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Abstract: Estimating the sparse covariance matrix can effectively identify important fea-
tures and patterns, and traditional estimation methods require complete data vectors on all
subjects. When data are left-censored due to detection limits, common strategies such as
excluding censored individuals or replacing censored values with suitable constants may
result in large biases. In this paper, we propose two penalized log-likelihood estimators,
incorporating the L1 penalty and SCAD penalty, for estimating the sparse covariance matrix
of a multivariate normal distribution in the presence of left-censored data. However, the
fitting of these penalized estimators poses challenges due to the observed log-likelihood
involving high-dimensional integration over the censored variables. To address this issue,
we treat censored data as a special case of incomplete data and employ the Expectation Max-
imization algorithm combined with the coordinate descent algorithm to efficiently fit the
two penalized estimators. Through simulation studies, we demonstrate that both penalized
estimators achieve greater estimation accuracy compared to methods that replace censored
values with constants. Moreover, the SCAD penalized estimator generally outperforms the
L1 penalized estimator. Our method is used to analyze the proteomic datasets.

Keywords: sparse covariance matrix; Expectation Maximization algorithm; penalized
estimator; left-censored data

MSC: 62H12; 62-08

1. Introduction
Estimating covariance matrices is a critical problem in modern multivariate data

analysis, with broad applications in fields such as economics [1], finance [2], biology [3],
and social networks [4], among others. The elements of these matrices provide valuable
insights into variance, correlation, and covariance. However, it is challenging to estimate
large covariance matrices, especially when the number of variables exceeds the sample
size. The assumption of sparsity has been extensively developed in the context of large
covariance matrix estimation. This assumption suggests that most of the off-diagonal
elements in a covariance matrix are exactly zero, significantly reducing the number of free
parameters in the covariance matrix.
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There are many studies for sparse covariance matrix estimation. The methods based
on banding [5], tapering [6,7] are proposed when a known ordering of variables is available.
In the absence of information on natural ordering of variables, thresholding [8–10] is
developed by setting smaller elements in the sample covariance matrix to zero. But there is
no guarantee that the thresholding estimator is always positive definite. To enforce positive
definiteness, Rothman [11] and Xue et al. [12] proposed the L1 penalized Frobenius norm
approaches, in which Rothman [11] included an additional logarithmic barrier term into
the objective function and Xue et al. [12] used a direction-altering method. However, it is
known that L1 penalty induces bias in the estimators. To alleviate this bias effect, Wei and
Zhao [13] and Wang et al. [14] imposed non-convex penalties such as smoothly clipped
absolute deviation (SCAD) penalty, minimax concave penalty and an adaptive capped-L1

penalty in the estimation of sparse covariance matrices.
Penalized likelihood techniques provide an alternative for estimating a sparse covari-

ance matrix. Bien and Tibshirani [15] pioneered the covariance graphical lasso method,
which penalized the likelihood with a lasso penalty on the elements of the covariance ma-
trix and used a majorize–minimize approach to approximately minimize the L1 penalized
likelihood. To improve the computational efficiency and numerical stability, Wang [16] de-
veloped a coordinate descent algorithm to fit sparse covariance graphical lasso models. Xu
and Lange [17] developed a likelihood-based method that regularizes the distance from the
covariance estimate to a symmetric sparsity set and proposed a majorization–minimization-
based algorithm to yield a sparse covariance matrix estimation. But the selection of penalty
parameter in Bien and Tibshirani [15], Wang [16] and Xu and Lange [17] is carried out via
computationally expensive cross-validation methods where the estimator is solved many
times to choose the best-suited sparsity. To eliminate the selection of penalty parameter,
Fatima et al. [18] presented a cyclic majorization–minimization-based technique to min-
imize the extended Bayesian information criteria with a L0 penalty. Besides the above
methods, Fatima et al. [19] proposed a two-stage procedure, which first finds zero elements
in the target covariance matrix using false discovery rate multiple hypothesis testing and
then estimates the non-zero elements by a block coordinate descent approach or a proximal
distance approach. Sung and Lee [20] considered a spike and slab prior to introducing
sparsity to the covariance matrix and proposed a sparse covariance estimation method
using a block coordinate descent algorithm to determine the mode of the posterior density
conditional on the structure of the covariance.

Up to this point, all these methodologies mentioned above were formulated assuming
that all data are completely observed. However, in many real-world applications, particu-
larly in fields like epidemiology [21], mass spectrometry-based metabolomics studies [22],
environmental contaminant research [23] and hydrology [24], censored data due to detec-
tion limits are common, in which the value of an observation is not known exactly but
rather is only known to be above or below a specific value. Therefore, the detection limits
of measurement techniques may make it impossible to achieve data completeness.

A common and simple way to deal with censoring is to delete all study subjects
that contain at least one censored value. However, ignoring these informative censored
values often leads to severe bias and loss of precision due to effective sample size. An-
other common approach is to replace the left-censored value with a representative con-
stant, e.g., the sample mean, half of the left-censored values, or the minimum of the
observations, and then compute the sample covariance based on the complete data ob-
tained. But previous studies have found all these alternative methods to be more or
less biased. To reduce this estimation bias or loss of precision caused by censoring
out-of-range values to the closest possible value, several algorithms were proposed for
computing maximum likelihood estimation of covariance matrix under the assumption
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of a normal distribution in Hoffman and Johnson [25], Jones et al. [26], Pesonen et al. [27].
Hoffman and Johnson [25] proposed a pseudo-likelihood approach by applying the
MLE method to pairs of variables. Jones et al. [26] proposed a maximum pairwise
pseudo-likelihood estimation of covariance matrices based on marginal likelihood.
Pesonen et al. [27] proposed maximum likelihood estimation of finite-memory algorithms
based on pairs of elements and estimation of covariance matrices using parallel pairs of
elements. However, these methods were computationally intensive and unsuitable for the
high-dimensional variable setting. Most importantly, these methods did not address the
problem of sparse covariance estimation.

