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A B S T R A C T 

Modern high-sensitivity radio telescopes are disco v ering an increased number of resolved sources with intricate radio structures 
and fainter radio emissions. These sources often present a challenge because source detectors might identify them as separate 
radio sources rather than components belonging to the same physically connected radio source. Currently, there are no reliable 
automatic methods to determine which radio components are single radio sources or part of multicomponent sources. We propose 
a deep-learning classifier to identify those sources that are part of a multicomponent system and require component association 

on data from the LOFAR Two-Metre Sky Survey. We combine different types of input data using multimodal deep learning 

to extract spatial and local information about the radio source components: a convolutional neural network component that 
processes radio images is combined with a neural network component that uses parameters measured from the radio sources and 

their nearest neighbours. Our model retrieves 94 per cent of the sources with multiple components on a balanced test set with 2683 

sources and achieves almost 97 per cent accuracy in the real imbalanced data (323 103 sources). The approach holds potential 
for integration into pipelines for automatic radio component association and cross-identification. Our work demonstrates how 

deep learning can be used to integrate different types of data and create an effective solution for managing modern radio surveys. 

Key words: methods: statistical – surv e ys – galaxies: active – radio continuum: galaxies. 
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 I N T RO D U C T I O N  

he role of active galactic nuclei (AGN) in galaxy evolution is widely
ecognized today (see re vie ws by Fabian 2012 ; Kormendy & Ho
013 ; Heckman & Best 2014 , and references therein), with AGN
eedback being the main candidate responsible for suppressing star
ormation and leading to massive galaxies becoming ‘red and dead’.
adio-loud AGNs, or radio AGNs for short, which have relativistic

ets extending tens or hundreds of kiloparsecs from the galaxy, are
hought to be the primary force behind this AGN feedback (see
ardcastle & Croston 2020 , for a re vie w). Ho we ver, certain aspects of
GN-galaxy co-evolution, such as the mechanisms by which AGNs
re triggered, are not completely understood, and larger samples of
GNs are needed to permit detailed statistical studies (e.g. Best et al.
006 , 2007 ; Sabater et al. 2019 ). 
Significant advances have been made with data from extensive

adio continuum surv e ys, such as the F aint Images of the Radio
ky at Twenty centimeters survey (FIRST; Becker, White & Helfand
995 ), the National Radio Astronomy Observatory Very Large Array
VLA) Sk y Surv e y (NVSS; Condon et al. 1998 ) and the LOw
 E-mail: alegre@roe.ac.uk 
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requency ARray (LOFAR; van Haarlem et al. 2013 ) Two-meter
k y Surv e y (LoTSS; Shimwell et al. 2017 , 2019 , 2022 ). These
urv e ys co v er wider and deeper areas of the sky, which result in
n increase in detected sources from tens of thousands in early radio
urv e ys to about 5 million currently. These surv e ys already provide
arge enough samples for some statistical studies, but with upcoming
elescopes like the Square Kilometre Array (SKA; Dewdney et al.
009 ), it is anticipated that we will get a fully detailed picture from
he radio viewpoint of galaxy evolution, AGN triggering, and the
nfluence of AGNs on galaxies across cosmic time. Ho we ver, to
erform these studies, it is crucial to obtain accurate measurements
f radio fluxes and source sizes in order to characterize the radio
GN properties of the hosting galaxy. Furthermore, it is necessary to
ave precise identification of the radio source host galaxy to obtain
ptical properties, as well as redshifts to enable measurements to be
onverted into physical properties. 

In LoTSS, radio source properties including source sizes and flux
ensities are measured using the Python Blob Detector and Source
inder ( PyBDSF ; Mohan & Rafferty 2015 ), which extracts confined
egions of high radio brightness from the images, designated as
yBDSF sources, which can be fitted by one or various Gaussians.

n order to get the correct optical counterparts, in LoTSS DR1, a
roportion of the PyBDSF sources were visually inspected while
© 2024 The Author(s). 
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he majority of them were cross-matched automatically using the 
tatistical likelihood ratio (LR) technique (see Williams et al. 2019 ). 

hen sources were visually inspected, they fell mainly into three 
ategories. The first category was extended single-component radio 
ources. These are sources that have been successfully identified 
s physical sources by PyBDSF . Ho we ver, due to their extended
adio emission, automatic cross-matching methods become less reli- 
ble, requiring visual inspection and cross-identification. Machine- 
earning methods have been developed that show promising potential 
or providing accurate cross-match IDs for these type of sources. 
 or e xample, Alger et al. ( 2018 ) implemented a method that in-
olves creating a bounding box centred on a radio component and 
eriving a score for potential candidate IDs within a search radius,
emonstrating significant efficacy in cross-matching sources of this 
ature. The second category of sources comprises blended sources, 
here PyBDSF encompasses multiple sources into a single detection, 
ecessitating deblending before cross-matching. As demonstrated, 
or example by Williams et al. ( 2019 ), the implementation of
utomated algorithms for source deblending can be accomplished 
ith relative ease. Thirdly, there are radio sources composed of 
ultiple components (MC). In these cases, PyBDSF separated a 

hysical radio source into different source components, and it is 
herefore necessary for this category to associate the components 
efore cross-matching. 
MC sources are typically sources with extended radio emission 

nd/or distinct radio blobs. When applying source detection algo- 
ithms (e.g. Mohan & Rafferty 2015 ; Hale et al. 2019 ) to high-
esolution images, algorithms search for pixel areas exceeding a 
re-determined threshold level [often set at a signal-to-noise ratio 
SNR) of 5]. Sometimes certain parts of a source may fall below
he threshold level, and therefore the software may identify different 
ource regions above the threshold as separated sources. Extreme 
ases are FRIIs (see Fanaroff & Riley 1974 , for FRI versus FRII
lassification), which possess highly luminous steep-spectrum lobes 
ut faint flat-spectrum jets between the lobes, which commonly fall 
elo w the SNR le vel. Sometimes, e ven if detections are abo v e the
hreshold level, it is possible for certain components to be separated 
s the software tries to remo v e irrele v ant sources to a v oid incorrectly
roducing blends. 
The cross-identification of MC sources presents a significant 

hallenge, since it involves the accurate definition of the radio 
ource (which requires radio source component association) and 
he cross-matching of the (potentially very extended) radio source 
o its optical counterpart. Some algorithms have recently been 
eveloped to group components of MC sources in radio images 
e.g. Wu et al. 2019 ; Mostert et al. 2022 ), and others successfully
dentify the host galaxy in source components that have already been 
rouped beforehand (Barkus et al. 2022 ). Ho we ver, without a specific
ethodology, it is impossible to determine whether a source requires 

omponent association. When applying these algorithms without 
re vious kno wledge then if, for example, the source needs component 
ssociation, a bounding box, which may encompass only one of the 
ource components, may give the correct ID (e.g. Alger et al. 2018 ),
ut the radio source properties will be incorrect. Consequently, the 
nitial step of cross-matching MC sources involves ensuring the 
ppropriate identification of a source as an MC source in order 
o determine whether the radio components have been accurately 
ssociated or not. 

Due to their complexity, MC sources hold significant interest for 
oth individual galaxy studies (e.g. Hardcastle et al. 2019a ) and 
tatistical studies (e.g. Sabater et al. 2019 ; Hardcastle et al. 2019b ,
legre et al., in preparation). Hence, it is crucial to identify these
ources to precisely measure their radio properties. Given the lack 
f automatic methods available for identifying MC sources, our 
rimary focus in this paper is to identify them. To address this we use
achine learning (ML) and the LoTSS data. We employ multimodal 
L (MML; e.g. Ngiam et al. 2011 ), an ML type of model that

ntegrates different data inputs. In MML models, each data instance 
an contain various types of information, such as images, structured 
ata, and others such as text, audio, video, and even metadata (see,
.g. Baltru ̌saitis, Ahuja & Morency 2019 ). 

MML has been successfully applied to a wide range of AI prob-
ems, with particular developments in deep learning and computer 
ision (see Summaira et al. 2021 , and references therein). Ho we ver,
ML methods have only recently been developed to be used in

stronomy applications. For example, Hong et al. ( 2023 ) used an
ML model to estimate photometric redshifts of galaxies in the 

loan Digital Sky Survey (SDSS, York et al. 2000 ) with significant
mpro v ement in the estimations. Natural language processing com- 
ined with radio images from the ‘Radio Galaxy Zoo: EMU’ were
ecently used to classify galaxies based on description tags (Bowles 
t al. 2023 ). In the context of weak gravitational lensing, Pinciroli
ago & Fraternali ( 2022 ) combined images and time-series data to
etect lensing effects in four different simulated surv e y data sets,
howing that the method surpasses the traditional method using only 
mages, which will be important to detect lenses in upcoming surv e ys,
uch as the Large Surv e y of Space and Time (LSST; Ivezi ́c et al.
019 ). Cuoco et al. ( 2021 ) combined information from different parts
f the electromagnetic spectrum to characterize gravitational wave 
v ents. The y further reviewed the computational aspects of MML
strophysics and the importance of developing methods that combine 
ultimessenger astronomy (Cuoco et al. 2022 ). The complexity 

nd amount of data that new gravitational wave detectors and 
ew telescopes will generate by detecting thousands of transients 
er night, creates urgency for developing methods that are able 
o efficiently analyse and combine the information coming from 

ultiple sources. 
In this work, we train an MML classifier built on a convolutional

eural network (CNN) and an artificial neural network (ANN) in 
rder to identify MC sources. The MML model combines two 
ifferent types of information into a unified architecture; it takes 
s inputs radio and optical properties as well as radio images.
lthough somewhat similar architectures have been used in radio 

stronomy (e.g. by connecting two CNNs, Maslej-Kre ̌s ̌n ́akov ́a, El
ouchefry & Butka 2021 ; Samudre et al. 2022 ) these approaches
o not combine data coming from different sources, or different 
ata types. By incorporating multiple sources of information, in 
his paper, we demonstrate impro v ed performance in identifying 

C sources in LoTSS and sho w the adv antages of using MML
o analyse future radio surv e ys. Furthermore, we employ activ e
earning (e.g. Walmsley et al. 2020 ), by using the results from
legre et al. ( 2022 ) to remo v e sources from the data set that are

ess informative for the learning process. By selecting the most 
nformative sources for the model, it is possible to optimize its
erformance while also reducing the number of examples needed for 
raining. 

The paper is organized as follows. We describe the LoTSS data
nd the creation of the data set in Section 2 , where we define the
ata types, define the classes and discuss how balancing the data set
as achieved. We then perform a set of experiments in Section 3 . We
efine a baseline model and explore the production of the images,
he creation of the MM model (where we test for different sets of
eatures), data augmentation, as well as adjusting the training data set. 

e further present the model optimization and model performance. 
MNRAS 532, 3322–3340 (2024) 
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he model is applied to the real imbalanced data sample in Section 4 .
e conclude and discuss future directions in Section 5 . 

