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A B S T R A C T

The current study presents a multiphysics numerical model for a micro-planar proton-conducting
solid oxide fuel cell (H-SOFC). The numerical model considered an anode-supported H-SOFC with
direct internal reforming (DIR) of methane. The model solves coupled nonlinear equations,
including continuity, momentum, mass transfer, chemical and electrochemical reactions, and
energy equations. Furthermore, The numerical model results are used in artificial intelligence (AI)
models, the K-nearest neighbour (KNN) and, artificial neural network (ANN), to predict the
current density and power density of the H-SOFC. The results show that increasing the air-to-fuel
(A/F) ratio decreases the current density and overall cell power. In particular, improvements in
power and current density observed in H-SOFC when the A/F ratio is set to 0.5, resulting in a
respective increase of 2 % and 7 % compared to the initial state at A/F = 1. With an error rate of
less than 1 % and an R-score of around 99 %, the ANN model shows good agreement with the
numerical results.

1. Introduction

Growing environmental concerns about fossil fuel resources have led to a significant focus on developing environmentally
favourable power generation methods [1,2]. Solid Oxide Fuel Cells (SOFCs) have gained significant attention due to their ability to
efficiently convert chemical energy into electrical power through electrochemical reactions [3].

The SOFCs’ high operational temperature range (600–1000 ◦C) provides several advantages in their applications [4,5]. These
benefits include a high rate of electrochemical reactions, high efficiency, adaptability to different fuels such as pure hydrogen [6,7],
biogas [8], natural gas, methanol, and ethanol [9], minimal pollutant emissions, the ability to function as a hybrid energy system [10],
and various geometrical configurations [11–13]. However, the main obstacles to SOFC technology are the reduction of their cost and
start-up time [14], improved durability [15], reduced degradation resulting from high temperatures, and enhanced SOFC system
efficiency [5]. Direct internal reforming (DIR) has the potential to substantially decrease the overall cost and complexity of SOFC
systems while simultaneously increasing their overall efficiency by utilizing the heat produced by the SOFC for endothermic reforming
reactions in the anode [16]. Menon et al. [17] investigated H-SOFC systems with DIR numerically. The effect of different operational
conditions on species transport, temperature distribution, and electrochemistry illustrated. The H-SOFC performance was analysed
under various operating conditions, including the influence of partitioning the anode into multiple regions with various catalytic areas
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Nomenclature

Variables
V Operating voltage
P Power density
I Current density
EOCV Open circuit voltage
R Ideal Gas Constant
F Faraday Constant
pІi Species partial pressure at the electrode-electrolyte interface
I Current Density
lan Anode Thickness
lele Electrolyte Thickness
lca Cathode Thickness
Dan,eff Effective Anode Gas Diffusivity
Dca,eff Effective Cathode Gas Diffusivity
ji Mass-Flux Vector
De
i Effective diffusion coefficient

Dm
i Average diffusion coefficient

Dij Binary Diffusivity
Qtot Total heat generation
kf Gas mixture thermal conductivity
ks Solid thermal conductivity
Qelec Energy source of electrochemical reactions
Qchem Energy source of chemical reactions
Dkn
i Knudsen diffusion

rp Average pore’s radius
keff Effective thermal conductivity of porous electrodes
U Gas mixture velocity
cp Specific heat capacity

Greek letters
ηconc concentration overpotential
ηohm Ohmic overpotential
ηact Activation overpotential
σele Electrolyte Conductivity
ϕan
e Anodic Electrode Potential

ϕca
e Cathodic Electrode Potential

σi Ionic Conductivity
σe Electrical Conductivity
ϕi Ionic Potential
ϕe Electrical Potential
αan Anodic transfer coefficient
αca Cathodic transfer coefficient
ωi Mass Fraction
μi Viscosity
ρ Fluid Density
ε Porosity
τ Tortuosity
ΩD Dimensionless diffusion collision