In this article, we focus on estimating the sparse covariance matrix in the multivariate
normal model in the presence of censored data with detection limits. To obtain a sparse
estimation of covariance matrix, we suggest penalizing the log-likelihood function of the
censored data using the L1 penalty and the SCAD penalty. However, the log-likelihood
function involves high-dimensional integral, leading to high computational complexity.
In this paper, we treat censored data as a special kind of incomplete data and we apply
the Expectation Maximization (EM) algorithm [28] to optimize the penalized likelihood
of censored data. In the Expectation step of the EM algorithm, we use an approximation
method or Monte Carlo sampling method to calculate the Q function, i.e., the expectation of
the log-likelihood function of complete data. In the maximization step of the EM algorithm,
we apply the coordinate descent algorithm developed by Wang [16] to optimize the Q
function with the L1 penalty. For the SCAD penalty, we reformulate the Q-function as a
series of penalized likelihood problems with a weighted L1 penalty, using the local linear
approximation (LLA) proposed by Zou and Li [29]. We then modify the coordinate descent
algorithm of Wang [16] to efficiently optimize these penalized likelihood problems with the
weighted L1 penalty. We show the performance of the proposed estimators via simulation
studies. We apply our method to analyze a proteomics dataset.

The remaining part of this paper is organized as follows. In Section 2, we propose two
penalized estimators for sparse covariance matrix and then fit them by the EM algorithm
combined with the coordinate descent algorithm. In Section 3, we give simulation studies
to show the performance of the proposed method. In Section 4, we analyze a real dataset.
Section 5 presents the conclusions and discusses directions for future research.

2. Sparse Covariance Matrix Estimation for Censored Data
2.1. Penalized Estimator for Censored Data

To incorporate the censoring mechanism in our framework, we follow Little and
Rubin [30] and Augugliaro et al. [31]. Let X =

(
X1, X2, ..., Xp

)⊤ be a p-dimensional random
vector, that follows a multivariate normal distribution Np(µ, Σ). The vector of known
left-censoring values is denoted by l =

(
l1, · · · lp

)
. We denote the censoring pattern by a p-

dimensional random vector R(X; l) with support set {0, 1}p. Specifically, the jth element of
R(X; l) is defined as R

(
Xj, lj

)
= I
(
Xj < lj

)
, where I(·) denotes the indicator function. Thus,

R
(
Xj, lj

)
= 0 (i.e., Xj is observed) only if it is inside the interval [lj,+∞), and R

(
Xj, lj

)
= 1

(i.e., Xj is censored from below) if Xj < lj.
Given a censoring pattern, we divide the set V = {1, . . . , p} into two subsets

o =
{

j ∈ V | rj = 0
}

and c =
{

j ∈ V | rj = 1
}

. Then, xo is the observed vector, and
the observed data can be represented as (xo, r). The density of the observed data (xo, r) is
denoted by

ψ(xo, r | θ) =
∫

Dc
φ(xo, xc | θ)dxc I(lo ≤ xo), (1)
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where φ(xo, xc | θ) is the joint multivariate normal density depending on the parameter
θ = (µ, Σ) and Dc = (−∞, lc) is the region of integration.

Consider n independent samples x1, . . . , xn from a censored multivariate normal
distribution, and we assume that l is known and fixed across the n observations. Let ri

be the ith realization of the random vector R(xi; l), then the variables can be partitioned
into two subsets oi = {j ∈ V|rij = 0}, ci = {j ∈ V|rij = 1}. The ith observation is the
vector (xoi , ri), and the ith complete observation is (xoi , xci ), then we obtain the observed
log-likelihood function

ℓobs(θ | xo, r) =
n

∑
i=1

logψ(xoi , ri | θ) =
n

∑
i=1

log
∫

Dci

φ(xoi , xci | θ)dxci I(loi < xoi ). (2)

To obtain a sparse estimator of covariance matrix Σ, we suggest adding a penalty term to
the log-likelihood function and the resulting penalized estimator is

Σ̂λ = arg min
Σ≻0

−ℓobs(θ | xo, r) +
p

∑
i=1

p

∑
j=1

Pλ(|Σij|), (3)

where Σ ≻ 0 means Σ is a positive definite matrix, Σij is the (i, j)-element of matrix Σ
for i, j = 1, . . . , p, and λ > 0 is a penalty parameter. If the function Pλ(|x|) is defined as
λ|x|, the penalty term corresponds to the L1 penalty λ∥Σ∥1 = λ ∑j,k |Σjk|, yielding the L1

penalized estimator. The L1 penalty can estimate a sparse covariance matrix by shrinking
smaller elements toward zero. However, it introduces biases in the estimates for larger
elements, as the penalty increases linearly with the element’s magnitude. By contrast, the
SCAD penalty alleviates the bias problem induced by the L1 penalty. Similarly, the SCAD
penalized estimator can be obtained by using the SCAD penalty, i.e.,

Pλ(|x|) =


λ|x|, if |x| ≤ λ
−|x|2+2aλ|x|−λ2

2(a−1) , if λ < |x| ≤ aλ

λ2(a+1)
2 , if |x| > aλ,

(4)

whose first order derivative is given by

P
′
λ(|x|) = λ

{
I(|x| ≤ λ) +

(aλ − |x|)+
(a − 1)λ

I(|x| > λ)

}
,

where a > 2 is also a penalty parameter for SCAD, with Fan and Li [32] recommending
the setting a = 3.7. We use this value in our simulation studies. Note that P

′
λ(|x|) is

nonnegative since SCAD is monotonically nondecreasing over [0, ∞).
There are two challenges to be addressed. First, the log-likelihood function (2) involves

complex integration. Second, the optimization problem in (3) is not convex.
The minimization of the penalized observed likelihood is not easy since its ana-

lytical form is not available. Pesonen et al. [27] maximized the likelihood based on a
finite-memory algorithm for boundary-constrained optimization, but with high complex-
ity. Lee and Scott [33] used the EM algorithm, but the E-step requires the second-order
moments of the truncated normal distribution, which makes the computation slow.