 DATA  

his work is focused on data from the LoTSS surv e y carried on
ith the LOFAR telescope. LoTSS is a surv e y of the entire northern

ky which reaches depths about 10 times greater than the FIRST
urv e y (for sources of typical steep spectral index), while achieving
ensitivity to extended structures, better than the NVSS surv e y.
his unique combination allows for the detection of sources with
xtended faint emission. LoTSS has a frequency coverage from 120
o 168 MHz, and achieves a typical rms noise level of 70 μJy beam 

-1 

 v er its first data release (DR1) region, with an estimated point-
ource completeness of 90 per cent at a flux density of 0.45 mJy.
he low frequencies of LOFAR combined with high sensitivity on
hort baselines gives it a high efficiency at detecting extended radio
mission. LoTSS DR1 has an angular resolution of 6 arcsec and an
strometric precision of 0.2 arcmin, making it very suitable for host-
alaxy identification. In this section, we provide an overview of the
oTSS DR1 data and the data set that is extracted from it to perform

he experiments. More details about the data used to create the data
et can be found in Alegre et al. ( 2022 ). 

.1 LoTSS 

oTSS detected 325 694 PyBDSF sources in its first data release,
ontaining just the first 2 per cent of the surv e y (LoTSS DR1;
himwell et al. 2019 ). 1 The public release provided radio catalogues

hat were derived from the 58 mosaic images of DR1, which co v er
24 de g 2 o v er the Hobby–Eberly Telescope Dark Energy Experiment
Hill et al. 2008 ) Spring Field (right ascension 10 h 45 m 00 s –15 h 30 m 00 s 

nd declination 45 ◦00 ′ 00 ′′ – 57 ◦00 ′ 00 ′′ ). The area benefits from exten-
iv e multiwav elength co v erage. The released LoTSS data products
nclude value-added catalogues which present the identification of
OFAR-matched radio sources to optical counterparts using Pan-
TARRS (Chambers et al. 2016 ) and the Wide Infrared Surv e y
xplorer (WISE, Cutri et al. 2014 ) surv e ys, achiev ed using a
ombination of statistical techniques and visual inspection via a
ri v ate LOFAR Galaxy Zoo (LGZ) classification project hosted
n the Zooniverse platform 

2 (described in paper III of LoTSS
R1, Williams et al. 2019 ). The catalogues also provide some

nitial characterization of the sources, including photometric redshift
stimates and rest-frame magnitudes (described in paper IV of
oTSS-DR1; Duncan et al. 2019 ). 
In LoTSS DR1, sources bigger than 15 arcsec (that were not

utomatically cross-matched with a large SDSS optical source)
ere all sent to visual inspection without any triage, since large

ources are usually resolved and potentially complex. These cor-
espond to 19 216 sources, or 5.95 per cent of LoTSS DR1. From
hese, the outcome of the visual analysis demonstrated that 10 001
52.05 per cent) needed to have been inspected (Alegre et al. 2022 ),
ith 4671 (24.31 per cent) being MC sources and the rest single-

omponent sources. Considering only the large and bright sources
total flux > 10 mJy, 6748 sources, 2.09 per cent of LoTSS DR1),
.e. the ones used to perform component association by Mostert et al.
 2022 ), only 2226 (32.99 per cent) of those in fact needed component
ssociation, decreasing the performance of source association. Even
NRAS 532, 3322–3340 (2024) 

 https://lofar-surv e ys.org/dr1 release.html 
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s
c

hough the majority of the components of MC sources are indeed
arge and bright, the remaining components fall into different parts
f the Williams et al. ( 2019 ) decision tree, with only 57 MC
ources (0.63 per cent) being sent directly to visual inspection, 201
2.22 per cent) being automatically cross-matched with a large optical
alaxy but inspected afterwards, 1046 (11.56 per cent) being accepted
utomatically to cross-match by LR (most likely the cores of FRII
r double-lobed sources), and finally 3071 (33.95 per cent) going
hrough a pre-filtering process before further visual analysis. 

A second LoTSS data release with a total number of 4396 228
yBDSF sources in 841 mosaics co v ering 5634 de g 2 has been
ublished (LoTSS DR2; Shimwell et al. 2022 ); some aspects will
e discussed in Section 4.4 . LoTSS DR2 corresponds to 27 per cent
f the northern sky and it spans two regions: one with 4178 deg 2 

round right ascension 12 h 45 m and declination 44 ◦30 ′ and the other
ith 1457 deg 2 around right ascension 1 h 00 m and declination 28 ◦00 ′ .
oTSS DR2 has a central frequency of 144 MHz with 83 μJy beam 

–1 

ms sensitivity and an estimated point-source completeness of
0 per cent at a peak brightness of 0.8 mJy beam 

–1 . Hardcastle et al.
 2023 ) present the methods used to cross-match LoTSS DR2 radio
ources with their corresponding optical counterparts. In their work,
he public Zooniverse ‘Radio Galaxy Zoo: LOFAR’ was established
or the purpose of associating and cross-matching a fraction of the
ources in the data set. 

.2 Data set classes 

n this work, we use supervised ML for classification, which involves
raining models using labelled data with the aim of classifying
nseen examples afterwards. The labelled data provided for training
etermine the quality of the model and its ability to generalize (i.e.
o be able to classify other examples correctly). Therefore, it is
mportant to have a well-defined and well-annotated data set. We
reated the data set using 323 103 PyBDSF sources, which resulted
rom removing the artefacts from the original 325 694 PyBDSF
ources obtained o v er the LoTSS DR1 area. This was done by
omparing the original PyBDSF radio catalogue with the outputs
btained from a combination of visual inspection and statistical
ross-matching described in detail in Williams et al. ( 2019 ). In cases
here source components had been merged, this resulted in a single

ntry in the final catalogue; deblended sources, on the other hand,
how multiple entries. Single-component sources remain the same
n both catalogues. This enables the categorization of sources into
wo distinct classes: class MC corresponds to multicomponent (MC)
ources, whereas class S is a mix of non-MC sources. 3 They are
efined as follows: 

(i) Class MC : PyBDSF sources that were associated with other
yBDSF sources in LGZ, meaning that these make up an MC source.
hese correspond to sources for which the PyBDSF algorithm has
etected the radio emission separately, or has split the radio emission,
iving rise to two or more different radio components. To construct
 genuine physical source it is, therefore, necessary to associate the
ifferent source components. 
(ii) Class S : PyBDSF sources for which the source emission is

ll encompassed within a single PyBDSF source, and therefore do
ot require component association. While these primarily consist
f correctly identified single-component sources, this class also
 The supplementary online material includes a list of the 323 103 PyBDSF 
ources, with sources in class MC assigned a value of 1 in the multi component 
olumn and sources in class S assigned a value of 0. 

https://lofar-surveys.org/dr1_release.html
https://www.zooniverse.org
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ncludes the blended sources that PyBDSF incorrectly identified as 
eing a single source and that needed to be split into two or more
ources. 

Artefacts correspond to PyBDSF sources not present in the final 
oTSS DR1 value-added catalogue and have been excluded from 

his analysis. 

.3 Balancing the data set 

n radio surv e ys, the number of objects in the two different classes is
ighly imbalanced, with relatively low numbers of class MC sources. 
alancing the data set (having a similar number of examples in each
lass) is a common ML technique used to a v oid o v erfitting the model
o the majority class during the training process. A balanced data 
et was achieved using an undersampling method, which consists of 
sing only a subsample of all the available data. This has been shown
o be ef fecti v e by Ale gre et al. ( 2022 ). Furthermore, the augmentation
tep (adding more examples through rotations and reflections; see 
ection 3.4 ) will act as compensation for the undersampling, whereby 

he class MC sources will be ef fecti vely augmented while different
roups of class S will be added without suffering augmentation 
ransformations. Consequently, a greater number of examples will be 
sed to train this algorithm since, typically, deep-learning algorithms 
equire more training data than ML ones. It is worth noting that the
odel is trained using a balanced data set but is it then used to
ake predictions on data that has an unequal distribution of classes.
articular attention must be paid to this when applying the classifier

o real distributions (see Section 4 ). 
The balanced data set (before augmentation) has 9046 sources 

n each class. Class S corresponds to 8189 random single sources
nd 857 blended PyBDSF sources, which were included in the data 
et class because even if they are rare, they will be part of the real
ata sets, and thus, they allow the classifier to train using a wider
ariety of single sources. Class MC consists of 9046 multicomponent 
yBDSFs , which is reduced from the 9072 sources that required 
omponent association, as 26 sources were both deblended and 
rouped with another PyBDSF source, and therefore were excluded 
ecause they belong to distinct classes. The total number of sources in 
he balanced data set before augmentation is 18 092, with the training
et corresponding to 12 664 sources (70 per cent) and the validation
nd test sets corresponding to 2714 sources each (15 per cent each). 

.4 Data set images 

he images used to create the data set are cutouts around the PyBDSF
ources centred on their right ascension and declination positions. 
hese were cut from the 58 LoTSS DR1 mosaics. 4 The DR1 mosaics
av e 1.5 arcsec pix el -1 , and the final images used are 128 × 128
ixels PNGs, corresponding to 192 × 192 arcsec. The images were, 
o we v er, e xtracted first as 256 × 256 pixel FITS files, which were
hen used for augmentation (including rotation – hence the larger size 
o a v oid empty regions in the corners after rotation; see Section 3.4
or details), application of sigma cuts, and combining the different 
hannels, before being cut into the final 128 × 128 pixel images. 
nitially, a default sigma clipping on a linear range between 1 σ
nd 30 σ was applied to the images. Different authors (e.g. Aniyan 
 Thorat 2017 ; Alhassan, Taylor & Vaccari 2018 ; Tang, Scaife &
eahy 2019 ; Mostert et al. 2022 ) have shown that the performance of
 lofar-surv e ys.org/dr1 \ release 

t
b  

i

 CNN model depends on the background noise in the input images.
hus, later, we will also investigate different sigma cuts that enhance 
xtended emission while simultaneously removing noise. In all cases, 
he PNG images were normalized after applying the sigma cuts, in
hich the values were scaled to a range of 0–1. This makes it easier

o create composite images and also reduces computational costs 
hen using a three-channel CNN. More details about pre-processing 

he images can be found in Section 3.1.2 . 
Although the entire source may occasionally (but rarely) extend 

utside the frame, the choice of an output image size of 128 × 128
ixels is a reasonable compromise. There are only 199 final associ-
ted LGZ sources in the sample for which the angular size is larger
han the picture frame. This represents only 6 per cent of the total
nal associated MC sources (3596 sources), and even for these, each
f the source components is significantly smaller than the image 
ize chosen. In all these cases, there is still a substantial quantity
f information within the frame. The objective is only to determine
hether or not the source is an MC, not to identify all of the source

omponents. Therefore, a source being larger than the image does not
epresent an issue, as it would potentially be if we were conducting
asks such as source association, morphology classification, or host 
alaxy cross-matching using ML. Furthermore, the classifier does 
ot necessarily need the image of the entire source to determine that
t requires association, with the extended emission being a better 
ndicator. 

 CONSTRUCTI NG  T H E  M U LTI M O DA L  M O D E L  

n this section, we conduct experiments that will ultimately lead to the 
doption of a final model. A CNN is investigated in Section 3.1 where
 baseline architecture (Section 3.1.1 ) is established to allow for the
 v aluation of changes made to various aspects of the model, with
urther experiments examining image production (Section 3.1.2 ). 
he extension to an MM architecture is explained in Section 3.2 ,
ith adjustments made to the training set described in Section 3.3

nd augmentation in Section 3.4 . Modifications to model hyperpa- 
ameters are described in the optimization stage (Section 3.5 ); and the
nal model performance is presented in Section 3.6 . The e v aluation
riteria used for assessing the performance of the model are explained
n Appendix A . 