Subscripts and superscripts
ele electrolyte
an anode
ca cathode
OCV Open circuit voltage
Conc concentration
act activation
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[17]. Kumuk et al. [18] created a computational model of an electrolyte-supported SOFC powered by hydrogen and coal gases with
different electrolytes. The impact of temperature changes on the efficacy of proton-conducting and oxygen ion-conducting electrolyte
SOFCs simulated numerically. It was demonstrated that O-SOFC was more efficient than H-SOFC at higher temperatures, while
H-SOFC performed better at medium temperatures. Hydrocarbons and biomass are particularly suitable for SOFCs because of their low
cost and wide availability [19]. However, the complex composition of these fuels results in multiple electrochemical and chemical
reactions [20]. Gholaminezhad et al. [21] modified Fick’s model to develop a 1D channel-level model of SOFC fuelled by methane.
They simulated the electrochemistry and mass transfer phenomena of a SOFC to predict current density limitations. Min et al. [22]
developed a 1D model for investigating the thermal and electrochemical characteristics of a SOFC stack. A parametric analysis per-
formed to determine the optimal operating conditions of SOFCs by varying current density, fuel ratio, and pressure. The results
indicated that high efficiency achieved using low current density, high fuel consumption, and low air usage. Tu et al. [23] looked into
how the fuel composition, thermal efficiency, and electrical efficiency of SOFCs were affected by different ways of processing methane.
They showed that steam reforming of methane produces more H2 and CO per mole of methane, resulting in high efficiency but low
thermal efficiency. They showed that SOFCs can have high efficiency and low carbon deposition if the right O/C ratio chosen during
the pretreatment of methane. This leads to the complexity of heat generation processes and complicates performance prediction and
optimization [24]. Takino et al. [25] experimentally developed a modified equation for exchanging SOFC anode current density using
methane fuel. The combination of their equation with numerical simulation used to investigate the efficiency factors of an
electrolyte-supported SOFC. The modified equation reproduced the V-I characteristics and temperature distribution. Although
computational fluid dynamics (CFD) has demonstrated high precision for evaluating performance, its complexity prevents online
prediction and optimization. In contrast to the commonly used 2D or 3D multi-physics simulation (MPS) approach, by using artificial
intelligence (AI) models, a black-box model is created by using a set of parameters for solving non-linear equation systems 10[26,27].
Peksen et al. [28] investigated the effectiveness of the pre-reforming procedure for various syngas used as fuel by combining exper-
imental data with numerical simulation methods. The thermochemistry of syngas fuel analysed using a CFD model. The developed
model is then used to generate the necessary data to train a machine learning model. Additionally, studies looked at the combination of
MPS and AI. As an example, a hybrid model for the investigation of SOFCs to address the challenge of long-term operation using
difficult-to-use fuels was developed by Xu et al. [29]. The model combinedMPS and deep learning, allowing for precise prediction with
an error of less than 1 %. Also, they used a genetic algorithm to optimize, resulting in maximum power density while staying within the
temperature gradient and operating condition limits. Song et al. [30] conducted experimental tests on 30 SOFC stack segments at
varying furnace temperatures. Multiple evaluation criteria used along with ANN models to predict the stack’s efficiency. The results
indicated that the fitting errors of the three algorithms are within 5 %, whereas the neural network offered the best prediction accuracy
in its results for generalizability and testing time. Yan et al. [31] presented a modelling framework to optimize the microstructures of
SOFC electrodes using sequential simulations and multi-objective optimization assisted by artificial intelligence. They analysed the
influence of various initial powder parameters, such as particle size distribution, on the SOFC’s degradation rate and cathodic
overpotential. They found that lower pore size and fine particle size result in a lower cathodic overpotential but a higher degradation
rate. Xu et al. [32] developed a framework to enhance the performance of SOFCs using CFD modelling, ANN, and genetic algorithms.
Initially, a 3D CFD model developed that considered multiple parameters, including geometry, microscopic features, and operating
conditions, and data collected. Their results indicated that the ANN provided the most accurate predictions of SOFC performance, with
an R-score value of 0.99889. Mahmood et al. [33] conducted a sensitivity analysis to explore the influence of key operational and
design parameters such as operating temperature, material porosity, flow configurations, air-fuel ratios, and electrolyte thickness on
the performance and thermal stresses within the SOFC’s porous electrodes and solid electrolyte. Mütter et al. [34] optimized SOFC
performance using ANN and genetic algorithms (GA). The ANN trained with data from a multi-physics model with molar fraction,
temperature, and current density as the input data. The GA then applied to optimize power output, yielding near-global optimum
solutions with alternative gas compositions. Gnatowski et al. [35] used an ANN model that dynamically updates the charge transfer
coefficients based on operational conditions, trained on experimental data from SOFC anode polarization curves. The ANN predictions
improved the accuracy of overpotential estimates, demonstrating its effectiveness in enhancing electrochemical modelling in SOFC
applications [36]. Therefore, artificial intelligence provides a powerful prediction method for fuel cell applications. However, the
performance of these applications depends on the appropriate choice of machine learning and deep learning technology [36]. AI
technologies, specifically (ANNs), are being utilized to enhance the design and operational parameters of these fuel cells [37].

Due to the complexity of the governing equations in H-SOFCs, it demands a robust and efficient method for predicting performance
under varying conditions. While traditional numerical simulations are accurate, they are often time-consuming and computationally
intensive. This work aims to address this challenge by combining numerical modelling with AI techniques, K-nearest neighbours
(KNN), and artificial neural networks (ANN) algorithms. This integration of AI offers an innovative approach to streamline the pre-
diction of H-SOFC parameters like current density and power density, making it a valuable tool for rapid optimization and design in H-
SOFC technology. This hybrid approach represents a step forward in leveraging AI to complement multiphysics simulations, providing
more efficient and accurate performance predictions. From the review of the literature, it found that to date, little study conducted on

Abbreviations
AI Artificial intelligence
KNN K-nearest neighbours
ANN Artificial neural network
DIR Direct internal reforming
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the impact of A/F on the efficiency of proton-conducting solid oxide fuel cells (H-SOFCs). Therefore, the purpose of the current study is
to conduct a comprehensive numerical investigation and analysis of how the A/F ratio affects H-SOFC performance. In the model,
various parameters such as A/F, temperature, voltage, and fuel flow velocity considered for training the AI models. Themodel has been
setup to solve the coupled non-linear governing equations, which include continuity, momentum, mass transfer, chemical and elec-
trochemical reactions, and energy equations, by means of a multiphysics simulation method developed in house.