2.2. Fitting L1 Penalized Estimator by the EM Algorithm

In this paper, we view censored data as a special kind of incomplete data and apply
the Expectation Maximization (EM) algorithm [28] to solve the optimization problem in
(3). The EM algorithm is an iterative method to find maximum likelihood estimates of
parameters in statistical models in the presence of incomplete data. It alternately iterates
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the expectation step (E-step) and maximization step (M-step) until convergence. E-step
computes the Q-function, i.e., the conditional expectation of the complete log-likelihood
based on the observed data and the current parameters. M-step minimizes the Q-function
to update the parameters. In this paper, we suggest two strategies, i.e., approximate
computation and the Monte Carlo integration, to speed up calculating the Q function in the
E-step, and the resulting EM algorithms are denoted as ApEM and MCEM.

For the censored multivariate normal distribution, the ith complete observation is
xi = (xioi , xici ). The log-likelihood function of complete data is written as

lcom(θ | xo, xc) ∝ − log|Σ| − 1
n

tr
(

Σ−1T2

)
+

2
n

µ⊤Σ−1T1 − µ⊤Σ−1µ, (5)

where T1 =
n
∑

i=1
xi, T2 =

n
∑

i=1
xix⊤i . Let θ(t) = (µ(t), Σ(t)) be the estimate of the parame-

ter θ = (µ, Σ) in the tth iteration of the EM algorithm, then the E-step and M-step are
implemented as follows.

2.2.1. E-Step

In E-step, the Q-function is

Q(θ, θ(t)) = E(−lcom(θ|xo, xc)|xo, r, θ(t)) + λ||Σ||1

∝ log|Σ|+ 1
n

tr
(

Σ−1T(t+1)
2

)
− 2

n
µ⊤Σ−1T(t+1)

1 + µ⊤Σ−1µ + λ||Σ||1 (6)

where

T(t+1)
1 = E

(
T1 | xo, r, θ(t)

)
=

n

∑
i=1

E

((
xioi

xici

)
| xioi , ri, θ(t)

)
, (7)

T(t+1)
2 = E

(
T2 | xo, r, θ(t)

)
=

n

∑
i=1

E

((
xioi x

⊤
ioi

xioi x
⊤
ici

xici x
⊤
ioi

xici x
⊤
ici

)
| xioi , ri, θ(t)

)
. (8)

To compute the Q function, it suffices to compute conditional expectation E(xici | xioi , ri, θ(t))

and E(xici x
⊤
ici

| xioi , ri, θ(t)). Note that, given (xioi , ri), xici follows a truncated multivariate

normal distribution TMN(µ
(t)
ci |oi

, Σ(t)
ci |oi

, lci ), where µ
(t)
ci |oi

= µ
(t)
ci − Σ(t)

cioi (Σ
(t)
oioi )

−1(xioi − µ
(t)
oi ),

and Σ(t)
ci |oi

= Σ(t)
cici − Σ(t)

cioi (Σ
(t)
oioi )

−1Σ(t)
oici . Thus, calculating the Q-function requires computing

the first and second moments of a multivariate truncated normal distribution. Lee [34]
utilized the distribution function of the multivariate normal distribution to compute the
first and second moments, and Lee and Scott [33] applied the eigenfunctions to find the
first and second moments. However, all of these methods involve multivariate numerical
integration, which results in a heavy computational burden when dealing with observations
that have multiple censored variables.

In order to speed up the computation of the Q-function, we first consider an approxi-
mate computation via a univariate truncated normal distribution inspired by Guo et al. [35]
and Augugliaro et al. [31]. Specifically, we approximate E(xij|xioi , ri, θ(t)) ≈ E(xij|xioi , j),
where the conditional expectation on the right side of the approximate equality is
computed assuming that xij|xioi , j follows a univariate truncated normal distribution

TN((µ
(t)
ci |oi

)j, (Σ
(t)
ci |oi

)jj, lj). Note that the above computation is approximate, because, for
j ∈ ci, the marginal conditional distribution of xij given xioi and ri is generally not a uni-
variate truncated normal distribution [36], although xici follows the truncated multivariate

normal distribution TMN(µ
(t)
ci |oi

, Σ(t)
ci |oi

, lci ). One advantage of the approximate computa-
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tion is that the moment of the univariate truncated normal distribution can be computed
by exact formulas and requires only the evaluation of the cumulative distribution of the
univariate Gaussian distribution [37].

Similarly, the second moment E(xici x
⊤
ici
|xioi , ri) in T(t+1)

2 can be computed approx-

imately as follows. For j, j′ ∈ ci, when j ̸= j′, we approximate E(xijxij′ |xioi , ri, θ(t)) ≈
E(xij|xioi , j)E(xij′ |xioi , j′); when j = j′, E(x2

ij|xioi , ri, θ(t)) ≈ E(x2
ij|xioi , j). Note that the condi-

tional expectation at the right end of the two approximate equal signs is computed assuming
that xij|xioi , j follows a univariate truncated normal distribution TN((µ

(t)
ci |oi

)j, (Σ
(t)
ci |oi

)jj, lj).
An alternative approach for accelerating the computation of Q-function is the Monte

Carlo EM (MCEM) method of Wei and Tanner [38], in which a sequence of samples are
generated from the conditional predictive distribution given the observed data and the
current parameter to compute an approximation to the Q function. Specifically, for the
ith observation (xoi , ri), K random samples x(1)ci , x(2)ci , ..., x(K)ci are drawn from the condi-
tional predictive distribution p(xci |xoi , ri), i.e., the truncated multivariate normal dis-

tribution TMN
(

µ
(t)
ci |oi

, Σ(t)
ci |oi

, lci

)
. Then, we obtain the complete data x(k)i =

(
xoi , x(k)ci

)
,

where k = 1, 2, . . . , K, i = 1, 2, . . . , n. Thus, the approximation can be obtained as

T(t+1)
1 ≈ 1

nK

n
∑

i=1

K
∑

k=1
x(k)i and T(t+1)

2 ≈ 1
nK

n
∑

i=1

K
∑

k=1
x(k)i x(k)

⊤

i .

