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Abstract: The use of wireless sensor networks (WSNs) in critical applications such as envi-
ronmental monitoring, smart agriculture, and industrial automation has created significant
security concerns, particularly due to the broadcasting nature of wireless communication.
The absence of physical-layer authentication mechanisms exposes these networks to threats
like spoofing, compromising data authenticity. This paper introduces a multi-attribute
physical layer authentication (PLA) scheme to enhance WSN security by using physical
attributes such as received signal strength indicator (RSSI), battery level (BL), and altitude.
The LoRaWAN join procedure, a key risk due to plain text transmission without encryp-
tion during initial communication, is addressed in this study. To evaluate the proposed
approach, a partially synthesized dataset was developed. Real-world RSSI values were
sourced from the LoRa at the Edge Dataset, while BL and altitude columns were added to
simulate realistic sensor behavior in a forest fire detection scenario. Machine learning (ML)
models, including Logistic Regression (LR), Random Forest (RF), and K-Nearest Neighbors
(KNN), were compared with deep learning (DL) models, such as Multi-Layer Perceptron
(MLP) and Convolutional Neural Networks (CNN). The results showed that RF achieved
the highest accuracy among machine learning models, while MLP and CNN delivered
competitive performance with higher resource demands.

Keywords: wireless sensor networks; physical-layer authentication; deep learning; machine
learning; spoofing; multi-attribute; altitude; radio frequency fingerprinting; battery level;
RSSI; LoRaWAN

1. Introduction
IoT has become an important technology across multiple sectors, impacting industries

such as healthcare, smart cities, agriculture, environmental monitoring, and more. IoT, as
defined by Ref. [1], is a complex system of entities—comprising cyber-physical devices,
information resources, and people—that exchange information and interact with the physi-
cal world through sensing, processing, and actuating. In recent years, the integration of
Artificial Intelligence (AI) with IoT has further accelerated technological advancements,
created new use cases, and enhanced the capabilities of next-generation connected sys-
tems [2]. According to Ref. [3], combining AI and IoT will transform industries by creating
smarter and more flexible networks and infrastructure. An essential component within
the IoT ecosystem is WSNs, consisting of numerous sensor devices deployed to gather
environmental data such as temperature and humidity [4]. Based on Ref. [5], WSNs are
experiencing rapid growth, with the global market expected to expand at a Compound
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Annual Growth Rate (CAGR) of 17.64%, reaching a valuation of USD 148.67 billion. WSNs
play a crucial role in monitoring systems across multiple domains, such as healthcare,
agriculture, and environmental protection, including forest fire detection.

However, the security challenges posed by the large-scale deployment of IoT and WSN
devices are significant. The heterogeneity of IoT devices, particularly in WSNs, introduces
vulnerabilities due to resource constraints such as limited battery life, processing power,
and storage capacity. These constraints make it difficult to implement robust software- and
hardware-based security measures, exposing the network to external attacks [6].

Security in WSNs is particularly critical given the real-time, sensitive nature of the data
transmitted. Unauthorized access, data manipulation, and network breaches could have
devastating consequences, especially in applications such as healthcare and environmental
monitoring, where WSNs are often deployed in open, unattended environments. For
instance, in healthcare, WSNs can monitor patients’ vital signs, while in military operations,
they can detect enemy intrusion. Both scenarios rely on the authenticity, integrity, and
confidentiality of the data transmitted over the WSNs [7].

Given the broadcasting nature of LoRaWAN, networks using this protocol remain
particularly susceptible to attacks like eavesdropping, data forgery, and spoofing. Spoofing
occurs when a malicious actor impersonates a legitimate sensor by falsifying attributes such
as MAC addresses, signal strength, or location. These attacks compromise the authenticity
and reliability of transmitted data, potentially leading to unauthorized access and the
disruption of critical applications [8,9]. In addition to spoofing, jamming attacks can
disrupt communication by introducing intentional interference, rendering the network
unusable and causing significant reliability issues [10].