2. H-SOFC modelling

2.1. Model description

A multiphysics numerical simulation of a simplified micro-planar proton-conducting H-SOFC developed in the current study. The
simplified H-SOFC model configured as shown in Fig. 1. It consists of a porous anode electrode, a porous cathode electrode, a solid
electrolyte and channels for air and fuel. The geometric characteristics of the computational domain given in Table 1.

The numerical model solves the governing mathematical equations for the H-SOFC including continuity, momentum, mass transfer,
chemical, and electrochemical reactions.

The H-SOFC functions through DIR process, where a mixture of hydrogen, methane, steam water, carbon dioxide, and carbon
monoxide provided to the fuel channel. Hydrogen produced in the anode through chemical reactions, e.g. through the DIR process or
water-gas shift reaction (WGSR). The DIR process can convert methane to a mixture of hydrogen and carbon monoxide (H2 and CO) on
the surface of an anode, while the WGSR is a reversible chemical reaction that converts carbon monoxide and water to carbon dioxide
and hydrogen. The chemical formulas for DIR and WGSR reactions are given in Eq. (1) and Eq. (2), respectively:

DIR:

CH4 +H2O→ 3H2 + CO (1)

WGSR:

CO+H2O→H2 + CO2 (2)

The generated hydrogen is oxidized, as shown in Eq. (3):

H2 ↔ 2H+ + 2e− (3)

Protons flow from the anode to the cathode through the proton-conducting electrolyte. At the cathode-electrolyte interface, the
protons react with electrons received from the anode via an external circuit, as shown in Eq. (4):

O2 +4H+ + 4e− ↔ 2H2O (4)

The overall reaction of the SOFC is represented in Eq. (5):

2H2 +O2 ↔2H2O (5)

2.2. The H-SOFC model assumptions

It has been assumed that the H-SOFC numerical model is operating in a steady state condition. The fluid flow is laminar and
compressible, and all properties of the fluid change with temperature. The fluid behaves like an ideal gas. The electrolyte is considered
dense and non-porous; therefore, there is no mass or momentum transfer through electrodes. Porous electrodes ohmic heating is not
considered since the ionic conductivity is negligible compared to the electrical conductivity [38]. It assumed that electrodes have
perfect selectivity for the electrochemical reactions, fuel undergoes electrochemical oxidation within the anode’s porous electrode,
and oxygen reduction occurs in the cathode’s porous electrode.

2.3. Mathematical equations used in the model

The governing mathematical equations used to process the H-SOFC model are expressed as follows.

Fig. 1. Representation of an anode-supported H-SOFC.
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2.3.1. Mass and momentum equations
The velocity field, u, and pressure, P, for the porous electrodes and gas channels are determined by applying continuity and

momentum equations. The continuity equation is expressed in Eq. (6) [39,40]:

∇.(ρu)=Qbr (6)

Here ρ represents the mixture’s density, and Qbr represents the mass generated per unit volume. Since reactions only occur in electrode
layers, Qbr is equal to zero for gas channels. The momentum equations for the channels and electrodes are given in Eq. (7) and Eq. (8),
respectively:

ρu .∇u=∇

[

μ
(
∇u+(∇u)T

)
−

2
3

μ(∇.u)I
]

− ∇p (7)

ρ
ε (u .∇)

u
ε =∇.

[
μ
ε
(
∇u+(∇u)T

)
−

2
3

μ
ε (∇.u)I

]

− ∇p −
(

μ
κ
+
Qbr

ε2

)

u (8)

Here μ is dynamic viscosity of a gas mixture, and κ and ε refer to the permeability and porosity of the electrodes, respectively [41]. The
production and consumption of gas species that occur during chemical and electrochemical reactions lead to momentum sources at
both electrodes [42].

2.3.2. Electrochemical equations
The operating voltage at a specific current density is determined by Eq. (9):

V= EOCV − (ηact + ηconc) (9)

In which EOCV is the cell’s reversible open circuit voltage. The interface between the anode and air channel defined as ground;
therefore, the anode open circuit voltage, EOCVan , is zero. The cathode open circuit voltage, EOCVca , is obtained by applying Nernst’s
equation in Eq. (10) [43].