2.2.2. M-Step

Next, we compute the updates θ(t+1) = (µ(t+1), Σ(t+1)) as minimizer of Q(θ, θ(t)) in
(6). It is easily seen from (6) that µ(t+1) and Σ(t+1) satisfy the following equations:

µ(t+1) =
1
n

T(t+1)
1

and

Σ(t+1) = arg min
Σ≻0

log |Σ|+ tr(S(t+1)Σ−1) + λ||Σ||1, (9)

where S(t+1) = 1
n T(t+1)

2 − µ(t+1)µ(t+1)⊤ . Therefore, the update in (9) reduces to a L1

penalized log-likelihood problem for sparse covariance matrix estimation in the complete
data setting, which can be solved by the coordinate descent algorithm of Wang [16].

2.3. Fitting SCAD Penalized Estimator by the EM Algorithm

Using the local linear approximation (LLA) proposed by Zou and Li [29] to the SCAD
penalty, the sparse covariance matrix estimation problem can be reformulated as a sequence
of penalized likelihood problems with a weighted L1 penalty. This can be solved using
an EM algorithm similar to that for the L1 penalty, with only slight modifications to the
coordinate descent algorithm for updating the matrix Σ in the M-step.

2.3.1. E-Step

By replacing the L1 penalty with the SCAD penalty in Equation (6), the Q-function in
the E-step is

Q(θ, θ(t)) = E(−lcom(θ|xo, xc)|xo, r, θ(t)) +
p

∑
i=1

p

∑
j=1

Pλ(|Σij|)

∝ log|Σ|+ 1
n

tr(Σ−1T(t+1)
2 )− 2

n
µ⊤Σ−1T(t+1)

1 + µ⊤Σ−1µ +
p

∑
i=1

p

∑
j=1

Pλ(|Σij|), (10)
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where Pλ(·) refers to the SCAD penalty (4). In each E-step, the LLA algorithm locally
approximates the SCAD by a symmetric linear function. By the Taylor expansion, Pλ(|Σij|)
is approximated in a neighborhood of Σ(t)

ij as follows,

Pλ(|Σij|) ≈ Pλ(|Σ
(t)
ij |) + P

′
λ(|Σ

(t)
ij |)(|Σij| − |Σ(t)

ij |).

Thus, the penalty term can be regarded as a weighted version of the L1 penalty up to
a constant, i.e., P

′
λ(|Σ

(t)
ij |)|Σij|. The weighting scheme is determined by the first-order

derivative of SCAD and the magnitude of the current estimate, with larger magnitudes
corresponding to smaller weights.

Aligned with the E-step of the L1 penalized likelihood method, the key to computing
the Q-function lies in evaluating T(t+1)

1 and T(t+1)
2 , which requires calculating the first and

second moments of a multivariate truncated normal distribution. Two strategies including
approximate computation and Monte Carlo integration are employed. For more details
about these two strategies, refer to Section 2.2.1.

2.3.2. M-Step

The M-step minimizes Q(θ, θ(t)) to obtain the updates θ(t+1) = (µ(t+1), Σ(t+1)), where
µ(t+1) = 1

n T(t+1)
1 and

Σ(t+1) = arg min
Σ≻0

log |Σ|+ tr(S(t+1)Σ−1) +
p

∑
i=1

p

∑
j=1

P
′
λ(|Σ

(t)
ij |)|Σij|, (11)

in which S(t+1) = 1
n T(t+1)

2 − µ(t+1)µ(t+1)⊤ . If all P
′
λ(|Σ

(t)
ij |) are equal to λ, the optimization

problem (11) will reduce to the L1 penalized likelihood method. Due to the varying weights
across elements, the coordinate descent algorithm proposed by Wang [16] cannot be directly
applied to solve (11). Inspired by this algorithm, we update the matrix Σ one column and
row at a time while holding the remaining elements fixed. The update for Σ closely follows
the method in Wang [16]. For completeness, we provide a detailed derivation.

Without loss of generality, we take the last column and row as an example. For this
purpose, we partition Σ and S = S(t+1) as

Σ =

(
Σ11 σ12

σ⊤
12 σ22

)
, S =

(
S11 s12

s⊤12 s22

)
,

where (i) Σ11 and S11 are the covariance matrix and the sample covariance matrix of the first
p − 1 variables, respectively; (ii) σ12 and s12 are the covariances and the sample covariances
between the first p − 1 variables and the last variable, respectively; and (iii) σ22 and s22 are
the variance and the sample variance of the last variable, respectively. Let

β = σ12, γ = σ22 − σ⊤
12Σ−1

11 σ12.

Then, the three terms in (11) can be expressed as a function of (β, γ),

log |Σ| = log(γ) + c1,

tr(SΣ−1) = β⊤Σ−1
11 S11Σ−1

11 βγ−1 − 2s⊤12Σ−1
11 βγ−1 + s22γ−1 + c2,

p

∑
i=1

p

∑
j=1

P
′
λ(|Σ

(t)
ij |)|Σij| = 2

p−1

∑
j=1

P
′
λ(|β

(t)
j |)|β j|+ P

′
λ(|σ

(t)
22 |)(γ + β⊤Σ−1

11 β) + c3,
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where c1, c2 and c3 are constants. Thus, the optimization problem (11) can be turned into a
new one with respect to (β, γ),

min
β,γ

log(γ) + β⊤Σ−1
11 S11Σ−1

11 βγ−1 − 2s⊤12Σ−1
11 βγ−1 + s22γ−1

+ 2
p−1

∑
j=1

P
′
λ(|β

(t)
j |)|β j|+ P

′
λ(|σ

(t)
22 |)(γ + β⊤Σ−1

11 β).