.1 The convolutional neural network 

.1.1 Establishing a baseline model 

n order to establish a baseline model, we assessed different CNN that
ad been used for radio morphology classification. These correspond 
o models developed mainly for classifying sources into FRI, FRII, 
ent-tailed, and compact sources (Aniyan & Thorat 2017 ; Alhassan 
t al. 2018 ; Becker et al. 2021 ), but also to differentiate between
ompact and extended sources (Lukic et al. 2018 ). These models
re expected to provide a good starting point for the experiments.
ll of the models we are testing here were originally developed 

o work with VLA FIRST data. The higher radio frequency of
IRST (1.4 GHz) results in distinct regions of the observed galaxies
eing more prominent in FIRST images compared to the ones in the
OFAR surv e ys. P articularly, FIRST emphasizes galaxy cores and
otspots, whereas LoTSS (144 MHz) provides a broader picture of 
he source, highlighting much more extended emission. Ho we ver, 
his also suggests that the architectures under consideration may 
e suitable for the current task, as the y hav e demonstrated efficacy
n identifying sources that appear as separated radio emission (e.g. 
MNRAS 532, 3322–3340 (2024) 
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Figure 1. Performance of four different CNN architectures that were used 
to establish the baseline model. All architectures were ran using the same set 
of hyperparameters (here showing training for 50 epochs), which were found 
to be the most suitable ones regardless of the CNN used (see the text for a 
discussion). 

t  

l  

w  

f  

r
 

a  

w  

r  

s  

a  

u  

a  

d  

t  

o  

v  

c  

l  

d
 

m  

s  

w  

m  

u  

t  

h  

0  

b  

H  

8  

t  

t
 

v  

o  

m  

d  

t  

(  

L  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/3/3322/7691277 by U
niversity of H

ertfordshire user on 07 O
ctober 2024
RII) in particular for the FIRST data and therefore may be useful
o identify MC sources. 

Here, we provide an overview of the models we have chosen to
nvestigate and any modifications we have made to the architectures
nd hyperparameters. The corresponding publications (Aniyan &
horat 2017 ; Alhassan et al. 2018 ; Lukic et al. 2018 ; Becker et al.
021 ) provide detailed descriptions and illustrations of the structure
f each model. All tested architectures have a set of convolutional
ayers, typically each made up of a convolutional stage (where feature
xtraction is performed, outputting feature maps), a detection stage
based on a non-linear acti v ation function, commonly a rectified
inear unit, or ReLU), and a pooling stage (which subsamples the
eature maps, reducing their spatial size, in this case by using
axpooling, where the maximum values are retained). Following

his, the architectures have a final 1 to 3 dense layers with dropout
a regularization technique that corresponds to removing random
eurons), followed by a softmax layer (which transforms the outputs
nto probabilities). A kernel is applied to the input image and the
eature maps during the convolutional and pooling operations. This
perates as a sliding window, computing dot products between the
ernel values and the values of the pixels of the images and feature
aps in the convolutional stages and retaining specific values in the

ooling stage (e.g. the maximum v alue). Dif ferent strides can be
pplied, where the stride corresponds to how many steps the kernel
hifts in the horizontal and vertical directions after each computation.
maller kernels and strides mean tighter scanning, possibly enabling
ore details to be extracted from the images. These filters are

earnable matrices that specialize in detecting different features, with
 higher number of filters having the potential to identify increasingly
omplex and intricate patterns. 

Both Alhassan et al. ( 2018 ) and Lukic et al. ( 2018 ) have very
imilar architectures, with only three convolutional layers and one or
wo final dense layers, respectively, with 50 per cent dropout before
he softmax layer. Lukic et al. ( 2018 ) use small sets of filters (16,
2, and 64), while Alhassan et al. ( 2018 ) use (32, 64, and 94).
lhassan et al. ( 2018 ) use kernels that are typically smaller and
ave smaller strides, while Lukic et al. ( 2018 ) use typically higher
alues for the kernel sizes and strides, in particular, in the first layers.
urthermore, Lukic et al. ( 2018 ) use two final dense layers of 1024
eurons each, while Alhassan et al. ( 2018 ) use a single layer with
nly 194 neurons. Both models require a high number of epochs to
onverge. The Alhassan et al. ( 2018 ) classifier was trained for 400
pochs and Lukic et al. ( 2018 ) for 100 epochs. 

On the other hand, Aniyan & Thorat ( 2017 ) present a deeper
and wider) network, resulting in a much heavier model than the
revious two architectures. With five convolutional layers (not all
ith a pooling stage), set for a large number of filters in each layer

96, 256, 384, 384, and 256), three final wide dense layers with
096 neurons each, and 50 per cent dropout, this model has a layer
ormalization after the ReLU on each convolutional layer. The kernel
izes are larger in the first layers, with a stride of 1. For all of these
easons, this is an e xpensiv e model to run. The authors, when training
t, ran it only for 30 epochs. In order to decrease memory problems,
e had to make major changes to this architecture in particular. The
lter sizes were reduced to (16, 32, 64, 64, and 32) and the three-
ense layers to 1024 neurons each. Furthermore, the normalization
ayer had to be remo v ed because it was making the model unstable
nd leading to o v erfitting. 

The Becker et al. ( 2021 ) model has a much deeper architecture but
 lighter one as well. This model has 11 convolutional layers but only
ses pooling every 3 (or 2) layers. It has a small number of filters
n each set of three consecutive layers (32, 64, and 128) and 256 on
NRAS 532, 3322–3340 (2024) 
he two final layers, with a 25 per cent dropout after the maxpooling
ayer. Kernels have a general size of 3 and a stride of 1. It finishes
ith only one dense layer of 500 neurons and 50 per cent dropout,

ollowed by a softmax. Most importantly, this original architecture
equired only 16 epochs to be trained. 

We use a single-channel CNN to explore the different architectures
nd establish the baseline model. The model inputs radio images
ith a size of 128 × 128 pixels, which went through a linear cut

anging from 1 σ to 30 σ . No data augmentation was used at this
tage. The architectures were implemented with very few changes
nd assumptions, with only the Aniyan & Thorat ( 2017 ) architecture
ndergoing significant modifications, as e xplained abo v e. Minor
djustments had to be made, particularly in cases where not enough
etails were provided. It was assumed that the stride corresponded
o the size of the kernel, and padding was chosen to preserve the size
f the feature maps (padding is used to add extra pixels with zero
alues to the border of the input image and feature maps before the
onvolutions). In cases where the specific location for the dropout
ayer was not explicitly indicated, dropout was performed after the
ense layer, as per the original paper from Hinton et al. ( 2012 ). 
The batch size, learning rate, optimizer algorithm, batch nor-
alization, and number of epochs were initially tested to find a

uitable set of hyperparameters which allowed to compare the models
ithout stability problems (huge variations across epochs) and
assiv e o v erfitting issues. We tested each architecture individually

sing its original hyperparameters, but the classifiers o v erfitted or
he performance w as w orse in general. We found that the optimal
yperparameters for the four architectures were a learning rate of
.0001, no batch normalization (in architectures that applied it), a
atch size of 32, and the use of the RMSprop optimizer (Tieleman &
inton 2012 ). All the models were able to converge and show above
5 per cent accuracy after about 30 epochs of training. It was observed
hat the choice of these hyperparameters did not depend strongly on
he architecture. We set these as the baseline hyperparameters. 

The performance of the different architectures on the training and
alidation sets is compared in Fig. 1 (see Appendix A for a definition
f the performance metrics used). Even with small modifications
ade to the network and hyperparameters (for example, by intro-

ucing batch normalization after each convolution layer or changing
he learning rate to 0.001), the performance of the Alhassan et al.
 2018 ) classifier is the weakest (reaching 85 per cent accuracy). The
ukic et al. ( 2018 ) network performs about 2 per cent better and
enefits from using a larger batch size and a smaller learning rate,
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hich reduces the o v erfitting of the network when compared to
sing its original hyperparameters. Changes to the Aniyan & Thorat 
 2017 ) architecture resulted in good performance for the model, 
eaching accuracy values above 90 per cent, but the model shows
ome architectural issues, resulting in high training costs and also 
nstabilities. F or e xample, with the original learning rate of 0.01, the
etw ork w as not ev en able to conv erge. Ev en though Fig. 1 suggests
hat it is possible that the model has the potential to impro v e its
erformance after more training, for the reasons mentioned (and also 
ecause there is a better alternative architecture), this model was 
xcluded from further consideration. The model based on the Becker 
t al. ( 2021 ) architecture reaches accuracy values on both the training
nd validation sets abo v e 92 per cent, and reducing the learning rate
eads to even better results than the original one of 0.001. 

Overall, it is evident that, after establishing the baseline hyperpa- 
ameters, the deeper architectures show superior performance for 
he identification of multicomponent sources. The results of the 
odel based on the Becker et al. ( 2021 ) architecture show the best

erformance, with similar values on both training and validation sets 
nd high stability. This architecture performs well, converges rapidly, 
nd trains smoothly. Therefore, it was selected as the baseline model. 

The hyperparameter values established for the baseline model will 
e the ones used throughout the experiments, unless stated otherwise, 
or example, when augmentation is introduced. The model which 
ill be finally adopted is a refinement of this baseline model. The
rocess of refinement and optimization of both the hyperparameters 
nd the architecture is described in Section 3.5 , which also contains
 diagram illustrating the architecture of the final model. 

.1.2 Optimizing ima g e production 

oTSS original images sho w dif ferences in noise levels depending 
n the sky regions being observed, and also sho w dif ferent contrast
anges with very bright sources or others with weak diffuse emission.

e use sigma clipping for cleaning and removing noise from the 
mages. This was done using Montage, 5 an astronomical image 

osaic engine from NASA. The sigma-clipping procedure discards 
alues (i.e. sets them to the minimum or maximum value) that are
ither abo v e or belo w a defined standard de viation from the mean. 

As baseline, we used image cuts of 1 σ–30 σ on a linear scale.
e also tested using sigma cuts of 1 σ–30 σ and 1 σ–200 σ in the

ogarithmic scale, and 3 σ and 5 σ cuts. In the wide range examples
1 σ–200 σ and 1 σ–30 σ ), the lower limit corresponds to 1 σ , while
he upper limit corresponds to 200 σ and 30 σ , respectively, with a
tretch applied on a logarithmic scale. The 3 σ (or 5 σ ) cut sets all
 alues belo w 3 σ (or 5 σ ) to zero and sets v alues abo v e that lev el
o unity. Fig. 2 compares these dif ferent sigma-clipping le vels for
ome example sources. We can see that when using 1 σ–200 σ , the
right features and the diffuse emission of the source have been 
nhanced. Additionally, the extended emission has been smoothed 
ut, and the background noise has been reduced, making it more 
onsistent across images. The 3 σ cut displays the source silhouette 
n its entirety. The 1 σ–30 σ emphasizes the extended emission while 
aintaining a consistent level of noise across all images. 
Fig. 3 compares the performance of the model for different options 

f the sigma-clipping, on both the training and validation sets. 
he baseline resulted in a good performance, and the model using

he images created using 1 σ–200 σ logarithmic scale have a very 
imilar performance with a slight impro v ement, in particular, on the
 montage.ipac.caltech.edu 

S  

T  

c

alidation set. Using the 1 σ–30 σ stretch in the log scale outperforms
he one in the linear scale in both the training and validation sets.
o we ver, it requires attention for a higher number of epochs since

t tends to o v erfit after around 20 epochs of training. The 3 σ cut
hows good performance on the validation set but only up to around
5 epochs of training, after which the results start to get unstable.
ven though this is the least reliable of the three channels that were
ltimately used, it is able to provide some helpful information (as can
e seen from the one-channel network alone). The 5 σ cut performs
oorly in terms of o v erall accurac y and o v erfitting, and hence it
as excluded. This may be due to a significant loss of information
ecause the majority of extended emission will be below 5 σ and
herefore will be rejected. 