EOCVca =1.253 − 0.00024516T −
RT
2F

ln

(
pIH2O(ca)

pIH2(an) p
I0.5
O2(ca)

)

(10)

Electrode-electrolyte interface partial pressure, PІ , is computed by using the transport model [44]. Here F is the Faraday constant and
ηact, ηconc represent the activation and concentration overpotential, respectively. The activation overpotential is calculated using Eq.
(11) [45]:

ηact =ϕe − ϕi − EOCV (11)

Here ϕe is the electronic potential and ϕi is the ionic potential. The concentration overpotentials for the anode, ηconc,an, and cathode,
ηconc,ca, are obtained from Eq. (12) and Eq. (13), respectively [46]:

ηconc,an =
RT
2F

ln

(
pH2(an)
pІH2(an)

)

(12)

ηconc,ca =
RT
2F

ln

((
pO2(ca)
pІO2(ca)

)0/5( pІH2O(ca)
pH2O(ca)

))

(13)

The potential distribution of electronic, σi, and ionic charges, σe, for the electrolyte, cathode, and anode are expressed in Eqs. 14–16
[47]:

∇.
(
− σel

i ∇ϕel
i
)
=0 (14)

∇.
(
− σan

i ∇ϕan
i
)
=∇.

(
− σan

e ∇ϕan
e
)
= + iv,an (15)

Table 1
Geometric characteristics of the present study.

Parameter Values

Length of the cell 2× 10− 2 (m)
Height of channels 1× 10− 3 (m)
Anode height 5× 10− 4 (m)
Electrolyte height 1× 10− 4 (m)
Cathode height 1× 10− 4 (m)
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∇.
(
− σca

i ∇ϕca
i
)
=∇.

(
− σca

e ∇ϕca
e
)
= − iv,ca (16)

The charge source term, iv, is determined the Butler-Volmer equation, as expressed in Eq. (17) [45]:

iv = i0,electrode
[

exp
(
2αanF
RT

ηact
)

− exp
(
− 2αcaF
RT

ηact
)]

(17)

Here αan and αca are anode and cathode charge transfer coefficients.

2.3.3. Mass transfer equations
The mass fraction species, ωi, in the electrodes and gas channels is determined by Eq. (18) [36,43]:

∂
∂t (ρωi)+∇.(ρωiu)= − ∇.ji + Ri (18)

The diffusion mass-flux vector, ji, is calculated using the modified Fick’s equation, as represented in Eq. (19) [44,45]:

ji = −

(

ρDe
i∇ωi + ρωiDe

i
∇Mn

Mn
− jc,i +DT

i
∇T
T

)

(19)

The species mass source term, Ri, is calculated according to the values of DIR rate, RDIR, and WGSR rate, RWGSR, in electrodes [48].
The values of Ri for chemical and electrochemical reactions are obtained from Eq. (20) and Eq. (21), respectively [37,47]:

Ri =ωiMi(aiRDIR + biRWGSR) (20)

Ri =ωiMi
ciiv
nF

(21)

As a result, the overall mass generation term is computed using Eq. (22):

Qbr =
∑

i
Ri (22)

In porous electrodes, Knudsen diffusion, DKn
i , should add to the average diffusion coefficient, Dm

i , due to considerable species collisions
with the walls. Therefore, the effective diffusion coefficient, De

i , is calculated using the Bosanquet formula, as shown in Eq. (23) [49]:

1
De
i
=

1
Dm
i
+

1
DKn
i

(23)

Where DKn
i and Dm

i are calculated using Eq. (24) and Eq. (25), respectively [50,51]:

DKn
i =

2
3

ε
τ rp

̅̅̅̅̅̅̅̅̅̅

8RT
πWk

√

(24)

Dm
i =

1 − ωi

∑Kg

i∕=j
ωj
/

γDij

(25)

The binary diffusion coefficient,Dij, is determined by theMaxwell-Stefan equation, and γ equals one [43]. Here, τ is the tortuosity of
porous electrodes, and rp stands for the average pore’s radius.

2.3.4. Energy equations
The temperature profile across the entire domain is determined as shown in Eq. (26) [52]:

ρcpu .∇T+∇.
(
− keff∇T

)
=Qtot (26)

Here, cp is the specific heat, and keff is the thermal conductivity coefficient [53]. The mass source term of the energy equation, Qtot ,
is given as follows in Eqs. 27–29 [48,54]:

In electrolyte:

Qtot = σel
i
(
∇ϕel

e
)2

+ Qelec (27)

In Cathode:

Qtot = σca
i
(
∇ϕca

e
)2

+ σca
e
(
∇ϕca

e
)2

+ iη (28)

In anode:
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Qtot = σan
i
(
∇ϕan

e
)2

+ σan
e
(
∇ϕan

e
)2

+ iη + Qchem (29)

Where i represents the electrode current density and iη is the heat generated from irreversible overpotential losses. Here, σ(∇φ)2 il-
lustrates the Ohmic heating term, and Qchem is the energy source term related to chemical reactions. Qelec and Qchem are energy sources
for electrochemical and chemical reactions, respectively [37,46].