For γ, the minimization problem is

min
γ

log(γ) + bγ−1 + P
′
λ(|σ

(t)
22 |)γ,

where b = β⊤Σ−1
11 S11Σ−1

11 β − 2s⊤12Σ−1
11 β + s22. The solution of γ can be easily obtained as

γ̂ =

b, if P
′
λ(|σ

(t)
22 |) = 0

(−1 +
√

1 + 4bP′
λ(|σ

(t)
22 |))/(2P

′
λ(|σ

(t)
22 |)), if P

′
λ(|σ

(t)
22 |) ̸= 0.

For β, the minimization problem is

min
β

β⊤V β − 2u⊤β + 2
p−1

∑
j=1

P
′
λ(|β

(t)
j |)|β j|,

where V = (vij) = Σ−1
11 S11Σ−1

11 γ−1 + P
′
λ(|β

(t)
j |)Σ−1

11 and u = (uj) = Σ−1
11 s12γ−1. This

problem can be solved by another coordinate descent algorithm. For each j ∈ {1, . . . , p− 1},
the solution of β j is

β̂ j = S(uj − ∑
k ̸=j

vkj β̂k, P
′
λ(|β

(t)
j |))/vjj,

where S(x, t) = sign(x)(|x| − t)+ is the soft-threshold operator. The β j for j = 1, . . . , p − 1
is updated iteratively until the inner coordinate descent algorithm converges. We then
update the column as σ12 = β, σ22 = γ + β⊤Σ−1

11 β followed by cycling through all columns
until convergence.

2.4. Selection of the Shrinkage Parameter

As different shrinkage parameters may lead to estimators with different sparsity levels,
one will usually need to select an appropriate value of λ. Let θ̂λ = (µ̂λ, Σ̂λ) denote the
estimate of θ = (µ, Σ) by using the shrinkage parameter λ. We would like to choose a
value of λ to balance goodness-of-fit and model complexity by minimizing the Bayesian
Information Criterion (BIC)

BIC(θ̂λ) = −2ℓobs(θ̂λ|xo, r) + dfλ · log(n),

over a grid of candidate values for λ, where dfλ denotes the number of nonzero off-diagonal
estimates of Σ̂λ, and n is the sample size. However, the computational burden related to
the evaluation of the observed log-likelihood function is heavy. For this reason, we choose
the value of λ by minimizing the following approximate measure:

BIC(θ̂λ) = −nE(ℓcom(θ̂λ|xo, xc)) + dfλ · log(n)

= n log
∣∣Σ̂λ

∣∣+ tr(Σ̂−1
λ T(t+1)

2 )− 2µ̂⊤
λ Σ̂−1

λ T(t+1)
1 + nµ̂⊤

λ Σ̂−1
λ µ̂λ + dfλ · log(n),
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where T(t+1)
1 and T(t+1)

2 are computed as in (7) and (8), respectively.

3. Simulation
3.1. Simulation Settings

To verify the effectiveness of ApEM and MCEM with both L1 and SCAD penalties, a
simulation study is conducted using R with varying sample sizes n, left-censoring ratios
c, and numbers of variables p. The data are generated from a p-dimensional censored
multivariate normal distribution with a mean vector µ = (0, . . . , 0)T and two kinds of
covariance matrix Σ described as follows:

• Cliques model: We take Σ = diag(C1, . . . , C5), where each Ci is a dense matrix of size
p/5. The off-diagonal elements of Ci are ±0.4 with random sign and the diagonal
element Σi,i = δ, where δ is chosen such that the condition number of Σ equals p.

• First-order moving average model: Diagonal element Σi,i = 1, and Σj,j−1 = Σj−1,j =

0.4 for j = 2, ..., p. The remaining elements are equal to zero.

For each model, we explored all possible configurations with p = 30, 100, n =

200, 500, 1000, and c = 0.1, 0.3. Additionally, we examined high-dimensional set-
tings for the cliques models with L1 penalty, using parameter settings (p, n, c) =

(100, 50, 0.1), (100, 100, 0.1), and (200, 100, 0.1).
Given each configuration (p, n, c), we first draw a Gaussian sample from multivariate

Gaussian distribution N(µ, Σ) and then cut it by a censoring value vector l to obtain
left-censored data, where l is determined by the mean, the square root of variance of
each variable and the percentage of left censoring. We generated N = 50 datasets for
comparison.

In the simulation studies, we compared ApEM and MCEM to the coordinate descent
(CD) algorithm of Wang [16] under both L1 and SCAD penalties. Since the CD algorithm
is only suitable for completely observed data, we applied it to both the complete data
without censoring and the dataset where the censored values were substituted with the
censoring value vector. The resulting CD algorithms are referred to as com_CD and sub_CD,
respectively. The penalty type is prefixed to the algorithm name to clearly distinguish
the results produced by different penalty–algorithm pairings, such as L1_ApEM and
SCAD_MCEM. All codes are available at https://github.com/Shanyi0106/cen_scov.

3.2. Simulation Results

We evaluate each method by L1 norm ||Σ̂ − Σ||1, Frobenius norm ||Σ − Σ̂||F, and
KL divergence, calculated by − log |ΣΣ̂−1| + Tr(ΣΣ̂−1) − p used in [18], where Σ is the
true covariance matrix and Σ̂ denotes the estimated covariance matrix obtained by each
penalty–algorithm combination. Both the L1 norm and the Frobenius norm measure the
distance between the true Σ and the estimated Σ̂, while the KL divergence evaluates
the distance between the two distributions corresponding to Σ and Σ̂, respectively. The
results are presented in line charts in Figures 1–6, showing the average L1 norm, average
Frobenius norm and average KL divergence, all computed over 50 datasets. Note that
MCEM was explored with different sample sizes K = 20, 50, 100, 200 in the E-step, and
similar results were obtained across these values. Therefore, we only present the results
obtained with K = 20.