LoRaWAN’s OTAA join procedure aggravates these vulnerabilities by transmitting
plaintext device identifiers during initial communication, making it a critical risk area for
spoofing attacks. This lack of encryption enables attackers to intercept and manipulate
transmitted data, highlighting the need for stronger physical-layer authentication mecha-
nisms to secure communication. To address these security challenges, this paper presents a
novel multi-attribute PLA scheme for WSNs. PLA offers a proactive approach to security
by authenticating devices based on their unique physical characteristics, such as RSSI, BL,
and GPS-reported altitude. Unlike traditional cryptographic techniques, which may be too
resource-intensive for WSNs, PLA is better suited for low-power devices, providing an
efficient means of ensuring device authenticity at the physical layer. This research focuses
on applying the proposed PLA scheme in a forest fire detection scenario, where static
sensors are deployed to monitor environmental conditions.

The proposed PLA approach is designed to mitigate spoofing attacks and unauthorized
access by verifying sensor nodes based on their physical attributes. By combining RSSI,
BL, and altitude, this method ensures the authenticity of sensor nodes during wireless
communication. Integrating both machine learning (ML) models, such as LR, RF, and KNN,
and deep learning (DL) models like MLP and CNN, enables the system to analyze the
collected physical attributes and enhance detection accuracy for malicious nodes attempting
to spoof legitimate sensors.

The key contributions of this research are as follows:

1. We introduce a multi-attribute PLA scheme for LoRaWAN-based WSNs, using RSSI,
BL, and GPS-reported altitude to strengthen device authentication. This additional
physical layer of security aims to reduce susceptibility to spoofing attacks in resource-
constrained networks.

2. ML models, including LR, RF, and KNN, and deep learning models, including MLP
and CNN, are applied to analyze physical attributes (RSSI, BL, and altitude), aiming
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to improve the accuracy of detecting nonlegitimate nodes attempting to impersonate
legitimate sensors.

3. The PLA scheme is tailored specifically for low-power LoRaWAN-based WSN environ-
ments, evaluated using a partially synthesized dataset that integrates real-world RSSI
values from the LoRaWAN at the Edge Dataset (LoED). This ensures that the dataset
reflects practical conditions, making the scheme applicable to real-world scenarios
like forest fire detection, where reliable, low-energy security measures are essential.

4. We provide a detailed evaluation of our proposed scheme, assessing its effectiveness
in detecting spoofing attacks by using standard classification metrics such as accuracy,
precision, recall, and F1-score. Additionally, we evaluate computational efficiency
in terms of training time and memory usage, ensuring suitability for low-power
LoRaWAN environments.

The rest of this paper is structured as follows. Section 2 reviews related work on PLA
schemes and the integration of ML and DL techniques. Section 3 outlines the methodology
for developing the multi-attribute PLA scheme. Section 4 describes the implementation
of the PLA scheme. Section 5 presents the evaluation of the models used for detecting
spoofing attacks. Section 6 concludes the paper and discusses future work.

2. Background on Physical-Layer Security in LoRaWAN and WSNs
Physical-layer security is a critical requirement in WSNs and LoRaWAN, where vul-

nerabilities such as spoofing and jamming pose significant threats. These attacks exploit
the open nature of wireless communication, where signals can be intercepted, manipu-
lated, or disrupted without physical access to the network. Traditional cryptographic
methods are commonly used to secure upper layers of network communication. However,
these approaches impose high computational and energy costs, making them unsuitable
for resource-constrained IoT environments like LoRaWAN and WSNs [11]. PLA offers a
lightweight alternative by using device-specific physical-layer attributes for authentication
and anomaly detection [8].

Spoofing attacks compromise network integrity by allowing malicious nodes to imper-
sonate legitimate devices using forged attributes such as RSSI or MAC addresses. Similarly,
jamming attacks disrupt communication by introducing interference, severely impacting
system reliability. These threats are exacerbated by the lack of encryption at the physical
(PHY) layer in LoRaWAN, as shown in Figure 1, where the red-highlighted section is
labelled as the “Not Protected Layer” in the LoRaWAN communication stack.
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Figure 1 visually demonstrates the vulnerabilities in the LoRaWAN communication
stack, specifically in the PHY layer, due to unencrypted data transmission. This absence of
encryption leaves the PHY layer highly susceptible to critical security threats, including
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spoofing attacks, where malicious actors impersonate legitimate devices, and jamming
attacks, which disrupt communication by introducing intentional interference. These
vulnerabilities underscore the fundamental weakness of the PHY layer, as it lacks intrinsic
mechanisms for data protection or authentication, making it a critical target for adversaries
aiming to compromise network integrity and reliability [12].