2.4. Boundary conditions of the H-SOFC model

Table 2 presents the operational conditions and material properties used in the current study [17,54]. To solve the governing
equations, the following boundary conditions considered: At the inlet of gas channels, the velocity field, temperature, and gas mixture
composition specified. At the outlet, atmospheric pressure and zero mass diffusion assumed. The fluid regime is continuous, and the
outer walls have no-slip boundary conditions and are thermal insulation.

3. Numerical procedure

The H-SOFCmodel uses discretised geometry to apply the previously introduced nonlinear equations to discretised nodes and mesh
elements. Initially, input parameters defined within the numerical model to develop the electrochemical equations and obtain initial
solutions for the operating voltage and cell’s current density. In the next step, the mass and momentum conservation equations solved
to obtain the velocity field. In final stage, all models used to solve the coupled partial differential equations simultaneously. The model
then updates initial solutions and calculates all outputs. This approach involves solving the independent nonlinear partial differential
equations individually and using their results as initial values for all the governing equations. Iterations repeated in each step until
convergence achieved. Fig. 2 provides an overview of the overall process of the H-SOFC modelling process, including all the essential
steps.

4. Model validation

A grid independence test conducted to determine the influence of the mesh size on the output current density and select the optimal
grid size for the present study. Four different computational grids with different element sizes analysed, as shown in Fig. 3(a). The
results reveal no notable difference (less than 3 %) in the current density values between a computational mesh of 84,656 elements and
121,806 elements. Consequently, a mesh size of 84,656 elements chosen for all simulations. To validate the numerical simulation, a
comparison is made between the polarization curves of the numerical results and the results obtained from an experiment conducted
by Taherparvar et al. [55], as depicted in Fig. 3(b). The geometric parameters, operating conditions, and cell materials kept consistent.

Table 2
The operational conditions and material properties used in current study [17,54].

Parameter value

Operational conditions
T 973 K
Pin 1 atm
Pout 1 atm
VFuel 1–3 m/s
Vair 3 m/s
Mole fraction of input fuel components H2 0.661 ، CH4 0.116، H2O0.003، CO 0.218, CO2 0.002
Mole fraction of input air components 0.001H2O ،0.789 N2 ، 0.21 O2
Material properties
porosity of electrodes 0.4
Permeability 10− 12

Electrode’s tortuosity 3
Thermal conductivity of the electrolyte 2.16 W/m.K
Anode thermal conductivity 1.86 W/m.K
Cathode thermal conductivity 5.84 W/m.K
Current density of anode exchange 5300 A/m2

Current density of cathode exchange 2000 A/m2

Electrolyte conductivity 0.009T − 6.157 S/m
Density of SOFC components 452.63 kg/m3

Specific heat capacity of SOFC components 3515.75 J/kgK
Pore radius 0.5 μm
Dan,eff 8.984× 10− 5m2/s
DCa,eff 4.748× 10− 6m2/s
σele 225.92 exp

(
− 6.3× 103/T

)
Ω− 1m− 1
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5. Artificial intelligence (AI)

Due to the non-linear and complex nature of the governing equations within the H-SOFC numerical model, running the model for
different conditions would be costly. However, a trained AI tool may be able to analyse the performance of the model under different
considerations. This study contains a combination of multiphysics simulation and AI techniques. Initially, the data obtained from
numerical simulations utilized to train and the AI model. An artificial neural network (ANN) k-nearest neighbours (KNN) algorithm,
which involves preprocessing the data, splitting it into training and testing sets, and normalizing it. We ran 364 simulation with

Fig. 2. Diagram of the H-SOFC modelling process.

Fig. 3. (a) Comparison of average current density along the electrodes with different grid sizes, (b) Comparison of multiphysics simulation po-
larization curves and experimental data.
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different values of some H_SOFC parameters(temperature, air-to- fuel ratio, velocity of the fuel gas, and voltage.

5.1. Data preprocessing

Before constructing the AI models, the input parameters obtained from the results of H-SOFC numerical simulations, including the
air-to-fuel ratio, voltage, temperature, and input fuel velocity, normalised within a range of zero to one. The outputs considered in this
study are the H-SOFC current density and power density. For network training purposes, 364 data sets used, which randomly split into
two groups: a training set (composed of 70 % of the data) and a testing set (consisting of 30 % of the data). The input parameters and
their range of values shown in Table 3. It is worth noting that the data analyses in this study performed using Python, which is an open-
source high-level programming language widely used in scientific computing. The machine learning models implemented using the
Keras and Scikit-learn libraries written in Python.

5.2. KNN model

The K-nearest neighbour algorithm is a machine learning method used to classify new data points by comparing them to the nearest
data points in the training dataset. The K-nearest neighbour algorithm enables the consideration of K arbitrary neighbours. The value
of K represents the number of neighbours that considered. To determine the class of each data point, the algorithm considers the
neighbouring data points of its surrounding class. The predicted class assigned based on the class with the highest count among the
neighbours. In this study, the value of K is determined based on the minimum error obtained for each K value.