For low-dimensional settings with n > p, Figures 1 and 2 display the average results
for cliques models, and Figures 3 and 4 show the average results for moving average models.
The three lines, marked with circles, triangles and plus signs, correspond to the settings
n = 200, 500, 1000, respectively. The method com_CD provides an ideal situation where
the data are completely observed and serves as a benchmark for comparison purposes.

https://github.com/Shanyi0106/cen_scov
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From these figures, it is evident that com_CD performs the best under both L1 and SCAD
penalties as expected, except for the cliques model with n = 500, p = 100, c = 0.1 under the
SCAD penalty. Unsurprisingly, sub_CD performs the worst in almost all settings, apart
from the cliques model with n = 200, 1000, p = 100, c = 0.1 and n = 200, p = 100, c = 0.3
under the SCAD penalty. Compared to ApEM, MCEM yields slightly better results, with
the exception of the cliques model with p = 100. In general, the SCAD penalty outperforms
the L1 penalty except in the case when n = 200, p = 100, and the performance of all
methods improves as the sample size increases.
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Figure 1. Line charts of average L1 norm, Frobenius norm, KL divergence for cliques model with
p = 30 under both L1 and SCAD penalties.
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Figure 2. Line charts of average L1 norm, Frobenius norm, KL divergence for cliques model with
p = 100 under both L1 and SCAD penalties.
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Figure 3. Line charts of average L1 norm, Frobenius norm, KL divergence for the moving average
model with p = 30 under both L1 and SCAD penalties.

0
2

0
4

0
6

0
8

0
1

0
0

c=0.1

L
1

 n
o

rm

L
1
_

A
p

E
M

L
1
_

M
C

E
M

L
1
_

s
u

b
_

C
D

L
1
_

c
o

m
_

C
D

S
C

A
D

_
A

p
E

M

S
C

A
D

_
M

C
E

M

S
C

A
D

_
s
u

b
_

C
D

S
C

A
D

_
c
o

m
_

C
D

0
1

2
3

4
5

c=0.1

F
ro

b
e

n
iu

s
 n

o
rm

L
1
_

A
p

E
M

L
1
_

M
C

E
M

L
1
_

s
u

b
_

C
D

L
1
_

c
o

m
_

C
D

S
C

A
D

_
A

p
E

M

S
C

A
D

_
M

C
E

M

S
C

A
D

_
s
u

b
_

C
D

S
C

A
D

_
c
o

m
_

C
D

0
5

1
0

1
5

2
0

c=0.1

K
L

 d
iv

e
rg

e
n

c
e

L
1
_

A
p

E
M

L
1
_

M
C

E
M

L
1
_

s
u

b
_

C
D

L
1
_

c
o

m
_

C
D

S
C

A
D

_
A

p
E

M

S
C

A
D

_
M

C
E

M

S
C

A
D

_
s
u

b
_

C
D

S
C

A
D

_
c
o

m
_

C
D

n=200
n=500
n=1000

5
0

1
0

0
1

5
0

c=0.3

L
1

 n
o

rm

L
1
_

A
p

E
M

L
1
_

M
C

E
M

L
1
_

s
u

b
_

C
D

L
1
_

c
o

m
_

C
D

S
C

A
D

_
A

p
E

M

S
C

A
D

_
M

C
E

M

S
C

A
D

_
s
u

b
_

C
D

S
C

A
D

_
c
o

m
_

C
D

0
2

4
6

8

c=0.3

F
ro

b
e

n
iu

s
 n

o
rm

L
1
_

A
p

E
M

L
1
_

M
C

E
M

L
1
_

s
u

b
_

C
D

L
1
_

c
o

m
_

C
D

S
C

A
D

_
A

p
E

M

S
C

A
D

_
M

C
E

M

S
C

A
D

_
s
u

b
_

C
D

S
C

A
D

_
c
o

m
_

C
D

0
2

0
4

0
6

0
8

0

c=0.3

K
L

 d
iv

e
rg

e
n

c
e

L
1
_

A
p

E
M

L
1
_

M
C

E
M

L
1
_

s
u

b
_

C
D

L
1
_

c
o

m
_

C
D

S
C

A
D

_
A

p
E

M

S
C

A
D

_
M

C
E

M

S
C

A
D

_
s
u

b
_

C
D

S
C

A
D

_
c
o

m
_

C
D

Figure 4. Line charts of average L1 norm, Frobenius norm, KL divergence for the moving average
model with p = 100 under both L1 and SCAD penalties.

Figures 5 and 6 present the line charts of the average L1 norm, the average Frobenius
norm and average KL divergence, for high-dimensional settings with n ≤ p under the L1

penalty. When p = 100, n = 50, MCEM runs slightly better than ApEM. For the settings
with p = 100, n = 100 and p = 200, n = 100, MCEM and ApEM perform similarly.

Furthermore, the average CPU times in seconds and the average number of itera-
tions for the cliques model and moving average model with the L1 penalty under low-
dimensional settings are presented in Tables A1 and A2, respectively, highlighting a sig-
nificant advantage of MCEM over ApEM in terms of the computational efficiency. From
Table A3, we observe that for the cliques model with the L1 penalty under high-dimensional
settings, all algorithms, particularly ApEM and MCEM, are computationally expensive.
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The reason is that the number of EM iterations required for the given smallest shrinkage
parameter λ is high, causing the EM algorithm to call the CD algorithm many times, which
leads to a substantial computational burden.
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Figure 5. Line charts of average L1 norm, Frobenius norm, KL divergence for the cliques model with
c = 0.1, p = 100, n = 50, 100 under the L1 penalty.
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Figure 6. Line charts of average L1 norm, Frobenius norm, KL divergence for cliques model with
c = 0.1, p = 200, n = 100 under the L1 penalty.

3.3. Cell Signalling Dataset Under Artificial Censoring

In this subsection, we assess the performance of L1_ApEM and L1_MCEM using
real biological data that were used in [15] for sparse covariance matrix estimation. The
data consist of flow cytometry measurements of the concentrations of p = 11 proteins
in n = 7466 cells [39]. Despite the data being fully observed, we apply our methods
to the datasets where observations are made artificially left-censored, similarly to [31].
Two datasets are generated with varying degrees of left censoring by designating the top
10% and 30% of the lowest values as missing.