2.1. PLA for Spoofing Mitigation

PLA schemes are particularly effective in combating spoofing attacks, which exploit
the broadcast nature of wireless networks. By analyzing device-specific physical attributes,
PLA offers a lightweight mechanism for detecting spoofing attempts without the over-
head of traditional cryptographic solutions [13]. Early PLA methods relied heavily on
single attributes, such as RSSI, due to their simplicity and low energy requirements. How-
ever, RSSI-based schemes are highly susceptible to environmental interference, including
multipath fading and shadowing, which lead to increased false positives and reduced
reliability [8]. To overcome these limitations, researchers have developed multi-attribute
PLA schemes that integrate complementary features for improved detection accuracy. For
instance, Ref. [14] demonstrated the effectiveness of combining RSSI with Radio Frequency
Fingerprints (RFF), using hardware-specific imperfections that are difficult to replicate.
Similarly, advanced techniques using deep learning, as proposed by Ref. [15], enable dy-
namic analysis of network traffic, adapting to varying environmental conditions to enhance
spoofing detection. While PLA is primarily used for spoofing mitigation, its ability to detect
signal anomalies also makes it applicable to jamming detection. For example, sudden drops
in RSSI or consistent interference patterns may indicate jamming activity. Our study builds
on these researches by integrating dynamic and static attributes like RSSI, Battery Level
(BL), and altitude, enabling a multi-attribute approach that addresses spoofing threats in
resource-constrained IoT environments.

2.2. Evolution of Multi-Attribute PLA Schemes

The evolution of PLA schemes reflects a significant shift from single-attribute methods
to multi-attribute approaches, driven by the increasing complexity of physical-layer threats.
Early PLA schemes relied on single attributes, such as RSSI, which, while lightweight,
were vulnerable to environmental interference and dynamic conditions [9]. Recognizing
these limitations, researchers began integrating additional attributes to enhance detection
accuracy and robustness. Ref. [14] introduced a pioneering approach by combining RSSI
with Radio Frequency Fingerprints (RFF) using hardware-specific imperfections for im-
proved spoofing detection. Ref. [16] extended this concept by incorporating timing-based
features, such as signal phase and delay, to address adaptability in highly dynamic envi-
ronments. These studies demonstrated that multi-attribute PLA schemes could outperform
single-attribute methods in both static and dynamic scenarios.

The application of machine learning models further advanced PLA schemes, en-
abling real-time detection of physical-layer threats. Ref. [10] proposed a supervised
learning model for jamming detection in multi-hop IoT networks, combining RSSI and
Signal-to-Noise Ratio (SNR). This approach achieved high detection accuracy while main-
taining computational efficiency, underscoring the scalability of multi-attribute PLA for
IoT systems.

Machine-learning techniques, such as LR and RF, are particularly well suited for
resource-constrained sensors due to their low computational overhead compared to more
complex deep-learning models. These models require minimal processing power while
achieving high detection accuracy, making them effective for real-time spoofing and jam-
ming detection in IoT environments [17]. Recent studies, such as Ref. [18], have explored
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lightweight ML techniques, highlighting their computational efficiency and suitability for
resource-constrained environments. Their work demonstrates the potential of models like
Naïve Bayes and SVMs for achieving high accuracy in detecting physical-layer threats
with minimal resource usage. Similarly, Ref. [19] presented an effective combination of
CNN and LSTM models for the real-time detection of physical-layer attacks in IoT. Their
approach adapts to dynamic network environments. Further, Ref. [20] compared tradi-
tional ML methods, such as decision trees and RF, with deep-learning models like CNN for
RSSI-based jamming detection. Their findings highlighted trade-offs between accuracy and
computational requirements, providing insights into optimizing PLA schemes for diverse
IoT scenarios.

While this progress represents significant progress, they also highlight the need for
novel features and enhanced adaptability, particularly in resource-constrained environ-
ments. This need motivates our work, which integrates additional dynamic and spatial
attributes to extend the capabilities of existing PLA methods.

