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Abstract: This paper investigates the integration of affective computing techniques us-
ing biophysical data to advance emotionally aware machines and enhance child–robot
interaction (CRI). By leveraging interdisciplinary insights from neuroscience, psychology,
and artificial intelligence, the study focuses on creating adaptive, emotion-aware systems
capable of dynamically recognizing and responding to human emotional states. Through
a real-world CRI pilot study involving the NAO robot, this research demonstrates how
facial expression analysis and speech emotion recognition can be employed to detect and
address negative emotions in real time, fostering positive emotional engagement. The
emotion recognition system combines handcrafted and deep learning features for facial
expressions, achieving an 85% classification accuracy during real-time CRI, while speech
emotions are analyzed using acoustic features processed through machine learning models
with an 83% accuracy rate. Offline evaluation of the combined emotion dataset using a
Dynamic Bayesian Mixture Model (DBMM) achieved a 92% accuracy for facial expressions,
and the multilingual speech dataset yielded 98% accuracy for speech emotions using the
DBMM ensemble. Observations from psychological and technological aspects, coupled
with statistical analysis, reveal the robot’s ability to transition negative emotions into
neutral or positive states in most cases, contributing to emotional regulation in children.
This work underscores the potential of emotion-aware robots to support therapeutic and
educational interventions, particularly for pediatric populations, while setting a foundation
for developing personalized and empathetic human–machine interactions. These findings
demonstrate the transformative role of affective computing in bridging the gap between
technological functionality and emotional intelligence across diverse domains.

Keywords: emotion-aware technology; affective computing; child–robot interaction

1. Introduction
Human behavior and cognition emerge from a complex interplay between perception,

cognition, emotions, and actions. Affective computing, which leverages interdisciplinary
insights from neuroscience, psychology, and artificial intelligence, explores these connec-
tions to create systems that can recognize, interpret, and respond to human emotions in real
time. This field is transforming human–technology interaction by integrating emotional
awareness into adaptive AI systems, allowing technology to respond not only to cognitive
but also to emotional states, leading to more personalized and supportive user experiences.
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The interdisciplinary nature of affective computing fosters collaboration across fields
such as neuroscience, psychology, computer science, and engineering, driving advance-
ments that enable technologies to cater to individual emotional responses, preferences, and
needs. By enabling systems to tailor content, user interfaces, and interactions, affective
computing has the potential to optimize user engagement, satisfaction, and outcomes in
diverse settings. Unlike traditional approaches to human–computer interaction, which
focus on general usability and efficiency, affective computing emphasizes the dynamic
interaction between perception, emotion, and cognition to create emotionally intelligent
systems that adapt based on real-time feedback.

Affective computing encompasses key components that drive this field’s innovation:

• Emotion–Cognition Integration: Recognizing that perception, emotion, and cogni-
tion shape each other in complex ways, affective computing systems seek to under-
stand and leverage these interconnections to enhance interaction quality and user
experience [1,2].

• Adaptive Systems: Emotion-aware technologies are designed to detect and respond
to changes in users’ emotional states and adapt accordingly, providing personalized
feedback and interventions that cater to users’ unique needs [3,4].

• Feedback and Intervention: By offering users real-time feedback based on their emo-
tional states, affective computing technologies promote positive emotional experiences
and enhance decision-making, especially in challenging or stressful scenarios [5,6].

• Human–Technology Interaction: Affective computing improves human–computer
interaction by adjusting system responses based on user feedback, creating seam-
less, empathetic, and effective interactions that promote emotional regulation and
engagement [7,8].

Recent advancements in machine learning, including artificial neural networks, deep
learning, and biologically inspired algorithms, have greatly expanded our ability to detect
and analyze emotional patterns [9,10]. Using multimodal data such as speech, facial
expressions, text sentiment, and even neuroimaging data like EEG, affective computing
systems can accurately recognize emotions and identify nuanced transitions in emotional
states [11,12]. This multimodal approach enriches our understanding of human experience
and enables highly accurate emotion recognition in adaptive AI systems.

The applications of affective computing are far-reaching, with significant potential to
transform fields such as healthcare, business, and human–robot interaction. In healthcare,
affective computing can support early mental health interventions by identifying emotional
distress and providing tailored support. In business, it enables customer service systems
to gauge customer satisfaction through analysis of vocal, textual, and facial cues, thus
improving customer interactions and feedback systems. In human–robot interaction,
affective computing facilitates empathetic interactions in applications such as elder care
and social development interventions for children with autism spectrum disorder (ASD).

Affective computing has become integral to our daily interactions, enhancing virtual
assistants, smart homes, and clinical interventions by incorporating emotional awareness.
As AI and machine learning increasingly model principles of human behavior and emotion,
we are building a future where technology is seamlessly integrated with human experience,
enriching lives in unprecedented ways.

As affective computing advances, it holds transformative potential for many domains.
The integration of affective computing into large language models (LLMs), such as Ope-
nAI’s ChatGPT, represents a new era of human–machine interaction [13,14].

Key areas of impact include the following:
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• Personalized Learning and Assistance: By recognizing and responding to users’ emo-
tional cues, LLMs can provide tailored content and recommendations, fostering en-
gaging and effective educational experiences [15].

• Enhanced Human–Computer Interaction: Emotion-aware language models enable
empathetic and contextually aware interactions, where systems not only understand
but adapt to users’ emotions, creating more meaningful engagements [16].