To assess L1_ApEM and L1_MCEM, we compare them with several imputation meth-
ods, such as k-nearest neighbor imputation (denoted as L1_missknn), random forest impu-
tation (denoted as L1_missforest), half of censored value imputation (denoted as L1_half),
column mean imputation (denoted as L1_colmean) and lower limit of detection as censored
value (denoted as L1_sub_CD). All these techniques start by imputing censored values and
then utilize the CD algorithm to obtain the L1 penalized estimation of the covariance matrix.
The obtained estimated covariance matrix is denoted by Σ̂cen by some imputation method,
L1_ApEM or L1_MCEM. We also use the CD algorithm on the complete data without
censoring and obtain Σ̂com. We compute the metric L1 norm = ||Σ̂cen − Σ̂com||1, Frobenius
norm = ||Σ̂cen − Σ̂com||F, and KL divergence = − log |Σ̂comΣ̂−1

cen|+ Tr(Σ̂comΣ̂−1
cen)− p.

Table 1 shows average metrics for L1_ApEM, L1_MCEM, L1_sub_CD, L1_half,
L1_colmean, L1_missknn and L1_missforest under varying degrees of censoring. It can be
seen from Table 1 that L1_ApEM and L1_MCEM outperform all imputation methods. The
performance of all methods decreases as degree of censoring increases.
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Table 1. Average L1 norm, Frobenius norm and KL divergence of L1_ApEM, L1_MCEM, L1_sub_CD,
L1_half, L1_colmean, L1_missforest and L1_missknn under various degrees of censoring (0.1 and 0.3).

c = 0.1 c = 0.3

L1 Norm Frobenius Norm KL Divergence L1 Norm Frobenius Norm KL Divergence

L1_ApEM 3.03 0.59 0.64 6.28 1.22 1.97
L1_MCEM 2.44 0.49 0.62 4.19 0.84 2.70
L1_sub_CD 3.96 0.78 1.41 6.51 1.31 8.88
L1_half 3.53 1.19 1.60 9.92 3.10 4.20
L1_colmean 6.72 1.27 3.18 10.67 2.10 10.96
L1_missknn 5.86 1.12 3.45 8.96 1.77 11.43
L1_missforest 5.67 1.11 4.62 8.78 1.79 21.11

4. Application to Proteomic Datasets
In this section, we will apply L1_ApEM and L1_MCEM to analyze the proteomics

dataset in the R package ‘imputeLCMD’ [40]. The data contain three biological replicates
and three technical replicates each of Conditioned Medium (CM) and Whole Cell Lysate
(WCL) for the C8-D1A cell line. The dataset was processed using MaxQuant for iBAQ
protein intensities. It includes 18 iBAQ protein intensities for 7396 proteins, where each
iBAQ protein intensity has a left-censored loss ratio of more than 10%. The data were
log-transformed in our analysis.

We compare L1_ApEM and L1_MCEM with the imputation methods used in the
previous section. The imputation methods start by estimating censored values and then
utilize the CD algorithm to obtain the L1 penalized estimator of the covariance matrix. Then,
we calculate the correlation coefficient matrices from the estimated covariance matrices,
and sample correlation matrix using sample data. We present heat maps of correlation
matrices in Figure 7. From Figure 7, we can see that both L1_ApEM and L1_MCEM result
in a sensible sparsity pattern, as they not only preserve the relationships between variables
with strong correlations but also yield sparse estimates for variables with weak correlations.
The heat map obtained by our method is clustered into two blocks, indicating a stronger
correlation between the first nine variables, which are the iBAQ values of proteins secreted
by the cell into its external environment, and the last nine variables, which are the iBAQ
values of all proteins inside the cell.

sample correlations L1_sub_CD L1_ApEM L1_MCEM

−1

−0.5

0

0.5

1

L1_half L1_colmean L1_missforest L1_missknn

−1

−0.5

0

0.5

1

Figure 7. Heat maps of correlation coefficient matrices estimated by L1_ApEM, L1_MCEM,
L1_missforest, L1_missknn, L1_half, L1_colmean, L1_sub_CD and sample correlations for pro-
teomic dataset.
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5. Conclusions
In this paper, we proposed ApEM and MCEM under the L1 penalty and the SCAD

penalty for estimating sparse covariance matrices in the multivariate normal model with
left-censored data due to detection limits. Simulation studies reveal that ApEM and MCEM
outperform imputation methods, regardless of whether the L1 penalty or the SCAD penalty
is used, and that the estimates obtained by SCAD penalization generally outperform those
obtained by the L1 penalty in most cases. Furthermore, we analyze cell signaling and
proteomic datasets, demonstrating the advantages of ApEM and MCEM over imputation
methods for estimating sparse covariance matrices.

As shown in Wu [41] and Chapter 3 of McLachlan and Krishnan [42], under mild
conditions, every limit point of the sequences generated by EM converges to a local maxi-
mum rather than a global maximum. Thus, the global convergence of ApEM and MCEM
cannot be guaranteed, as they are proposed based on the EM framework. Since different
initial values may result in different estimated covariance matrices Σ, we compared the
performance of two initialization strategies. One strategy uses the sample covariance matrix
calculated from the dataset, where censored values are substituted by the censoring value
vector, while the other uses a diagonal matrix with diagonal elements derived from the
first strategy. The simulation results display that these two strategies yield similar average
L1 norm, average Frobenius norm and average divergence across all four methods under
the L1 penalty, including ApEM, MCEM, sub_CD and com_CD. This suggests that the
two initialization strategies have little impact on the performance. Due to time constraints,
further simulations related to initialization will be conducted in future research.