2.3. Gaps in Existing PLA Approaches

Despite advancements in PLA schemes, several challenges remain in ensuring their
real-world applicability. Single-attribute methods, such as RSSI-based PLA, are prone to
environmental interference and dynamic network conditions, leading to false positives and
reduced reliability [15]. While multi-attribute schemes address some of these limitations,
many rely on static or context-specific attributes that may not generalize well across diverse
IoT environments. Dynamic environments, characterized by factors such as multipath
fading and interference, significantly affect the accuracy of attributes like RFF and signal
timing [14]. Moreover, existing approaches often overlook dynamic features that evolve
naturally with device behaviour, such as battery usage or physical displacement. Emerging
approaches aim to fill these gaps by using lightweight and hybrid models that balance com-
putational efficiency and accuracy. For instance, Ref. [19] demonstrated the effectiveness
of SVMs in constrained environments, while Ref. [20] highlighted hybrid deep-learning
solutions, such as CNN–LSTM models, which adapt to dynamic IoT conditions. These
advancements underline the ongoing efforts to develop scalable and robust PLA schemes
for real-world deployments. Building on these insights, our proposed multi-attribute PLA
scheme integrates both dynamic and static features, including RSSI, BL, and altitude. BL
introduces a time-evolving attribute that reflects device behaviour, enhancing resilience
against replication attacks. Altitude ensures spatial consistency, mitigating the risk of
spoofing through unauthorized device relocation. By combining these attributes, our
scheme adapts effectively to dynamic environments, offering a robust solution for securing
LoRaWAN-based WSNs in challenging scenarios, such as forest fire detection systems.

3. Design and Implementation of the Multi-Attribute PLA Scheme
for LoRaWAN

This section outlines the design, implementation, and evaluation of a multi-attribute
PLA scheme for LoRaWAN-based WSNs. The proposed methodology focuses on securing
communication against spoofing attacks, with a forest fire detection scenario as the primary
use case.

3.1. LoRaWAN Architecture and Deployment

The LoRaWAN architecture used in this study follows a hierarchical structure in-
volving end devices (EDs), gateways (GWs), Join Server (JS), Network Server (NS), and
Application Server (AS). Figure 2 illustrates the LoRaWAN architecture for the proposed
forest fire detection use case.
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The sensors deployed across a monitored area form the ED to GW communication.
The monitored sensors collect environmental data and transmit them to gateways using Lo-
RaWAN’s long-range, low-power communication protocol. These static devices represent
forest fire detection sensors in this scenario.

Then, in the GW to NS section of the architecture, the GWs forward data to the JS
during the Over-The-Air Activation (OTAA) process for device authentication. The NS
ensures routing and data integrity while managing communication between GWs and the
AS. Then, in the next section where the AS is located, the process of authentication happens,
where a decision is made based on the received data and an actionable insight is generated,
such as fire alerts.This deployment mimics real-world LoRaWAN use cases, addressing
vulnerabilities in the OTAA process, where unencrypted join-request messages make the
network susceptible to spoofing. The proposed PLA scheme targets these vulnerabilities by
enhancing physical-layer security.

3.2. Dataset Description

The dataset used in this study originates from the LoRaWAN at the Edge (LoED)
Dataset [18], a real-world dataset capturing network behavior under realistic conditions. It
contains 155,422 entries and includes attributes such as the timestamp of the signal (Time),
a unique identifier for each sensor (Device Address), the gateway receiving the signal,
the RSSI, and SNR. To extend the dataset for the proposed multi-attribute PLA scheme,
two additional attributes were synthesized. The BL was modeled to decrease over time,
reflecting real-world sensor battery depletion, with sudden changes flagged as anomalies.
The altitude attribute was simulated to represent static sensor installation heights with
minor variations to account for GPS inaccuracies. These additions transformed the dataset
into a multi-attribute dataset, combining real-world RSSI values with synthetic BL and
altitude data, thereby simulating environmental and signal variations critical for evaluating
spoofing detection mechanisms.

3.3. PLA Scheme Implementation

The proposed PLA scheme authenticates devices using three physical-layer attributes:
RSSI, BL, and altitude. Each attribute serves as a unique identifier, creating a PLA mech-
anism that is difficult for attackers to replicate. The RSSI values are analyzed to detect
deviations outside expected ranges, indicating potential spoofing. For instance, a sudden
shift from weak to strong RSSI could suggest an illegitimate source. The gradual depletion
of BL is expected during normal operation. Sudden drops may indicate tampering or
sensor compromise. Static sensors maintain consistent altitudes, and significant deviations
suggest physical relocation or replacement. If any of the attributes fall outside their defined
thresholds, the authentication will fail, ensuring that only devices meeting all criteria are
successfully authenticated. This multi-attribute approach ensures effective authentication
against spoofing attacks, enhancing security in vulnerable environments.
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3.4. Data Preprocessing and Model Development