The CNN model can be designed to process a three-channel input
mage. Since the performance of the model is different with different
igma cut images, we can combine the most suitable sigma cuts for
he classifier (e.g. Mostert et al. 2022 ). 

The three adopted channels are the 1 σ–200 σ and 1 σ–30 σ , both
n logarithmic scale, and the 3 σ cut. These were chosen as they were
he best-performing individual channels. Each one of them provides 
ubtly different information, and by combining the information 
rom the three channels we provide more details for the training
rocess. The combination of the three images provides an impro v ed
erformance on the training sample, although the performance on 
he validation sample is comparable to the one-channel model. This 
ndicates an increased risk of o v erfitting, in particular for higher
umber of epochs. This aspect will be mitigated later by data
ugmentation and additional adjustments to the network; we show 

n Section 3.2 that in the final architecture, the three-channel CNN
utperforms the one-channel version. 

.2 Multimodal model 

e created a fusion classifier (a model that can integrate multiple data 
ources or modalities), by combining the CNN with an ANN, thus
ombining images and tabular data into a single multimodal (MM) 
rchitecture. Each PyBDSF source in the data set is processed, with
adio images being fed into the CNN and features into the ANN.
his approach enables an ef fecti ve combination of different types of
ata, thereby further improving the performance of the model. In our
pproach, we adopt late fusion (i.e. the process of combining the input
ata), where the outputs from the CNN and the ANN are concatenated 
nd then passed through two dense fully connected layers followed by 
n acti v ation softmax function, generating binary predictions. Other 
pproaches exist, such as early fusion, hybrid fusion (combining 
arly and late fusion), and mid-fusion (e.g. transfer module to fuse
NNs at different stages of the architecture; Vaezi Joze et al. 2019 ).
here is a debate regarding the impact of fusion techniques on MM
odel performance, but we do not explore this and focus solely on

ate fusion in this work. 
It should be noted that retrieving the original input from the tabular

ata features is not feasible since these are only properties based on
 combination of Gaussian models; hence, they do not fully describe
he original image. Ho we ver, the tabular features can benefit the MM
odel by helping to identify characteristics in the images that are
ore likely to have astrophysical rele v ance, as well as bringing in

nformation about the multiwavelength data that goes beyond just 
he radio images. 

The CNN architecture and hyperparameters used are as defined in 
ection 3.1.1 , with the three-channel input defined in Section 3.1.2 .
he ANN used for running the experiments is an ANN with two fully
onnected layers, each with 64 neurons. The model is optimized 
MNRAS 532, 3322–3340 (2024) 
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Figure 2. Sigma-clipping image examples. The left column shows the original (not scaled) images directly extracted from the LoTSS DR1 mosaics, with 
indicated peak flux SNR. The three middle columns correspond to individual sigma cuts, with black indicating the lower limit of the range and white indicating 
the upper limit. The right column is a composite image made up of the three individual ones, which is finally used in the three-channel CNN. The first four 
rows correspond to multicomponent sources. The fifth and sixth rows show a blended source and a single-component source, respectively. In the top row, the 
PyBDSF source corresponds to a lobe and the entire source is not within the frame; ho we ver, it is clear that enough source is present for the classifier to identify 
this as part of an MC source, justifying our choice of 128 × 128 pixel image sizes even for the small fraction of sources that are larger than this. 
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t later stages, albeit with minimal modifications, as detailed in
ection 3.6 . The initial set of features (baseline features) are the
ajor and minor axes, total and peak flux, and the total number of
aussians that make up a PyBDSF source, which are the same as

hose used in the baseline of Alegre et al. ( 2022 ). 
Fig. 4 compares the accuracy, precision and recall of different

xperiments (see Appendix A for a description of these ML perfor-
NRAS 532, 3322–3340 (2024) 
ance metrics). As can be seen, the MM model with baseline features
hows an increment in the performance values to the CNN alone by
bout 0.5 per cent in accuracy and about 1 per cent in recall, with
egligible effect on precision. It also shows that the performance of
ecall is superior to that of precision; this is a fa v ourable differential,
ince the recall (representing the percentage of actual MC sources
orrectly identified by the model) is the parameter we aim to optimize
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Figure 3. Experiments using the baseline architecture with one channel and different individual sigma cuts (top row), and the final adopted three channels, 
which combines the three individual sigma cuts (bottom panel). In each plot, the dark blue lines represent the baseline model with 1 σ–30 σ in linear scale, which 
is compared to the performance of the model using different sigma cuts, both on the training and on the validation set. 

Figure 4. Main set of experiments, with values for accuracy on the training (red x) and validation (blue circles) sets, with precision (green stars) and recall 
(yellow triangles) for class MC also shown for the validation set; in each case, the plotted points correspond to different epochs where the training and validation 
sets show the best performance possible for similar results on both sets (i.e. training was stopped before significant signs of o v erfitting). The F1-score (not 
displayed) is consistent with the accuracy values within 10 −4 . The CNN one channel corresponds to the baseline model, for which the performance for all the 
metrics on the training and validation sets is very similar. The introduction of a three-channel CNN (CNN three channels) and the modification of the architecture 
into an MM model (MM three chan. baseline feat.) helped to greatly increase the recall. The introduction of more features, independently, all helped to impro v e 
the performance. Plotted points correspond to the baseline features (MM three chan. baseline feat.), only the optical features (MM three chan. optical feat.), 
and the 18 features used in the GBC model (MM three chan. GBC feat.) from Alegre et al. ( 2022 ). The best results were obtained from combining the 18 GBC 

features with additional information about the first, second, and third NNs (MM three chan. Three NNs all feat.) shown as the shaded model. Overall, all the 
metrics impro v ed from around 92–96 per cent as a result of adopting an MM model and adding more features. For comparison, also shown are the MM model 
using only one channel (MM one chan. three NNs, all feat.), and the neural network alone (ANN only three NNs, all feat.), both of them showing inferior 
performance. 
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Table 1. Baseline, optical, the set of 18 final features from the Alegre et 
al. ( 2022 ) gradient boosting classifier model (GBC), and the full set of 32 
features, which include the GBC features and the first three nearest neighbours 
(three NNs). 

Features Definition and origin 

Baseline 
Maj Source major axis (arcsec) a 

Min Source minor axis (arcsec) a 

Total Flux Source integrated flux density (mJy) a 

Peak Flux Source peak flux density (mJy bm 

-1 ) a 

log n gauss No. Gaussians that compose a Source b 

Optical 
log lr tlv Log 10 (source LR value match/ L thr ) c 

lr dist Distance to the LR ID match (arcsec) c 

log gauss lr tlv Log 10 (Gaussian LR/ L thr ) c 

gauss lr dist Distance to the LR ID match (arcsec) c 

log highest lr tlv Log 10 (source or Gaussian LR/ L thr ) c 

log NN lr tlv Log 10 (LR value of the NN/ L thr ) c 

NN lr dist Distance to the LR ID match (arcsec) c 

GBC (baseline and optical) 
gauss maj Gaussian major axis (arcsec) b 

gauss min Gaussian minor axis (arcsec) b 

gauss flux ratio Gaussian/source flux ratio a , b 

NN 45 No. of sources within 45 arcsec a 

NN dist Distance to the NN (arcsec) a 

NN flux ratio NN flux/source flux density ratio a 

Nearest neighbour (three NNs) 
(All feat. replacing italic ones) 
NN Maj (x3) NNs major axis (arcsec) a 

NN Min (x3) NNs minor axis (arcsec) a 

NN log lr tlv (x3) Log 10 (LR value match/ L thr ) c 

NN lr dist (x3) Distance to the LR ID match (arcsec) c 

NN dist (x3) Distance to the NNs (arcsec) a 

NN flux ratio (x3) NNs flux/source flux density ratio a 

a PyBDSF radio source catalogue (Shimwell et al. 2019 ). 
b PyBDSF Gaussian component catalogue (Shimwell et al. 2019 ). 
c Gaussian and PyBDSF LR catalogues (Williams et al. 2019 ). Notes. The 
features listed in italic are remo v ed (to a v oid duplication) when using the 32 
features. The LR features were scaled using the LoTSS DR1 threshold LR 

value of L thr = 0.639. Sources refer to PyBDSF sources, for which the full 
set of feature values are provided in the online material. The features were 
computed using the LoTSS DR1 PyBDSF source and Gaussian catalogues, 
as well as the LR values. 
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 v er precision (which reflects the percentage of sources classified as
C sources by the model that are indeed MC sources). This higher

alue for recall o v er precision was already seen in the three-channel
NN, where the three-channel CNN had a ≈2 per cent higher recall

han the one-channel CNN, despite a slightly lower o v erall accurac y.
Different sets of features were then tested independently, building

pon the features developed by Alegre et al. ( 2022 ). See Table 1
or details of the different features and Fig. 4 for a summary of the
xperiments. The features denoted with ‘lr’ on Table 1 are based on
he LR v alues deri ved from Williams et al. ( 2019 ) and correspond
o the likelihood of a LoTSS radio source having a true optical
alaxy counterpart (Pan-STARRS, if available, or otherwise infrared
ISE sources). The LR is a statistical technique that has long been

sed to automatically cross-match sources at different wavelengths
e.g. Sutherland & Saunders 1992 ), in particular, those with longer
avelengths for which the positional uncertainty is greater due to

he large beam size of the telescopes, resulting in multiple possible
ounterparts. The LR assesses the probability of a galaxy having a
rue radio counterpart based on the positional uncertainty of radio
NRAS 532, 3322–3340 (2024) 
ources and both the magnitude distributions of the true counterparts
nd the source counts of the background sources. 

