenv

∑
`, j

∫ t

0
dt ′

[
λ`(cos θ j s̃

( j)
z (t)− sin θ j s̃

( j)
x (t))(ã`, j + ã†

`, j),

[
λ`(cos θ j s̃

( j)
z (t ′)

− sin θ j s̃
( j)
x (t ′))(ã`, j + ã†

`, j), ρ̃(t
′)

⊗
j

ρb, j

]]
.

This is basically a sum of the expressions obtained in the standard derivation [29, 36] for the
one qubit case. Now we make the next crucial assumption in the derivation. Assuming weak
qubit–fluctuator coupling whereby ν j �� j (as in the experiments of [4, 6, 7]—see below), we
may approximate the Heisenberg operators of the TLFs in the interaction picture as:

s̃(t)' exp(iĤ 00t)ŝ exp(−iĤ 00t), (A.1)

where Ĥ 00 = Ĥ sq + Ĥ TLF is the sum of the free Hamiltonians. For example, we find that
s̃( j)
± (t)= ŝ( j)

± e±i� j t .
One may question the validity of our assumption of weak qubit–fluctuator coupling. For

guidance we consider the experiments of [4] (charge qubit), [6] (phase qubit) and [7] (flux
qubit), where ν j . 0.1 GHz and � j ∼�∼ GHz, which falls within this weak-coupling regime
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(the qubit–fluctuator coupling strength in the experiment of [4] is estimated in [9]). In this
regime, we can insert the result of the one qubit case for every fluctuator j :

dρ̃(t)

dt
=

∑
j

0( j)
z

{
s̃( j)

z (t)ρ̃(t)s̃( j)
z (t)− ρ̃(t)

}
+0( j)

−

{
s̃( j)
− (t)ρ̃(t)s̃( j)

+ (t)− [s̃( j)
+ (t)s̃( j)

− (t)ρ̃(t)+ ρ̃(t)s̃( j)
+ (t)s̃( j)

− (t)]/2
}

+0( j)
+

{
s̃( j)

+ (t)ρ̃(t)s̃( j)
− (t)− [s̃( j)

− (t)s̃( j)
+ (t)ρ̃(t)+ ρ̃(t)s̃( j)

− (t)s̃( j)
+ (t)]/2

}
,

where the TLF ladder operators are s̃± ≡ (s̃x ± is̃y)/2, and the decoherence rates are 0( j)
z =

γz cos2 θ j/2, 0( j)
− = (γ− + γ+)sin2 θ j/4 and 0

( j)
+ = γ+sin2 θ j/4. Here γz, γ− and γ+ are the

dephasing rate, the spontaneous emission rate and stimulated emission rate, respectively, which
can be calculated by knowing the spectral properties and temperature of the bath.

Now we return to the Schrödinger picture. For consistency the Heisenberg operators need
to be sent back into the Schrödinger picture with the same Ĥ 00 used above, so that in fact we
just need to remove the t argument everywhere above because all the oscillating phase factors
accrued actually cancel. Therefore the final result is:

dρ(t)

dt
= − i[Ĥ sq + Ĥ TLF + V̂sq−TLF, ρ(t)] +

∑
j

0( j)
z

[
ŝ( j)

z ρ(t)ŝ( j)
z − ρ(t)

]
+0( j)

−

[
ŝ( j)
− ρ(t)ŝ( j)

+ − (ŝ( j)
+ ŝ( j)

− ρ(t)+ ρ(t)ŝ( j)
+ ŝ( j)

− )/2
]

+0( j)
+

[
ŝ( j)

+ ρ(t)ŝ( j)
− − (ŝ( j)

− ŝ( j)
+ ρ(t)− ρ(t)ŝ( j)

− ŝ( j)
+ )/2

]
.

This master equation is valid when� j �ν j and� j �max{λ`}, ∀ j . The first inequality is needed
in the interaction picture (A.1) and the second inequality is the standard requirement for the
Born–Markov approximation.

Within the same framework we can analyse other situations, such as interacting TLFs, and
additional qubits coupled to the TLFs. The master equation for interacting TLFs is the same as
above, but with the additional Hamiltonian V̂TLF−TLF =

∑
j,k µ j,k σ̂

( j)
z σ̂ (k)z and the requirement

that min{� j , �k}�µ j,k . Additional qubits can be included under similar conditions.
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