The dataset was preprocessed and balanced to ensure effective training and evaluation
of the proposed PLA scheme. RSSI, BL, and altitude values were standardized to achieve
uniformity and improve model performance. To address data imbalance, legitimate entries
(status = 0) and spoofed entries (status = 1) were balanced through random undersampling.
The evaluation of the PLA scheme utilized a combination of ML and DL models to classify
legitimate versus spoofed sensors. Standard ML models, including LR and KNN, were im-
plemented due to their efficiency and interpretability in resource-constrained environments.
These models were chosen for their ability to provide baseline comparisons in classification
tasks. DL models, specifically MLP and CNN, were employed to explore the capacity
of neural networks to capture non-linear relationships and complex patterns among the
multi-attribute dataset. These architectures were selected for their proven effectiveness in
handling multi-dimensional data while maintaining flexibility for varying input features.
All models were trained and tested on the balanced dataset to ensure consistent evaluation
metrics. The results were analyzed to compare the performance of traditional ML models
and advanced DL techniques in detecting spoofing attacks based on the multi-attribute
PLA framework.

4. Deployment and Model Training of the PLA Scheme
The proposed multi-attribute PLA scheme is implemented in three distinct phases,

each addressing a specific aspect of sensor authentication. These phases ensure seamless
integration with the LoRaWAN architecture and effective protection against spoofing
attacks. This section elaborates on each phase, the ML and DL models used, the dataset
preparation, and the deployment strategy.

4.1. Phase 0: Initial Join Procedure for LoRaWAN

Phase 0 addresses the initial registration of sensors into the LoRaWAN network, which
occurs only once for each sensor. Sensors are registered using either the OTAA method or
the Activation by Personalization (ABP) method. OTAA dynamically generates session
keys during the join process, enhancing security, while ABP provides pre-configured keys
for faster setup but with reduced flexibility. Once registered, sensors transmit encrypted
data to the LoRaWAN gateway. The gateway forwards these data to the NS, where integrity
checks are conducted. The AS processes and securely stores the identification of the sensors
through the built-in LoRaWAN join procedure as shown in Figure 3, phase 0.

4.2. Phase 1: Multi-Attribute PLA

In phase 1, the proposed PLA authentication mechanism becomes active. Sensors
transmit encrypted data containing three key physical-layer attributes of RSSI,BL, and
altitude. These attributes are encrypted using the Application Session Key (AppSKey)
and sent to the gateway. The NS verifies the data’s integrity using the Network Session
Key (NwkSKey) and forwards it to the AS. The AS decrypts the attributes and creates a
database of the three attributes for each sensor. From now on, the sensors that match the
database and have attributes within predefined thresholds are authenticated, allowing their
payloads to be processed. Sensors failing this authentication are flagged as spoofed and
denied access. This phase is also depicted in Figure 3.
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4.3. Phase 2: Continuous Authentication and Anomaly Detection

Phase 2 introduces continuous authentication. In this stage, pre-trained machine
learning (ML) and deep learning (DL) models analyze incoming sensor data in real-time.
Each record is evaluated for deviations in RSSI, BL, or altitude. If any attribute falls
outside acceptable thresholds, the sensor is flagged as spoofed, and its data transmission is
blocked. Legitimate data are processed, ensuring uninterrupted operation. Continuous
authentication also enables model retraining as new data are collected. This adaptability
allows the system to respond effectively to evolving threats and dynamic environments. By
continually refining the model based on real-time data, the scheme enhances its ability to
differentiate between legitimate and non-legitimate sensors. Phase 2 focuses on real-time
detection and prevention of spoofing attacks, as shown in Figure 4.

4.4. Machine Learning and Deep Learning Models

The success of the multi-attribute PLA scheme relies heavily on ML and DL models to
classify sensors as legitimate or spoofed. LR serves as a lightweight binary classification
model that evaluates the likelihood of a sensor’s legitimacy based on its attributes. Its
simplicity and computational efficiency make it well suited for real-time scenarios [21].
RF constructs multiple decision trees, providing robust classification performance, even
in noisy data environments. It is particularly effective for handling non-linear relation-
ships [22]. KNN is a proximity-based classification algorithm that relies on the closeness of
data points. While simple, it may struggle with scalability in high-dimensional spaces [22].
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DL models include the MLP, which is a fully connected network designed to capture
non-linear dependencies. Its architecture incorporates dense layers and dropout mech-
anisms to prevent overfitting, making it effective for structured input features [23]. The
CNN uses convolutional layers to extract spatial and temporal patterns from time-series
data, enhancing the representation of attributes like RSSI, BL, and altitude for improved
classification accuracy [24].