First, we considered only optical features; these comprise the log
f the LR relative to the threshold value (tlv; that is, the LR divided
y the lowest LR value at which a cross-match is considered to be
enuine) and the distance to the highest LR counterpart, for both
he source, the first nearest neighbour (NN), and the Gaussian with
he highest LR value, as well as the highest log LR tlv between
he source and the Gaussian. Using only optical features resulted
n an increase in precision, a decrease in recall, and an o v erall
ncrease in accuracy to about 93 and 95 per cent accuracy on the
alidation and training sets, respectively . Secondly , using the set of
8 final features defined in Alegre et al. ( 2022 ) improve the recall
nd leads to similar accuracy values of 94 per cent on both training
nd validation sets. The NNs have been shown to impro v e the model
f Alegre et al. ( 2022 ), as they provide useful information about
he source surroundings. Therefore, we expand this to incorporate
dditional NNs, in particular, the second and third NNs; for each
ne, the set of features includes the minor and major axes, the log
f the LR tlv, the LR distance, the distance to the NNs and the
ux ratio between the NNs and the source. Adding this information
bout the second and third NNs to the previous 18 features pro v ed
o significantly impro v e all the metrics by almost 2 per cent each
see Fig. 4 ). Experiments using more NNs, such as including the
ourth and fifth, did not rev eal an y further impro v ements. The results
how that the NNs feature information is essential to identifying MC
ources since it leads not only to better o v erall model performance but
lso to higher values of recall. Additional experiments on features,
uch as feature scaling or replacing measured axis sizes with their
econvolved equi v alents, failed to produce an y further impro v ement
o the model (or decreased performance) and so are not considered
urther. As a final test of the performance of our MM model, we
how in Fig. 4 also the performance of the model with the full
et of features, but including only one channel of input image for
he CNN (the baseline 1–30 σ cut). This shows the performance in
ll metrics drops by about 1 per cent compared to the three-channel
NN, justifying our decision to use the three-channel model. We also

how the performance of the ANN alone (i.e. without the CNN). Like
he CNN alone, this achieves an o v erall accurac y on the validation
et of around 92 per cent, considerably below that of the MM model.

.3 Remo v al of small isolated single Gaussian (SISG) sources 

n this section, a particular set of sources [hereafter referred to as
mall isolated single Gaussian (SISG) sources] is remo v ed from the
ata set in order to e v aluate whether it results in any improvements in
he performance of the classifier. These correspond to small (major
xis smaller than 15 arcsec), isolated (no NNs within a 45 arcsec
adius), and single Gaussian PyBDSF sources, which were not cross-
atched with a large optical ID. The SISG sources correspond to
 large proportion of the sources (186 371 PyBDSF sources, or
7.7 per cent of the full LoTSS DR1 sample, excluding artefacts), for
hich the classifier from Alegre et al. ( 2022 ) achieved 99.98 per cent

ccuracy. The vast majority of the sources in this group can be
ross-matched using the LR method. It is characterized by single-
omponent sources, with the exception of 133 components (the
ores) of MC sources, and 4 additional single-component sources
or which the LR method gave an incorrect ID. This group of sources
hows broadly uniform properties, and they do not add diversified
nformation about class S. Excluding these objects from the training
ample therefore allows the classifier to be exposed to a wider range
f class S sources. 
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Figure 5. Example of the augmentation process, where sources undergo 
random rotations and horizontal and vertical flips. This is done after sigma 
clipping (1 σ–30 σ linear in this example) on 256 × 256 pixel images before 
cropping them to 128 × 128 pixels. 
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The SISG sources are the type of sources that can be processed
ven without a classifier since, by their characteristics, they can be 
ross-matched by LR methods. Additionally, they are also the ones 
he classifier would easily identify as single-component sources and 
herefore are likely to get the correct classification. The SISG sources
ere, therefore, remo v ed from training and testing on a balanced
ata set, and they are assigned automatically to class S if they are
resented in the data. 6 

When removing the SISG from the training set, the model drops in
erformance on the training set (about 1–1.5 per cent worse ability to
istinguish between the classes). The o v erall decrease in performance 
an be attributed to the exclusion of the easily classifiable 60 per cent
f the single-component sources. With SISG remo v ed from class S,
his class is now characterized by sources that are more complex 
i.e. this class has a higher number of sources that are not isolated,
lustered, and composed by multiple Gaussians) and therefore the 
erformance in class S drops. But at the same time class S now
omprises elements that are more rele v ant for the classification. 
mportantly, if the model is applied to the full imbalanced data set, it
erforms better (especially on class S) than the model trained on all
ources (see Section 4 ). These results indicate that exclusion of the
ISG sources impro v es the o v erall performance on the full data set.
his strategy also reduces computational costs since it eliminates the 
eed to process more than 50 per cent of the data, which is particularly
mportant when processing large samples. 

.4 Augmentation 

hen removing the set of SISG sources from the data set, the
odel tends to o v erfit. In order to minimize this issue, we use

ata augmentation by increasing the number of examples of the 
inority class. Data augmentation is an artificial way of enlarging 

he training set by creating alternate samples of the original data. 
 common approach to achieve this is by generating synthetic 

xamples, typically through the application of geometric or colour 
ransformations (see Shorten & Khoshgoftaar 2019 , for a re vie w).
his technique is commonly used in deep-learning models, as it 

s often necessary to a v oid o v erfitting since these models require
 higher number of examples to be trained (e.g. Goodfellow et al.
016 ). In astronomy, Dieleman, Willett & Dambre ( 2015 ) applied
ugmentation by using geometric transformations to prevent a CNN 

odel from learning specific orientations of galaxies in optical 
mages. Assuring the models are rotational invariant is now a 
ommon practice for astronomy applications (see also Appendix B ). 
n radio morphology classification, where there are generally 2–5 
lasses but sometimes as few as 100 objects per class (e.g. Aniyan
 Thorat 2017 ), augmentation is commonly achieved by massive 
 v ersampling, for e xample, applying multiple rotational and flipping 
ngles. Maslej-Kre ̌s ̌n ́akov ́a et al. ( 2021 ) demonstrated that the use
f both vertical and horizontal flips increased accuracy by roughly 
0 per cent, but improper augmentation operations, such as shifting 
nd zooming, degraded their CNN model. 

The augmentation procedure was done as follows: having cut 
56 × 256 pixel FITS images from the original LoTSS DR1 mosaics 
nd applied different sigma clipping thresholds, we then performed 
ugmentation on the minority class (class MC). We rotated each 
mage around the PyBDSF position at the centre of the frame by
 random angle between 0 and 2 π and applied random (true or
 The SISG sources are indicated in the table provided as complementary 
nline material. 

7

f
i
t

alse) vertical and/or horizontal flipping. The transformed images 
ere then cut to their final sizes of 128 × 128 pixels (see Fig. 5

or an example). By rotating the images prior to reducing their size,
e a v oid the issue of empty corners created by the rotation; this
 v oids the need for any interpolation to fill in the empty regions
nd eliminates the possibility of the classifier correlating such corner 
ffects to the augmented class. 

The majority of the sources in LoTSS correspond to sources 
elonging to class S. The training set for class S was created by
andomly undersampling single-component sources and therefore 
id not require any type of augmentation. The blended sources, 
hich are rare, were also not augmented. They were added up to

he undersampled single-component sources in order to ensure the 
ame number of sources as in class MC. This allows for the creation
f a balanced data set for e v aluating the results. Even though balanced
ata sets are not typical, balancing the data set is necessary for the
etwork to ef fecti vely learn the characteristics of the sources in the
ifferent classes. 
The augmentation process is e xclusiv ely applied to the training

et and only to the minority class, as mentioned previously. We
xperimented with increasing the number of sources in the data 
et by factors of 2, 3, and 5 relative to the original data set. The
alidation and test sets remained unaffected and contained al w ays the
ame amount of sources, regardless of augmentation. The data sets 
ere constructed using the same sources, but for each augmentation 

actor, new single-component sources from the majority class were 
dded. When using the augmented data sets, it was necessary to
djust the learning rate. We found that augmenting the data set
hree times the original size was sufficient to prevent overfitting 
hile achieving good results, as we can see from Fig. 6 . On three

imes, the size of training set, the number of sources in class MC
s 18 789 MC sources, which is three times the number of MC
ources in the original data set (excluding any MC source for which
t least one the source components was in the SISG group). The
umber of sources in class S is also 18 789, but in this case, these
orrespond to 18 189 single-component sources and 600 blended 
ources. 7 

In the context of the MM model, it was necessary to replicate the
eature values for every augmented image, ensuring that they align 
ith each respective instance. Furthermore, we also ensured that the 
ata set was properly shuffled when training the classifier. 
MNRAS 532, 3322–3340 (2024) 

 Information about the data set splitting is provided in the online table. The 
ollo wing v alues are assigned to sources associated with each set of data (as 
ndicated by the column mc dl data set): none of the sets (0), training set (1), 
est set (2), and validation set (3). 
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Figure 6. The figure shows the effect of augmentation when training with 
the SISG sources remo v ed from the data set. The coloured lines represent the 
learning curves for 30 epochs of training for illustration. The model trained 
with all types of sources achieves greater accuracy (yellow line), but this is 
also because the class S contains about 60 per cent of sources that are easy 
to classify; see the main text for a discussion. The performance drops and 
shows major discrepancies on the training and validation sets when the SISG 

sources are remo v ed (blue line), but augmentation helps to compensate for 
this effect (red line). 
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Figure 7. Learning curve for the final adopted model after optimization. The 
model reaches about 91 per cent accuracy after only 20 epochs of training on 
both the training and validation sets. Training for longer gives about 1 per cent 
impro v ement to 92 per cent accuracy on the validation set. There is a higher 
difference in the performance on the training set with an increasing number 
of epochs, which is a clear indication that the model may be o v erfitting. 
Ho we ver, as we can see from Table 2 , it is worth training for longer since 
the performance on both validation and test sets ends up being very similar, 
and so training for longer helps impro v e the model by about 1 per cent in 
accuracy. We defined epoch 64, which was selected from the 60–70 range 
of epochs where the performance seems to stabilize. The accuracy reaches a 
plateau on the validation set and does not seem to impro v e more than about 
92 per cent. 
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.5 Model optimization and final ar chitectur e adopted 

n order to investigate if it is possible to optimize the model, different
spects were analysed. These comprise architectural variations and
yperparameter adjustments. Changes to the structure included
nvestigating the ANN width and depth (by varying the number
f layers and changing the number of neurons in each layer), the
emoval of layers in the CNN, and the presence or absence of layer
ormalization or batch normalization. Adding layers to the ANN
art of the model, specifically ranging from 2 to 5 layers, did not
esult in impro v ements. On the other hand, changing the number of
idden neurons in each layer (64, 128, 512, and 256) showed that
sing 256 neurons resulted in higher performance (with a further
eduction in the dropout rate from 50 to 25 per cent). As a result,
he ANN part of the model adopted is a two-layer ANN containing
56 neurons each. Regarding the CNN module, the use of batch
ormalization following each convolutional or dense layer, either
s a substitute or in combination with dropout, led to a decline in
erformance. Furthermore, we investigated reducing the length of
he CNN. Ho we v er, it was observ ed that the elimination of the first
ayer led to o v erfitting and a decrease in o v erall performance. 