5.3. ANN model

The artificial neural network is a supervised learning method consisting of interconnected neurons with adjustable weights that
process data through three or more layers. The components of an ANN include an input layer, one or more hidden layers, an output
layer, a set of neurons, weights, biases, and activation functions [56]. A structure of ANN with two hidden layers shown in Fig. 5. The
model selection procedure is the most crucial aspect of a neural network, as it directly influences the model’s output. Various
architectural and hyperparameter configurations must be explored and optimized to determine the optimal model, such as the number
of input parameters, number of neurons, number of hidden layers, activation functions, and loss functions [57].

5.3.1. Hyperparameter tuning
For the ANN model, various architectures and hyperparameters (such as the number of hidden layers, number of neurons, acti-

vation functions, etc.) need to be optimized to ensure high accuracy. We used the grid search method to find the optimal values for our
model. Table 4 shows the different values of hyperparameters that evaluated to find the ultimate values.

Fig. (4) illustrates the structure of the ANN used in this study, including an input layer, two hidden layers, and an output layer,
along with the number of neurons in each layer. Additionally, the input and output data are depicted in Fig. 4. The final hyper-
parameter values of the optimized ANN model are presented in Table 5.

5.4. Evaluation of AI models

To evaluate the accuracy of trained models, some standard criteria are used, which are [58]:
Mean Absolute Error (MAE): Themean absolute value of the prediction errors, regardless of their direction. The smaller (closer to 0)

the value, the better the trained model performs. The MAE is expressed as in Eq. (30):

MAE=
∑n

i=1|yi − xi|
n

(30)

Where x is the predicted value and y is the actual value.
Mean Squared Error (MSE): This error is similar to the MAE, but it squares the absolute values of the errors. However, it is typically

more challenging to interpret due to the magnitude of the values and their dissimilarity to the data. The MSE value is calculated using
Eq. (31):

Table 3
Variations in the input parameters for KNN and ANN
models.

Input parameters Value

Air-to-fuel ratio 0.5–4
Voltage 0.1–1.1(v)
Temperature 800-973(K)
Inlet fuel velocity 1-3(m/s)
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MSE=
∑n

i=1(xi − yi)2

n
(31)

Root Mean Squared Error (RMSE): This type of error addresses the interpretation problem of MSE by taking the square root of the
final value, so that the resulting error is of the same data type as the original data. The RMSE value is calculated using Eq. (32):

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(xi − yi)2

n

√

(32)

R-squared (R2): This measure demonstrates the correlation between the model outputs and the predicted values. It is important
when a statistical model is used for prediction or for evaluating test data. The closer the value is to one, the higher the model’s ac-
curacy. The R-squared value is calculated using Eq. (33):

R2=1 −
∑n

i=1
(xi − yi)2

/ ∑n

i=1
(xi − xi)2 (33)

6. Results and discussion

Different operating conditions are the main factors affecting the electrochemical performance of SOFCs. In this part of the study,
the effects of various operating parameters (e.g., operating temperature, air/fuel ratio), the Effects of variation in inlet fuel velocity,
and the prediction of fuel cell current and power density by an ANN model are investigated. The study’s results categorized into two
main groups: numerical simulation results and AI results.

6.1. Numerical simulation

Multiphysics simulation results presented as follows.

6.1.1. A/F ratio effects
The effect of different air-to-fuel (A/F) ratios on cell performance studied by simulating the model at a temperature of 973 K with

Table 4
Hyperparameter tuning with grid search.

Hyper parameters Tested values Optimal value

Learning rate 0.1, 0.01, 0.003 0.01
Number of hidden layers 1, 2, 3 2
Number of neurons 16, 32, 64, 128 (32,64)
Batch size 4,16, 32, 64 16
Epochs 100, 200, 300 200
Activation function Relu, Sigmoid, Softmax Relu

Fig. 4. A structure of ANN with two hidden layers for the current study.
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varying ratios of A/F ranging from 0.5 to 4. This ratio obtained by changing the value of the fuel. Fig. 5(a) displays the current density
versus the air-to-fuel ratio for different voltages: 0.1 V, 0.4 V, 0.7 V, and 1 V. The fuel cell’s current density decreases with an increasing
A/F ratio. Variations in current density reduction are more significant at lower voltages, particularly at V= 0.1 and a higher A/F ratio.
The highest current density of 33.6 mA/cm2 achieved at A/F = 0.5 and V = 0.1. This decrease in current density attributed to fuel
reduction as it moves along the fuel channel, leading to a decline in reaction and current density. Fig. 5(b) shows the power density
versus the air-to-fuel ratio for various voltages, including 0.1 V, 0.4 V, 0.7 V, and 1 V. The fuel cell’s power density decreases as the A/F
ratio increases. For instance, at 0.4 V, by increasing the A/F ratio from A/F= 1 to A/F= 4, the cell’s maximum power reduced by about
20 %. At higher A/F ratios, the decrease in power density becomes more significant as the fuel entering the fuel channel leads to fuel
dilution, affecting both reforming and electrochemical reactions. Consequently, a higher A/F ratio decreases the rate of both reactions.