The current study can also be extended in the following directions. First, the M-steps
of the proposed ApEM and MCEM algorithms are computationally expensive for high-
dimensional settings, especially the settings with small sample size, so we will try a more
efficient algorithm, such as the proximal distance algorithm proposed by Xu and Lange [17],
to reduce the computational burden. We also will consider the L0 penalty using the
extended Bayesian information criteria as in [18] to eliminate the need for hyper-parameter
tuning to speed up computation. Second, we will try a non-convex penalty such as minimax
concave penalty (MCP) to reduce the estimation bias of L1 penalty, as discussed by Wei
and Zhao [13]. Third, it is of interest to further study the consistency for the proposed
penalized log-likelihood estimator under technical assumptions. Fourth, estimating a
sparse covariance matrix without assuming a normal distribution is interesting, since the
normal distribution assumption may not be satisfied for some censored datasets.
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Appendix A
Tables A1–A3 show the average CPU times (in seconds) for the E-step and M-step,

the total average CPU time (in seconds), and the average number of iterations for both
the L1_ApEM and L1_MCEM methods and the average CPU times (in seconds) for the
L1_com_CD and L1_sub_CD algorithms. Overall, the CPU time increases with the number
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of variables p, the sample size n, and the percentage of censoring c. L1_MCEM runs faster
than L1_ApEM in E-step in all the settings.

Table A1. Average CPU time (in seconds) of E-step and M-step, average CPU time in total and
average number of iterations for cliques model with L1 penalty under low-dimensional settings.

c = 0.1 c = 0.3

E-Step M-Step Total iter E-Step M-Step Total iter

p = 30

n = 200

L1_ApEM 18.58 0.26 18.85 3.72 71.78 0.41 72.21 7.00
L1_MCEM 6.16 0.25 6.45 3.58 20.36 0.43 20.84 7.15
L1_sub_CD 0.35 0.33
L1_com_CD 0.33 0.33

n = 500

L1_ApEM 44.42 0.22 44.66 3.02 172.96 0.33 173.32 6.50
L1_MCEM 14.31 0.22 14.70 3.20 46.28 0.39 46.84 5.95
L1_sub_CD 0.34 0.33
L1_com_CD 0.33 0.32

n = 1000

L1_ApEM 88.54 0.24 88.81 3.00 343.98 0.33 344.35 6.35
L1_MCEM 27.55 0.23 28.09 3.02 89.53 0.40 90.21 6.35
L1_sub_CD 0.33 0.30
L1_com_CD 0.33 0.31

p = 100

n = 200

L1_ApEM 43.34 17.56 61.01 4.00 187.14 31.11 218.46 11.00
L1_MCEM 21.01 17.24 38.64 3.98 60.08 25.88 86.39 6.75
L1_sub_CD 18.48 24.61
L1_com_CD 23.93 23.49

n = 500

L1_ApEM 107.28 9.26 116.69 4.00 440.50 16.14 456.86 7.00
L1_MCEM 49.24 8.92 59.17 3.72 121.94 16.51 139.50 7.25
L1_sub_CD 16.46 14.27
L1_com_CD 12.25 11.94

n = 1000

L1_ApEM 212.09 9.01 221.33 3.98 860.64 14.79 875.71 7.00
L1_MCEM 86.89 7.57 95.87 3.14 228.27 15.79 245.57 6.75
L1_sub_CD 12.71 13.15
L1_com_CD 11.94 11.92

Table A2. Average CPU time (in seconds) of E-step and M-step, average CPU time in total and average
number of iterations for moving average model with L1 penalty under low-dimensional settings.

c = 0.1 c = 0.3

E-Step M-Step Total iter E-Step M-Step Total iter

p = 30

n = 200

L1_ApEM 14.59 0.18 14.79 3.08 62.09 0.31 62.42 6.25
L1_MCEM 5.54 0.21 5.79 3.54 21.81 0.39 22.24 6.45
L1_sub_CD 0.29 0.30
L1_com_CD 0.28 0.28

n = 500

L1_ApEM 36.09 0.17 36.27 3.00 149.25 0.31 149.57 6.00
L1_MCEM 12.98 0.18 13.31 3.10 50.66 0.34 51.15 6.10
L1_sub_CD 0.25 0.29
L1_com_CD 0.25 0.28

n = 1000

L1_ApEM 70.72 0.16 70.90 3.00 296.08 0.28 296.38 6.00
L1_MCEM 24.62 0.17 25.08 3.10 99.67 0.34 100.30 6.00
L1_sub_CD 0.26 0.26
L1_com_CD 0.25 0.25

p = 100

n = 200

L1_ApEM 43.32 45.07 88.50 4.00 187.35 66.16 253.69 7.40
L1_MCEM 20.03 49.82 70.22 4.18 106.78 92.13 199.34 10.40
L1_sub_CD 64.71 85.31
L1_com_CD 59.13 58.58

n = 500

L1_ApEM 85.26 14.31 99.72 3.08 379.60 27.41 407.22 6.00
L1_MCEM 43.73 16.41 61.13 3.30 184.79 30.94 216.82 6.25
L1_sub_CD 23.80 31.77
L1_com_CD 23.56 23.28

n = 1000

L1_ApEM 160.32 13.98 174.51 3.00 766.09 25.91 792.26 6.00
L1_MCEM 78.11 14.89 94.38 3.04 343.23 29.75 374.44 6.10
L1_sub_CD 23.89 24.15
L1_com_CD 23.49 23.57
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Table A3. Average CPU time (in seconds) of E-step and M-step, average CPU time in total and
average number of iterations for cliques model with L1 penalty under high-dimensional settings.

c = 0.1

E-Step M-Step Total iter

p = 100

n = 50

L1_ApEM 92.20 230,702.07 230,795.24 5.70
L1_MCEM 18.74 18,491.17 18,510.35 4.70
L1_sub_CD 1916.47
L1_com_CD 832.07

n = 100

L1_ApEM 23.26 187.76 211.14 4.00
L1_MCEM 12.04 348.34 360.73 4.10
L1_sub_CD 465.46
L1_com_CD 369.12

p = 200 n = 100

L1_ApEM 86.25 370,653.01 370,740.91 4.10
L1_MCEM 28.25 22,842.59 22,872.19 4.10
L1_sub_CD 2010.41
L1_com_CD 525.93
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