Furthermore, we e xplored alternativ e hyperparameters besides the
aseline ones defined in Section 3.1.1 . One of the experiments
nvolved testing different learning rates, including ones with both
tatic and variable rates, and using alternative learning optimizers
hich iteratively adjust the weights of the networks and/or the

earning rate of the training to find the minimum error for a
ertain problem. Using the Adam optimizer (Kingma & Ba 2014 )
ielded inferior performance, while using stochastic gradient descent
SGD; e.g. Bottou 2010 ), particularly when used with momentum,
emonstrated superior performance. The best results were achieved
ith an SGD, which is an optimizer that adapts the weights but not the

earning rate. The weights were updated using Nestrov momentum
Sutskever et al. 2013 ). Different batch sizes were evaluated since
maller batch sizes tend to result in higher performance, although
he extent of their ef fecti veness depends on the GPU being used
ince very small batch sizes may cause memory problems. Different
alues of batch sizes were assessed, including 16, 32, and 128.
esults were indeed better for smaller batches, and 32 was chosen
NRAS 532, 3322–3340 (2024) 
s the best without massive computational problems. Additionally,
he optimization process involved re vie wing the number of training
pochs and eventual early stopping. Training the model for a higher
umber of epochs (more than 50) resulted in accuracy in the
alidation set abo v e 92 per cent, with no significant differences in
erformance on the training set, as can be seen from Fig. 7 . We
dentified an interval of 10 epochs, ranging from the 60th to the
0th epoch, which led to the most fa v ourable results. These epochs
how strong performance and smaller o v erfitting, with a discrepancy
etween the validation and training sets of less than 1.5 per cent. It
as also observed that training below this range leads to a decline in
erformance, with accuracy dropping below 92 per cent. The chosen
poch for stopping training was epoch 64, because this results in
nly a minor difference of 1.083 per cent between the training and
alidation sets. This results in a training accuracy of 93.6 per cent
nd a validation accuracy of 92.5 per cent. 

Fig. 8 provides a schematic representation of the adopted archi-
ecture and outlines the steps taken to achieve the final model. These
omprise (1) building the data set, (2) creating the CNN, (3) and
he ANN modules, and (4) assembling the MM model (including
ptimization). The model inputs a three-channel radio image into a
our-block CNN and a set of features into a two-layer ANN with
56 neurons each. Each convolutional layer has a kernel of 3 × 3,
adding of 1, and stride of 1 (with the exception of the first layer of
he first two blocks of the CNN, which have a stride of 2), followed
y a ReLU acti v ation function. The maxpooling layer has a kernel
ize of 2 × 2, a stride of 1, and padding of 1. The outputs of the
NN are then concatenated with the outputs of the ANN and passed

hrough a set of two dense layers with 64 neurons each before being
ed into a softmax function, which outputs a probability of the source
eing an MC source or not. The model was trained for 64 epochs with
 batch size of 32, an SGD optimizer with a 0.9 Nestrov momentum,
nd a learning rate of 0.0001 without decay. The number of filters in
he convolutional layer is indicated in the figure, as is the amount of
ropout applied. 
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Building the dataset 
1. Selecting LoTSS DR1 for the 

training and validation samples
2. Using previous visual classification 

to create the ML classes (multi-
component vs single-component)

3. Balancing the dataset through 
undersampling

Multi-modal model 
(Adopted architecture)

Creating the CNN module 
1. Extracting baseline images 
2. Testing literature architectures and 

establishing Becker et al. (2021) 
architecture as the baseline model 

3. Optimising image production 
through di erent noise level cuts

4. Including a 3-channel CNN

Creating the ANN module 
1. Extracting radio features using the 

PyBDSF information
2. Establishing a baseline ANN

Assembling the multi-modal model
1. Combining the CNN and ANN 

modules using concatenation
2. Building and testing the catalogue 

features for the ANN using the 
PyBDSF, LR, Gaussian information 
and the neighbouring sources

3. Removing Small Isolated Single 
Gaussian sources (~60% data) to 
increase the performance  

4. Exploring di erent levels of 
augmentation on the minority class 
(MC sources) 

5. Optimising the model architecture 
by changing the depth and width of 
the CNN and ANN, and the model 
hyperparameters (learning rate, 
scheduler, batch size, number of 
training epochs)

1

2

3

4

Figure 8. Sequence of steps employed to construct the final model (left panel), and the adopted model architecture (right panel). It consists of an MM 

architecture, that inputs a three-channel image of 128 × 128 pixels into a four-block CNN [very similar to the Becker et al. ( 2021 ) architecture], and a set of 
features into a two-layer ANN. The model outputs the probability of a source being a multicomponent (class MC) or a single-component source (class S). More 
details about the architecture and the model hyperparameters can be found in the main text. 
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.6 Final model performance 

erformance metrics using the optimized model trained on the aug- 
ented, balanced data set are presented in Table 2 , for both the vali-

ation and test sets. The value adopted for the threshold is 0.5, which
s commonly used for balanced data sets, and the metrics used are
ccuracy, precision, recall, and F1-score, as explained in Appendix A . 
iven that the data set adopted for training the model was created with 

he SISG remo v ed, the results presented here are for a data set where
he SISG were remo v ed as well. As can be seen from the table, the
erformance on the validation and test sets is very similar across all
f the metrics, which shows the model is able to generalize to unseen 

ata. 
Overall, the model fa v ours recall on class MC (and precision on
lass S), which is the value we want to optimize. Our goal is to
aximize the number of correctly identified MC sources because it 
ill ensure accurate source flux measurements. If these are sent to
e cross-matched automatically without prior analysis, the source 
roperties will be wrong. At the same time, we want to keep the
umber of sources wrongly identified as MC sources low, either 
ecause the source component association algorithm may fail on 
hose and/or because we will have to analyse those sources and
anually grouping them and/or cross-matching. 
According to the values obtained for the recall on the validation

nd test sets, the model is able to identify 94 per cent of the sources
MNRAS 532, 3322–3340 (2024) 
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Table 2. Performance on a balanced data set for the final model with SISG 

sources remo v ed. 

Validation set Test set 

Accuracy 0.925 0.925 
F1-score MC 0.926 0.926 
F1-score S 0.924 0.923 
Precision MC 0.914 0.911 
Precision S 0.937 0.939 
Recall MC 0.939 0.941 
Recall S 0.911 0.908 

Notes. The validation and test sets each contain 2685 and 2683 sources, 
respectively, with an equal distribution of sources between class MC and 
class S as defined in Section 2.2 . The results show the accuracy, precision, 
recall, and F1-score for the 2 classes for a decision threshold of 0.5. 
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MC source but is actually a class S one (either a single-component source or 
a blended detection). TPs and TNs are sources that the model has correctly 
identified, corresponding to class MC and class S sources, respectively. 
9 In the online table, the column mc prediction 0.5 corresponds to the 
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hat are MC sources correctly. From the ones that are classified as
ot being MC sources, about 94 per cent as well are indeed not MC
ources, as per the precision obtained in class S for both validation
nd test sets. 

Despite the increased number of complex sources in the augmented
ata set (which is accompanied by the same number of single-
omponent sources), the classifier ef fecti vely dif ferentiates between
he various classes. This shows the ability of the classifier to handle
otation invariance since about 60 per cent of the sources in class

C suffered rotations and flippings. More details of testing the final
odel to ensure it has rotation/reflection symmetry, confirming that

t does, are discussed in Appendix B . 

 AP P LIC ATION  TO  T H E  FULL  LOTSS-DR1  

ATA  SET  

n this section, we apply the model to the full LoTSS DR1 data
et. The LoTSS data sets differ from the data used to train and test
he model both in terms of class balance and the type of sources
hat make up the classes, since the SISG sources were remo v ed
rom training. Class imbalance happens when one of the classes is
everely underrepresented, which is the case for MC sources in the
eal LoTSS data sets. The classes defined are highly imbalanced, with
ess than 3 per cent of the sources being MC sources. This effect is
ommonly counteracted with threshold moving, which can be done
y e v aluating the metrics we intend to impro v e and choosing a more
uitable threshold v alue. Ho we ver, it can be observed that the use
f a training set where the SISG sources are remo v ed already goes
ome way towards counterbalancing the class asymmetry, and with
ur desire to maximize recall on the MC class, suitable thresholds
re found to be around 0.5, as discussed next, which is the default
hreshold value for balanced data sets. 

.1 Performance as a function of the threshold 

n order to investigate if 0.5 is the appropriate value to discriminate
etween the classes, we examined the performance of the model on
he LoTSS DR1 sample using different threshold values. As outlined
n more detail by Alegre et al. ( 2022 ), corrections are applied in cases
here at least one of the source components is flagged as being an
C source: In these cases, although other components of the same
C source may not themselves be identified as MC (and hence

ncorrectly classified as FNs), 8 these components will be re-found as
NRAS 532, 3322–3340 (2024) 

 An FN source is a class MC PyBDSF source classified by the model 
ncorrectly as class S. A FP is a source that is incorrectly classified as an 

p
p
c
p

art of the examination of the identified MC component. To account
or this, following Alegre et al. ( 2022 ), we remo v e these sources
rom the FN category. 

Fig. 9 shows the results of applying the final model to the LoTSS
ata set. It can be seen that, in general, the model fa v ours recall
nstead of precision unless the threshold is abo v e 0.9. Recall is
he metric it was intended to prioritize and for which the results
how al w ays high values close to unity up to a threshold of 0.6.
or thresholds around 0.5, the number of FN reaches values around
00, and it is higher for higher thresholds, reaching values close to
00 at a threshold value of 0.62, which is where the number of TP
nd FP sources are counterbalanced. A 0.5 threshold shows a good
erformance for recall and does not compromise precision too much,
o this is the threshold value adopted. Depending on the choice of
he metrics one intends to optimize, a sensible value range would be
etween about 0.5 and 0.6 in order to reduce the number of FP, since
he true positive rate (TPR) decreases towards higher thresholds, as
t will be discussed next. 

In Fig. 10 , we show the receiver operating characteristic (ROC)
urve where the FPR corresponds to the proportion of class S sources
hat are incorrectly classified as being MC sources, and the TPR
orresponds to the proportion of MC sources that are correctly
dentified by the model (see Appendix A for performance metrics). 

The FPR values are al w ays very low, but this is because there are
any single-component sources in the data set and therefore many

ources that are TN. The adoption of a threshold value of 0.5 (blue
nd red crosses in Fig. 10 ) leads to an FPR of nearly 4 per cent,
orresponding to approximately 10 000 sources of class S. Only for
igher threshold values does the number of FP start to decrease
which can be seen in Fig. 9 ), and therefore the FPR decreases. This
hows that only for thresholds abo v e about 0.8 there is a significant
eduction in the number of FP sources and in the FPR. 

On the other hand, the TPR values are al w ays very high, decreasing
nly towards greater thresholds. This is because the number of TP is
oughly constant across thresholds (see Fig. 9 ) decreasing only for
hreshold values close to unity, and the number of FN is al w ays low
n comparison. Ho we ver, the FN counts start to increase for higher
hresholds, and therefore the TPR decreases. For the 50 per cent
hreshold adopted, this means that almost all the MC sources are
eing accurately identified, with only a very small number of MC
ources being missed by the model (see also Fig. 11 ). 