4.5. Dataset Preparation and Model Deployment

The dataset used for this study originates from the LoRaWAN at the Edge Dataset
(LoED) [18], which contains 155,422 entries in one of their files. This dataset is part of
a larger series of files collected over four months. For the purposes of this study, only
this specific file was selected to ensure focused analysis while maintaining relevance to
the proposed PLA scheme. While RSSI values were sourced directly from the dataset, BL
and altitude were synthesized to reflect realistic sensor behavior. These attributes were
preprocessed, standardized, and balanced through random under sampling to address
class imbalance, ensuring fair evaluation of the models.

The ML and DL models were trained on the preprocessed dataset to classify sensors
effectively. During deployment, the models continuously process incoming sensor data,
analyzing any deviations in RSSI, BL, and altitude. Non-legitimate sensors are flagged as
spoofed, providing real-time protection against unauthorized access.
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The hybrid approach of combining lightweight ML models for resource-constrained
environments with advanced DL models for high-accuracy scenarios ensures a balance
between computational efficiency and detection performance. This adaptability makes the
proposed scheme suitable for diverse deployment scenarios.

5. Evaluation of ML and DL Models for Spoofing Detection
This section evaluates the proposed multi-attribute PLA scheme using various ML and

DL models. The evaluation metrics include accuracy, precision, recall, F1-score, training
time, and memory usage. The models evaluated include LR, RF, KNN, MLP, and CNN. The
dataset was balanced through random under sampling and included three critical physical
layer attributes: RSSI, BL, and altitude. Standard classification metrics, including accuracy,
precision, recall, and F1-score, were used to evaluate each model. Additionally, training
time and memory usage were recorded to assess computational efficiency.

The key performance metrics for each model are presented in Table 1, while computa-
tional efficiency metrics are summarized in Table 2.

Table 1. Performance metrics for ML and DL models.

Model Accuracy Precision Recall F1-Score

LR 83.16% 87.27% 83.16% 83.19%
RF 83.74% 87.13% 83.74% 83.74%

KNN 80.23% 80.46% 80.23% 80.23%
MLP 83.04% 87.08% 80.04% 83.04%
CNN 83.29% 87.21% 83.27% 83.27%

Table 2. Computational efficiency metrics for ML and DL models.

Model Training Time (s) Memory Usage (MB)

LR 0.002 0.80
RF 0.084 0.50

KNN 0.002 0.12
MLP 1.83 26.3
CNN 4.15 6.26

Based on the results in Table 1, RF emerged as the best-performing model, achieving
the highest accuracy and F1-score at 83.74%, slightly surpassing other models. LR, MLP,
and CNN exhibited comparable performance, with accuracy values around 83%, while
KNN lagged with an accuracy of 80.23% and corresponding lower precision, recall, and
F1-scores. These findings underscore the varying capabilities of the models in handling the
dataset’s complexity.

LR performed as expected for a linear model, achieving an accuracy of 83.16% and
precision, recall, and F1-scores of 87.27%, 83.16%, and 83.19%, respectively. These results
reflect its ability to effectively handle linearly separable data. With the shortest training
time of approximately 0.002 s and low memory usage of 0.80 MB (as shown in Table 2),
LR demonstrated exceptional computational efficiency, making it suitable for real-time
applications.

RF slightly outperformed LR, achieving an accuracy, recall, and F1-score of 83.74%.
It can handle noisy data and capture non-linear relationships, contributing to its superior
performance. However, the additional complexity of growing multiple decision trees
increased its training time to 0.084 s. Despite this, RF demonstrated efficient memory usage
at 0.50 MB, highlighting its ability to balance performance and computational efficiency.
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KNN exhibited the lowest performance among the evaluated models, achieving an
accuracy of 80.23% and precision, recall, and F1-scores of approximately 80.46%. The
proximity-based classification approach struggled with overlapping data points in the
feature space, particularly when noisy or variable attributes like RSSI, BL, and altitude
were present. While its metrics were lower than other models, KNN demonstrated fast
training (0.002 s) and low memory usage (0.12 MB). However, its reduced accuracy makes
it less suitable for this application.