Fig. 5(c) shows the variations in voltage-current and power-current density for an A/F ratio 1 at different temperatures. Increasing
the temperature has a significant impact on the output power and current density, resulting in an overall increase in cell efficiency. The
findings show that when the temperature decreases from 1000K to 800K, the output power and current density decrease by 48 % and
41 %, respectively. In Fig. 5(d), the hydrogen mole fraction variation at the anode-electrolyte interface shown as a function of tem-
perature. Where the temperature rises, there would be an increase in the variation of the H2 mole fraction. For example, variation in
the H2 mole fraction at 1000K is approximately 3.5 percent higher than T = 800K. As temperatures rise, the rate of electrochemical
processes increases, leading to greater fuel consumption. Furthermore, the variation in H2 mole fractions along the cell length at T =

1000K is 7 percent greater than the corresponding value at T = 800K. To confirm the accuracy of the numerical modeling, simulation
results are compared with literature papers. Findings align with [50,59], which highlight that higher operating temperatures enhance

Fig. 5. (a) The current density distribution at various A/F ratios; (b) distribution of power density at various A/F ratios at a temperature of 973 K;
(c) V-I and P-I curves with a fuel-to-air ratio of one at different temperatures; (d) H2 mole fraction variations at the anode-electrolyte interface for
various temperatures.

Table 5
Hyperparameters for training ANN models.

Output Model Input parameters Number of neurons in hidden layers Output activation function Batch size

Prediction of power density ANN) first model( T, v(m/s), S/V, V(v) (32, 64) Sigmoid 16
ANN)second model( T, v(m/s), S/V, V(v) (32, 64, 32) Sigmoid 32

Prediction of current density ANN)second model( T, v(m/s), S/V, V(v) (32, 64) Sigmoid 32
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current density, and power density, and reduce ohmic losses. This is also corroborated by Refs. [33,60] who showed that air-fuel ratios
impact overall SOFC performance, although its effect is smaller than temperature.

6.1.2. Effects of variation in inlet fuel velocity
Fig. 6(a) shows the hydrogen mole fraction distribution at the anode-electrolyte interface during operation at a voltage of 0.5 V

with an inlet fuel velocity of 1. The results demonstrate that a higher A/F ratio leads to more significant variations in the H2 mole
fraction. An A/F ratio of 4 has the most variation in H2 concentration, from a maximum of 0.125 at the inlet to a minimum of 0.029 at
the outlet. In Fig. 6(b) and (c), the distribution profiles of hydrogen concentration in the anode and fuel flow channels presented for
different A/F ratios at a temperature of 973K and a voltage of 0.5 V. As the A/F ratio doubles, triples, and quadruples, the hydrogen
concentration drops at the anode outlet, reaching 36%, 15 %, and 5.5 % of the hydrogen concentration at the anode outlet with an A/F
ratio of 1, as shown in Fig. 6(c). For an A/F ratio of 0.5, the maximum H2 mole fraction is 0.8291 at the outlet and decreases to 0.029
for an A/F ratio of 4.

6.2. AI results

As mentioned, fuel cell power and current density predictions made using ANN and KNN methods. The results obtained from these
methods presented below.

6.2.1. Prediction of power
For power prediction, 364 data points used. Fig. 7 compares the expected power with the actual power determined by numerical

results for both the training and test set. In part (a), the ANNmodel with three hidden layers can achieve an MAE of 0.031200 and a R2

coefficient of 0.98 for test data. As shown in Fig. 7(b), the ANN model with two hidden layers achieves an MAE of 0.01612 and a R2

coefficient of 0.99 for test data, indicating improved accuracy compared to the first model (the ANN with three hidden layers).
The results of using the KNNmodel to predict the cell’s power density shown in Fig. 7(c). The optimal value for K, which determines

the number of nearest neighbours considered, is determined by calculating the MAE for K values ranging from 1 to 20. Among the
range of K values evaluated, K = 3 obtains the lowest MAE of 0.036127, and thus, it selected for training the present model. The
accuracy obtained for the training and testing datasets is 97 % and 95 %, respectively. However, the KNN model exhibits lower ac-
curacy compared to the ANN model.