.2 Results at a threshold of 0.5 

sing the adopted threshold value of 0.5, 9 we analyse the perfor-
ance of the classifier across the entire data set and on different

ategories of sources. This is done by analysing the results of the
onfusion matrix (CM; see Appendix A ) where the values on the
M correspond to the number of sources in the TP, TN, FP, and
N classes, defined earlier in this section. The results of the model
pplied to the full LoTSS DR1 sample can be seen in Fig. 11 . The
gure also compares how the model performs when confronted with

he SISG, which were excluded during training. As will be explained
redictions for a threshold value of 0.5, with the following values: (0) sources 
redicted as class S; (1) sources predicted as class MC; and (2) sources 
orrected (i.e. reco v ered to class MC) as described in Section 4.1 . The actual 
rediction values correspond to the mc probability multi column. 
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Figure 9. Performance of the model on the LoTSS DR1 sample plotted for different threshold values with corrections (solid line) and without corrections 
(dashed line). Corrections are applied when one source component is identified as part of an MC source allowing the other source components in the same MC 

source to be reco v ered, ev en if they themselves are FNs. Please see the text for a more detailed explanation. Left panel: accuracy, recall, and precision. Right 
panel: true ne gativ e (TN), true positiv e (TP), false positiv e (FP), and false ne gativ e (FN) counts on a logarithmic scale. The results correspond to the model 
applied to the full data set, where sources in the SISG category got assigned automatically to class S, i.e. not being part of an MC source. 

Figure 10. ROC curve, with the FPR (FP/(FP + TN)) in the x -axis and 
the TPR (TP/(TP + FN)) in the y -axis, plotted for different threshold values 
(colour coded). These correspond to values for which corrections are applied 
(filled markers) or not applied (empty markers). Overall, the classifier shows 
outstanding performance, and corrections impro v e the model for both TPR 

and FPR. Note that the plot corresponds to a zoom in to the left-hand side 
of the ROC curve, with only rele v ant v alues of the axes sho wn. The cross- 
markers correspond to the 0.5 threshold adopted. 
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e xt, the adopted strate gy will consist of training the model with
he SISG remo v ed and applying it to all DR1 sources except for
ISG, and then setting the SISG to class S (i.e. sources that are
utomatically classified as not being MC sources). 

The left CM in Fig. 11 shows the results of the final model (in
hich all SISG sources are assigned to class S, i.e. not MC sources),
hile the middle and right CM correspond to the results when the
nal model is applied to non-SISG and SISG sources, respectively. 
hese result from training the model with SISG sources remo v ed,
alculating a prediction for all LoTSS DR1 sources, and separating 
he data by SISG sources. The left CM is subtly different from the
um of the values in the different cells of the middle and right CMs
ecause SISG sources were all automatically set to class S. Therefore,
ll the SISG sources that had been classified correctly (89 sources) or
ncorrectly (589 sources) as MC sources will contribute to the values 
n the left column in the left-hand CM. By setting SISG to class S,
he classification is impro v ed by saving almost 600 sources from the
P, even though 10 more sources (after correction) end up as an FN.
o we ver, this represents a good trade since it means a maximum of
ve physical radio sources because, by definition, each MC is made 
p of at least two source components. Using the adopted strategy 
nd the 0.5 threshold, the accuracy of the model when applied to the
mbalanced LoTSS DR1 data set is 96.62 per cent. 

This demonstrates that the o v erall results when applying the
odel to other data are also impro v ed if the SISG sources are set

utomatically assigned to class S. Based on this conclusion, the 
ISG sources can also be excluded from the data processing (and its
redictions set to class S). This results in only about 40 per cent of
he data requiring to be processed. 

.3 Performance as a function of sources properties 

n order to understand the performance of the model and its ability
o distinguish between class MC and class S, we e v aluate the
erformance of the classifier as a function of source characteristics 
nd contextual information. This is illustrated in Fig. 12 . 

Regarding the angular sizes of the PyBDSF source being analysed 
panel a), accuracy is consistently abo v e 95 per cent for sources
ith major axis up to around 10 arcsec, indicating a successful

dentification of class S sources through a high number of TN.
hese type of sources correspond to the majority of sources in

he LoTSS surv e ys. Interestingly, ev en at these small angular sizes
here single-component sources dominate the sample, the recall for 
C sources remains high. The accuracy drops steeply as the source

ize increases, reaching around 75 per cent for sources with 25–30
rcsec and remaining at this value for larger sources (albeit that there
re relati vely fe wer sources of this size in the sample). The drop
n accuracy for larger sources is primarily due a decrease in the
roportion of TN, that is, sources that are actually single component
eing correctly identified, because there are less single-component 
ources with these sizes. 

The accuracy is above 90 per cent for sources with total flux density
panel b) below 4–5 mJy, but it drops for brighter sources, particularly 
or sources brighter than 15 mJy, where the performance drops to
bout 85 per cent. High performance at lower flux densities is due to
 high number of TN since the majority of the sources in LoTSS are
aint. Interestingly, a higher proportion of FP can also be found in
he fainter bins, with extended and faint emission being more likely
o be part of an MC source as opposed to bright emission. Lower
erformance at higher flux densities is attributed to a small fraction
f TN. Recall of MC sources remains consistently high at all flux
ensities. 
The classifier shows high-performance values for sources where 

he distance to the LR counterpart (panel c) is low, in particular, for
MNRAS 532, 3322–3340 (2024) 
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Figure 11. CM for all the sources in LoTSS DR1 using the final adopted model and a threshold value of 50 per cent. Left panel: results for all the sources in 
LoTSS DR1 setting the SISG to class S. Middle panel: results on DR1 with the SISG sources remo v ed. Right panel: results for the SISG sources only. In all 
panels, the values in the square brackets correspond to the numbers of FP before applying the corrections. 

Figure 12. Performance as a function of radio source properties, with accuracy displayed in red and recall for the MC class in blue. The histograms show that 
the final model adopted has high accuracy across the different properties being analysed, particularly for smaller and fainter sources and those with no near 
neighbours. The values of recall, however, are al w ays significant above 0.95, with the sole exception of when there is no NN within 60 arcsec. High values of 
recall are due to a consistently high number of sources being identified as MC sources and a low number being missed. The values of precision (not plotted) 
are consistently weaker and have values around 0.5 across all the parameter space, indicating a large number of FP (as also seen in the CM). See the text for a 
discussion. 
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 alues belo w 1–2 arcsec. Small values of LR match distance (and high
 alues of LR v alue) indicate a genuinely associated optical match,
uggesting that the source is a single-component source in most
ases (the alternative being the core of an MC source). Therefore, the
lassifier is able to correctly identify these sources as class S sources.
he accuracy drops sharply for higher values (but it is al w ays abo v e
0 per cent) as the proportion of TN falls. The highest proportion
f sources being misidentified as MC sources can be found for the
hree smaller LR distances bins. A similar conclusion can be drawn
f inspecting the performance using the NN LR distance (panel d).
maller NN LR distances have a higher probability of the NN source
eing an MC source, and therefore a high probability of the source
eing an MC itself, since it tak es tw o source components to make up
n MC source. The performance drops for higher values of the NN
R distance, as happens with the source LR distance, due to a drop

n the TN. In all cases, the accuracy is al w ays abo v e 90 per cent for
igher LR distance matches. 
The performance as a function of the NN properties (panel e) is

 v aluated further since the presence of an NN is an indication that
he source might be clustered and potentially has a higher chance
NRAS 532, 3322–3340 (2024) 
f being part of an MC source. If the first NN is more than around
0 arcsec apart, the accuracy is close to 100 per cent, indicating that
he majority of these sources do not need to be grouped and are
orrectly identified by the model as class S sources. The recall of
C sources for such distance NNs is at its lowest here of all of

he parameter space examined in Fig. 12 , but still remains abo v e
0 per cent. Smaller distances to the NN suggest a more crowded
nvironment and increase the chances of the source being an MC
ource, and therefore the accuracy of the classifier drops due to the
ixed population. 
When e v aluating the performance as a function of the number

f NNs within 45 arcsec (panel f), it is possible to observe that
he classifier reaches accuracy values close to 100 per cent when
here are no NNs within this radius because the chances of being
 class MC source are comparati vely lo w, and there is an accu-
ate identification of the class S sources, for which the majority
o not have any NN within 45 arcsec. As the number of NNs
ithin the radius increases, the accuracy drops, mainly because

here are a smaller number of single-component sources in these 
ins. 
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Figure 13. Confusion matrices for the entire LoTSS DR1 data set, for sources 
below (left panel) and abo v e (right panel) 4 mJy. 
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.4 Performance below 4-mJy flux density 

ue to the amount of sources in LoTSS, in LoTSS DR2 sources with
 flux density of less than 4 mJy were not sent for visual inspection
Hardcastle et al. 2023 ). This is mainly because priority was given to
otential WEAVE–LOFAR (Smith et al. 2016 ; Jin et al. 2023 ) target
ources (which are brighter than 8 mJy) for spectroscopic follow-up. 
urthermore, there are many sources below 4 mJy, most of which 
re single-component sources (see Williams et al. 2019 ). Those faint 
ources which are multicomponent are, in general, very difficult to 
dentify, which would represent a huge effort without much return. 
ence the y hav e not been inspected in DR2, and therefore, it is

mportant to investigate the performance of the model below this 
 mJy threshold. The ability for the classifier to identify MC sources
or fainter (below 4 mJy) and brighter (abo v e 4 mJy) sources can be
een in Fig. 13 . 

The classifier demonstrates higher accuracy when classifying 
ainter sources, achieving 97.89 per cent accuracy. The accuracy 
rops to 86.61 per cent for brighter sources. There is a much larger
opulation of sources below 4 mJy compared to those abo v e it, and
he large values of accuracy for faint sources are because a consid-
rable number of them are correctly classified as single-component 
ources. The number of sources flagged as MC sources (both correct 
nd incorrect classifications) has a similar order of magnitude for 
ources abo v e and below 4 mJy. Therefore, the performance of the
lassifier is comparable among these two groups, with the large 
ajority of the genuine MC sources being correctly flagged as MC,

nd a similar number of sources being incorrectly flagged as MC.
his is more pronounced for fainter sources, but without major 
ifferences. Furthermore, the model successfully identifies nearly 
ll the sources that necessitate component association, missing less 
han 2 per cent of those even if the source is faint. 

The distribution of sources in each of the cells of the CM as
unction of the flux density can be seen in Fig. 14 (note the
ogarithmic y -axes). At lower flux densities, the abundance of single-
omponent sources is higher, and the number of correctly classified 
lass S sources (TN) is also higher. There is a reduction in the number
f TN sources as the flux density increases, but this is because there
re fewer bright sources o v erall. 

For sources with lower flux densities, there is a greater number 
f FN, but at high-flux densities a higher proportion of sources are
ulticomponent compared to at low-flux densities. This is also why 

ccuracy drops at high-flux densities (see Fig. 12 ). This trend is also
vident when examining the distribution of sources in the TP and 
P histograms. The occurrence of FP is predominantly observed at 

ower flux densities, but this is also because there are many more
ources at these flux values. 
 C O N C L U S I O N S  A N D  F U T U R E  O U T L O O K  

he number of faint sources with intricate radio structures is 
ncreasing in modern radio continuum surv e ys. Sometimes source 
omponents can be mistakenly identified as independent sources 
espite being components of the same physically connected radio 
ource. This work introduces an MM deep-learning classifier specif- 
cally designed to identify these MC sources. These are sources 
hat require component association and for which currently there 
re no automatic identification methods available. This work has 
mplications for future surv e ys as it becomes impractical to select and
ross-identify all sources using conventional astronomy techniques, 
hich commonly involve substantial amounts of visual analysis. The 
ork also highlights the ef fecti veness of deep-learning algorithms, 
articularly when combining data from diverse sources, as a valuable 
pproach for handling modern radio surv e ys. 