MLP achieved an accuracy of 83.04% and precision, recall, and F1-scores of 87.08%,
83.04%, and 83.04%, respectively. Its performance is comparable to LR and RF, benefiting
from its ability to model non-linear patterns. However, MLP’s resource demands were
significantly higher, with a training time of 1.83 s and memory usage of 26.3 MB. These
resource requirements stem from the iterative weight optimization and fully connected
architecture, which necessitate substantial computational resources for backpropagation
and gradient descent.

CNN achieved the highest performance among the deep learning models, with an
accuracy of 83.29% and precision, recall, and F1-scores of 87.21%, 83.27%, and 83.27%,
respectively. Its slight improvement over MLP is attributed to its ability to capture spatial
relationships and complex dependencies within the feature space. However, this per-
formance came at the cost of a longer training time (4.15 s) and higher memory usage
(6.26 MB).

Figure 5 visually compares the accuracy, precision, recall, and F1-scores for each
model. While the tabulated data offer detailed numerical metrics, this chart emphasizes
the consistent strengths of RF and CNN across metrics and the noticeable gap in KNN’s
performance. The visualization highlights RF’s dominance in balancing high accuracy and
F1-score, solidifying its position as the best-performing model.
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Training time analysis revealed significant variations across models. LR and KNN
required the least time, making them highly suitable for real-time applications. RF achieved
a balance between efficiency and accuracy with moderate training time, while deep learning
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models, particularly CNN and MLP, exhibited longer training times due to their complex
architectures.

Memory usage analysis underscored the resource efficiency of LR and KNN, which
required minimal memory. RF consumed a modest amount of memory despite its complex-
ity. Among the deep learning models, MLP exhibited the highest memory usage due to
its fully connected architecture, while CNN demonstrated improved efficiency in memory
consumption owing to its convolutional layers.

To better understand the contribution of each attribute (RSSI, BL, and altitude) to
the model’s decision-making, RF feature importance analysis was conducted. The results
revealed the following:

Feature importance analysis, derived from RF as shown in Table 3, identified BL
as the most influential attribute, contributing 44.81% to the model’s decisions. Altitude
followed with 32.22%, and RSSI accounted for 22.86%. These results reinforce the critical
role of BL and altitude in detecting spoofing attacks, validating the multi-attribute PLA
scheme’s effectiveness.

Table 3. Random Forest feature importance analysis.

Feature Importance

Battery 44.81%
Altitude 32.22%

RSSI 33.86%

6. Conclusions
This study introduced a multi-attribute PLA scheme for LoRaWAN-based WSNs using

physical-layer attributes—RSSI, BL, and altitude—to enhance sensor authentication and
mitigate spoofing attacks. The evaluation demonstrated that RF achieved the best overall
performance, with the highest accuracy and F1-score (83.74%), while LR showed exceptional
computational efficiency, making it ideal for real-time, resource-constrained environments.
Among DL models, CNN achieved the highest accuracy (83.29%) and precision, but at the
cost of longer training time and higher memory usage, making it suitable for applications
requiring high accuracy with complex data patterns. Conversely, MLP balanced accuracy
and computational efficiency, highlighting its versatility for dynamic WSN scenarios.

The analysis of training time and memory usage revealed that ML models like LR and
KNN are better suited for lightweight, real-time applications, whereas DL models, partic-
ularly CNN, excel in accuracy-critical environments. RF emerged as a strong competitor
for balancing accuracy, resource efficiency, and adaptability, showcasing its robustness in
handling noisy and non-linear data.

Feature importance analysis using RF identified BL as the most significant attribute
(44.81%), followed by altitude (32.22%) and RSSI (22.86%). This reinforces the importance of
combining dynamic and static physical-layer attributes for effective spoofing detection. The
proposed scheme demonstrated its capability to improve security in low-power LoRaWAN
environments, especially in scenarios like forest fire detection.

For future work, we plan to include RFF as an additional attribute to compare its
effectiveness with RSSI. The PLA scheme will also be improved for use in larger and
more dynamic networks while maintaining efficiency. Furthermore, exploring real-world
implementation scenarios will provide valuable insights into the scheme’s performance
and scalability in practical deployments.
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