Choosing the optimal model to predict a target quantity is a procedure that requires attention. In Table 6, the performance of

Fig. 6. (a) H2 mole fraction variation at the anode-electrolyte interface with varying A/F ratio at a temperature of 973K, (b); (c) H2 mole fraction
distribution in the anode and fuel flow channel at a temperature of 973K as a function of different A/F ratios.
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Fig. 7. (a) ANN model with three hidden layers and the output parameter P; (b) ANN model with two hidden layers and the output parameter P; (c)
The KNN model with K = 3 and the output parameter P; (d) ANN model with two hidden layers and the output parameter I; (e) KNN model with K =

3 and the output parameter I.
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various trained ANNs and KNN models for predicting the power density examined following hyperparameter tuning. According to the
results, the ANN model with two hidden layers achieves the best accuracy.

6.2.2. Prediction of fuel cell current density
Fig. 7(d) and (e) compare the current density values predicted by the ANN and KNN models with the actual values (obtained from

the numerical data). The outcomes demonstrate similar result as power prediction, the ANN has the best accuracy, and the distribution
of training and testing data points is more uniform around the y = x line.

Table 7 presents the MAE, MSE, RMSE, and R2 coefficients for both the ANN and KNN models.
The results show that the ANN model is more accurate and has fewer errors than the KNN model.
Three new data points have used to evaluate the accuracy of the selected, trained model (ANNwith two hidden layers) in predicting

target values. The input values for these three test data sets presented in Table 8.
Fig. 8 provides a comparison between the results obtained from the multi-physics model simulation and the predicted outcomes

from the first ANN model, which demonstrates higher accuracy. This trained ANN model effectively predicts variations in current
density (Fig. 8(a)) and power density (Fig. 8(b)) values based on voltage changes. In comparison to other research, the ANN method
used in this paper demonstrated excellent predictive accuracy for current and power density with an error rate below 1 % and an R-
score of approximately 99 %. Similar results were found by Xu et al. [29] and Wang et al. [3]who combined multi-physics simulations
with deep learning, achieving a prediction error of less than 1 %. These studies confirm the reliability of AI models in SOFC prediction
and highlight the potential for further optimization through advanced algorithms.

7. Conclusion

This paper presents a comprehensive investigation combining numerical analysis and (AI) techniques to study and predict the
performance of a micro proton-conducting solid oxide fuel cell (H-SOFC) fuelled with methane. Using a detailed numerical approach,
we solved complex mathematical equations, including electrochemical, mass transfer, heat transfer, continuity, and momentum
equations, to understand the behaviour of H-SOFCs under varying operational conditions and by changing the values of air to fuel
ration(A/F), temperature, velocity of the fuel gas and voltage. The numerical simulation results used to train both an artificial neural
network (ANN) and a K-nearest neighbours (KNN) model, enabling accurate predictions of the cell’s output power and current density.

The main findings of this study summarised as follows.

• Impact of Temperature: The performance of H-SOFC using DIR of methane fuel improves significantly as temperature increases.
The simulation results show that as the operating temperature increases from 800 K to 900 K and 1000 K, the maximum output
power density increases from 74.4 mW/cm2 to 678.8 mW/cm2 and 932.6 mW/cm2, respectively, indicating a substantial
enhancement in cell performance.

• Effect of Air-to-Fuel (A/F) Ratio: The numerical model reveals that the current density and power density of H-SOFC decrease as the
A/F ratio increases. Optimal performance achieved at an aspect ratio of A/F = 0.5, where power density increases by 2 % and
current density by 7 % compared to the state at A/F = 1. Conversely, at A/F = 4, power and current density decrease by
approximately 25 % compared to A/F = 1.

• AI Model Accuracy: The ANN model demonstrated remarkable accuracy in predicting the power density and current density of the
H-SOFC, with average absolute errors of less than 1.6 % and an R-score of about 99 %. This confirms the ANN model’s potential as
an effective tool for performance prediction, reducing the reliance on time-consuming numerical simulations.

Overall, increasing the temperature and decreasing the electrochemical conversion voltage enhances the hydrogen conversion rate,
leading to a faster reaction of methane to hydrogen land, and resulting in improved fuel cell performance. The combination of nu-
merical modelling and AI-based prediction represents a significant advancement in studying of H-SOFCs. This hybrid approach pro-
vides a deeper understanding of H-SOFC operations and offers an efficient and accurate method for predicting performance
parameters, significantly reducing the computational cost. The results of this work have the potential to influence future research,

Table 6
Evaluation of the trained models’ performance for predicting power density.

method MAE MSE RMSE R2

ANN (First model) 0.016129 0.0006539 0.0255730 0.990
ANN (Second model) 0.031200 0.0017748 0.042128 0.980
KNN 0.036127 0.0032140 0.056692 0.950

Table 7
Evaluation of trained models for predicting current density.

Method MAE MSE RMSE R2

ANN 0.016599 0.0005871 0.024231 0.99
KNN 0.026136 0.0015718 0.039646 0.97
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promoting the development of more efficient, AI-assisted fuel cell technologies that are practical for a wide range of applications.
Future research could explore the integration of H-SOFCs into hybrid energy systems, where the fuel cell works in conjunction with
other energy technologies (such as gas turbines or renewable energy sources).
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