The model developed in this work combines a convolutional 
eural network and an ANN into a single architecture. The model
ncorporates radio images and source parameters of the radio sources 
nd their NNs, as well as parameters of the possible optical statis-
ical counterpart. The model is trained using LoTSS DR1 manual 
nnotations to discriminate between (a) sources that are part of MC
ources (which will al w ays be difficult to identify and cross-match)
nd (b) relatively compact sources, which can be processed in a
ore automatic way using statistic methods or ML methods such as

hose of Alger et al. ( 2018 ), and are also typically unresolved single-
omponent sources. We used 9046 MC PyBDSF sources out of the
otal 323 103 PyBDSF sources identified in LoTSS DR1. While 
5 per cent of the MC sources were used for training purposes,
0 per cent was split equally for validating and testing the model.
he data set was augmented by performing rotations and flips on

he MC sources and using a proportional number of random single-
omponent sources, in order to achieve a balanced data set. The data
et after augmentation comprised 42 946 sources, of which 37 578
ere used for training, 2685 for validation and 2683 testing (we
efined the validation and test sets to be the same size as the ones
efore augmenting the training set). In this w ork, we emplo y active
earning by excluding SIGS sources from the data set before the
raining process. These sources do not add diversity to the data set
nd can be predominantly cross-matched using statistical methods. 
y removing the SIGS sources, we increase the ability of the model to
etect MC sources and save processing time since these correspond 
o approximately 60 per cent of the LoTSS data. 

The model demonstrates good results, achieving a reco v ery rate
f 94 per cent for sources with MC in the balanced data set and
n o v erall accurac y of almost 97 per cent in the real imbalanced
ata set consisting of 323 103 sources. The performance of the
lassifier is closer to 100 per cent for small, and faint sources,
ropping for sources brighter than 2–3 mJy and sources larger than
0 arcsec. The classifier shows excellent performance (between 96 
nd 99 per cent) for sources with smaller distance to an optical
ounterpart, in particular, if the source itself or the NN have an
R match below 1–2 arcsec, which is an indication that the source

and its NN) are not part of an MC source. The classifier precisely
dentifies class S sources with 99 per cent accuracy if there are
o NN within 45 arcsec. Furthermore, if the NN is smaller than
0 arcsec the classifier performs closer to 98 per cent. We e v aluated
he performance of the classifier for sources below 4 mJy since
hose are not being visually inspected in LoTSS DR2 (Hardcastle 
t al. 2023 ), and a good performance is achieved for both brighter
86.6 per cent accuracy) and fainter (97.9 per cent accuracy) regimes,
ith many more fainter sources being correctly identified as class 
MNRAS 532, 3322–3340 (2024) 
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Figure 14. CM counts in terms of flux density. Each of the cells correspond to TN (top left, blue), FP (top right, yellow), FN (bottom left, red), and TP (bottom 

right, green). 
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 sources since the majority of the sources in LoTSS are indeed
aint and single-component sources. These results indicate that the
eliability of the classifications heavily depends on the distribution
f the source characteristics within the data set. 
Our model already exhibits strong performance. Ho we ver, deep

earning is a flourishing field, with new architectures and methods
eing developed rapidly, and there are a variety of ways in which
he model could potentially be impro v ed. Inv estigating different
ypes of fusion could lead to impro v ements, for e xample, the
rchitecture could implement a fusion module where the weights
f the CNN and ANN are shared across the network instead of
erforming a single late fusion. Another option could be to construct
n ensemble of classifiers to enhance the model’s performance, which
ould be done with any other type of ML or deep-learning model.
urthermore, the architecture could be optimized using AutoML,
hich would help automate the network design process and optimize
yperparameters. Conducting feature exploration, such as grouping
eatures or designing new features, could impro v e the ANN part of
he model. Finally, incorporating different wavelength images could
e explored, such as optical and infrared, although their impact is
xpected to be more important for source cross-matching than for this
ource classification task in particular. The construction of the data set
ould be e v aluated in order to examine the performance of the model
hen blended sources are in the same class as MC sources or when

here is discrimination between those three independent classes. This
ould raise the question of whether the radio source detector was

ccurate in identifying the source itself. Furthermore, it would be
nteresting to assess whether additional training examples improve
he o v erall performance, which could be achiev ed using the outputs
rom the citizen science annotation of LoTSS DR2 (Hardcastle et al.
023 ) to train and e v aluate the model. 
Mostert et al. ( 2024 ) assembled a pipeline to automatically

roup and cross-match multicomponent radio sources. The source
NRAS 532, 3322–3340 (2024) 
ssociation part of the pipeline builds on the approach of Mostert et al.
 2022 ) for component association. Ho we ver, while that algorithm
erforms well on genuine MC sources, if single-component sources
re included, then 7.7 per cent of them get erroneously grouped
ith unrelated PyBDSF sources. In addition, they assume that the
ajority of their galaxies will belong to the type of sources identified

y Alegre et al. ( 2022 ) as the ones that cannot be matched using
he LR technique. While this is e xpected, Ale gre et al. ( 2022 ) do
ot specifically address whether a source requires radio component
ssociation. The present work will help to tackle this question by
etermining the specific subset of sources on which the source
ssociation code should be e x ecuted. This will also allow the
ipeline to be expanded to include fainter and smaller sources than
t does now. Our results will therefore impro v e the o v erall pipeline
or automatic source association and identification in LoTSS. The
roposed methodology would involve three main steps. First, the
ndings of the present study are used to identify the PyBDSF sources

hat are most likely to be part of an MC source. Secondly, the Mostert
t al. ( 2022 ) component association code is e x ecuted to define the
hysical radio sources (possibly extending the method to smaller
nd fainter sources). This uses the output of Alegre et al. ( 2022 ) to
liminate unrelated single-component sources within the bounding
ox of the extended source, for which the threshold value can be
djusted as well. Finally, after the sources have been associated, the
arkus et al. ( 2022 ) code is used to obtain the optical identifications
sing the ridgeline approach. 
In conclusion, in LoTSS DR1 and LoTSS DR2, a substantial effort

as put into analysing the sources that require component associa-
ion. This was done manually on LGZ by associating components
nd cross-matching. Therefore, the outcomes of this work are of
ignificant value for incorporating into pipelines for the processing of
pcoming LoTSS data releases or other radio surv e ys. Furthermore,
he results can be incorporated into diverse pipelines not only for
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utomated cross-matching but also for identifying sources for further 
adio morphology classification or for the simple detection of radio 
ources (for example, by ensuring the radio properties correspond to 
ctual sources). 
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PPENDIX  A :  P E R F O R M A N C E  METRICS  F O R  

UPERV ISED  C LASSIFICATION  

n classification problems, each example belongs to one of several
lasses. Binary classification has two classes, which are commonly
abelled as positive and negative (or 1 and 0). Table A1 presents
he ‘CM’ for a binary classification problem, where the TP and the
N are the number of values which are correctly identified by the
lassifier, from the positive and negative classes, respectively. TheFP
nd FN correspond to the remaining number of values classified as
ositive and negati ve, respecti vely, but which belong to the opposite
lass. The CM may be used to derive standard metrics by which the
erformance can be e v aluated (see e.g. Hossin & Sulaiman 2015 , for
 re vie w). 

Accuracy is the most popular performance metric. It measures
he fraction of sources which are correctly classified relative to the
 v erall classifications: 

ccuracy = 

TP + TN 

TP + TN + FP + FN 

(A1) 

hen using a balanced data set (i.e. when each of the classes has a
imilar number of e xamples), accurac y shows how well the classifier
erforms o v erall. Ho we v er, for imbalanced data sets, the accurac y
ay not reflect the real performance of the model since it will be
ostly determined by the values in the majority class. Metrics such

s precision, recall, and the F1 - score need be used to assess the
erformance in the different classes, individually. 
Precision can be defined as the fraction of sources predicted as

eing from a certain class that are actually from that class: 

recision = 

TP 

TP + FP 

(A2) 

The recall (also known as sensitivity or TPR) is the fraction of
ources from a certain class that are predicted correctly: 

ecall ≡ TPR = 

TP 

TP + FN 

(A3) 

Both precision and recall have on the numerator the number of TP.
hile in precision the denominator is the number of all predicted

ositi ve v alues, in recall it is the number of all real positi ve v alues.
his means that precision reflects how reliable is the model when
redicting if an element belongs to a particular class, while recall
ndicates how effectively the model recognizes the elements from
hat class. A combination of precision and recall can be given by the
1-score: 

 1 = 

2 × Precision × Recall 

Precision + Recall 
(A4) 

A lo wer v alue for either precision or recall will be reflected in
his value. Therefore, this score is useful for identifying significant
iscrepancies between these two metrics. 
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To compute the ROC curve (see Fig. 10 ) we also use the false
ositive rate (FPR), which corresponds to the fraction of sources
rom the ne gativ e class that are incorrectly classified: 

PR = 

FP 

FP + TN 

(A5) 

PPENDI X  B:  ROTAT I O N  I N VA R I A N C E  O F  

H E  FINA L  M O D E L  

e explore the ability of the model to handle rotational and reflection
ymmetry, as source classification should not depend on any partic-
lar source orientation. Khotanzad & Hong ( 1990 ) demonstrated
hat the Zernike moments exhibit inherent rotation invariance when
xtracted from a shape at different angles. In astronomy, this problem
as been mostly addressed using CNNs to classify optical galaxies
e.g. Dieleman et al. 2015 ; Khramtsov et al. 2022 ), but recently
eceived more interest in radio astronomy since orientation biases
an be particularly problematic for the automatic classification of
adio morphology sources into FRI and FRII in large surv e ys. Scaife
 Porter ( 2021 ) specifically designed CNNs to be group-equi v ariant

nd Bowles et al. ( 2021 ) combined this with attention networks. 
In order to test for this effect, we investigate the classification of

he same source when seen from a variety of orientations and flips.
e used only the PyBDSF sources that belong to multicomponent

ources from the training set to inspect for this aspect; each image
as randomly rotated and flipped as explained in the augmentation
rocess. We did this four times, obtaining a total of 6277 PyBDSF
ources. The predictions for these sources were then calculated and
ompared. We calculated the standard deviation for the predictions
f each group of four sources; the two sources with the most extreme
ariation had standard deviations between 0.05 and 0.1, but for the
ast majority of the sources, the standard deviation was significantly
elow 0.01. We inspected the sources for which the probability
howed higher differences, and the most extreme case corresponded
o an example where part of the source was rotated outside of the
mage, with probabilities of being an MC ranging from 0.74 to 0.87.
or the remaining sources, the differences seem less evident to the
aked eye, with some emission obscured but still rele v ant for the
lassification. Nevertheless, for the majority of these sources, the
redictions are skewed to one of the extremes, and so they do not
ranslate into problems. For a threshold of 0.5, only 14 sources ended
p with a mix of classifications, but those were very close to either
bo v e or below the 0.5 value. We can conclude that the algorithm
s rotation-invariant, except if an important part of the source falls
utside the cropped image for some rotation angles. 
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