• Mental Health Support: Affective computing offers promise in developing AI-driven
mental health support systems, capable of detecting early signs of distress and provid-
ing customized coping strategies or connecting users with resources [17].

• Empathetic Customer Service: Businesses can leverage affective computing for per-
sonalized, empathetic customer service, where chatbots understand and respond to
emotions, driving higher customer satisfaction [18].

• Creative Expression and Innovation: By enabling emotionally aware interactions,
affective computing empowers artists, writers, and creators with tools for new forms
of expression and innovation [19].

Affective computing has become a key component in child–robot interaction (CRI),
enabling social robots to recognize, interpret, and respond to children’s emotional and cog-
nitive states. By integrating affective computing, robots can foster engagement, personalize
learning experiences, and provide emotional support, making human–robot interaction
more natural and meaningful. This section reviews key research on affective computing
in CRI, engagement detection, and long-term interaction. The authors in [20] provide
a comprehensive review of social robots in education, emphasizing how affective com-
puting enhances robot-assisted learning by recognizing student emotions and adapting
interactions accordingly. Their study highlights the importance of emotion-aware robots in
improving motivation and learning outcomes, while also addressing challenges such as
personalization and ethical considerations. Engagement is a crucial factor in affective child–
robot interaction, as emotionally responsive robots foster more immersive and effective
learning experiences. Castellano et al. [21] propose a framework to detect user engagement
based on characteristics of tasks and social interactions. Their findings demonstrate that
recognizing affective cues, such as facial expressions and social behavior, enables robots
to adapt their responses dynamically, improving user interaction and engagement. Af-
fective adaptation in long-term CRI remains a challenge. The authors of [22] discuss the
need for robots to maintain children’s interest over time, emphasizing that robots must
adapt to individual emotional patterns and learning preferences. Their study suggests
that robots capable of emotional learning and contextual adaptation foster stronger and
more meaningful relationships with children. Leite et al. [23] further explores long-term
interactions with empathic social robots, focusing on how robots can develop emotional
intelligence to sustain engagement. The study highlights that robots capable of recognizing
and responding to users’ emotional states contribute to more effective learning and social in-
teractions, ultimately enhancing the user experience. Furthermore, Wang et al. [24] examine
the effectiveness of educational robots in improving learning outcomes, stressing the role of
affective computing in tailoring instruction to student emotional and cognitive needs. Their
findings confirm that emotion-aware robots improve motivation and the retention of learn-
ing. However, the study also points out the challenges of integrating affective computing
into traditional educational frameworks and ensuring real-time emotional adaptation. In
general, affective computing plays a crucial role in CRI, enabling robots to establish deeper
connections with children by recognizing and responding to their emotions. Although
significant progress has been made in engagement detection, emotion-aware learning, and
long-term adaptation, future research must focus on refining affective models, improving
real-time emotional recognition, and addressing ethical considerations to maximize the
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benefits of child–robot interaction. Therefore, affective computing is poised to reshape
our interactions with machines, creating empathetic and adaptive systems that promote
well-being and creativity. By enabling AI to understand and respond to human emotions,
we can build a future where technology not only serves functional needs but also enriches
human experience in an interconnected world.

Building upon these foundational concepts, this study focuses on applying affective
computing principles to child–robot interactions in pediatric settings. By leveraging emo-
tion recognition technologies, we aim to design adaptive robotic behaviors capable of
responding to children’s emotional states in real time. Using the NAO robot, we explore
how facial expression analysis and speech emotion detection can be integrated to facilitate
dynamic emotional engagement, fostering positive interactions and supporting emotional
regulation. Through a combination of advanced machine learning techniques and clinical
observations, we investigate how emotion-aware robots can enhance user experiences and
address unique emotional needs. This research underscores the potential of affective com-
puting to transform human–machine interaction by creating empathetic systems tailored to
individual preferences and emotional contexts. Thus, the contributions of this paper can be
listed as follows:

• Emotion-aware CRI framework: A novel integration of emotion-aware technology
in child–robot interactions, demonstrating the effectiveness of affective computing
models in the real-time classification of facial expressions, speech emotions, and
text sentiment.

• Multisensorial Data Analysis: Data analysis and insights into the psychological and
behavioral impact of such systems, highlighting their potential for fostering emotional
engagement, regulating emotions, and delivering societal benefits in clinical and
educational contexts.

The remainder of this paper is organized as follows: Section 2 explores the foun-
dations of emotion, tracing its biological origins and linking them to advancements in
emotion-aware technology. Section 3 outlines the experimental setup, detailing the design
of child–robot interaction sessions and the computational methods employed for analyzing
facial expressions, speech emotions, and text sentiment. Section 4 presents the results,
accompanied by an in-depth discussion of the findings, highlighting both technological
performance and psychological insights. Finally, Section 5 concludes the study by summa-
rizing the key contributions and proposing future directions to advance the integration of
emotion-aware technology in real-world applications.

2. Foundations of Emotion: From Biological Roots to
Technological Frontiers
2.1. Neuroscience of Emotion

Emotions are complex psychological and physiological phenomena that involve the
interaction of various brain regions, neurotransmitters, and hormonal systems. The limbic
system, which includes structures like the amygdala, hippocampus, and hypothalamus,
plays a crucial role in processing emotions, memory formation, and regulating physiolog-
ical responses to stress. Understanding the neurobiological underpinnings of emotions
can provide valuable insights into how they influence cognitive processes, behavior, and
decision-making [25,26]. Emotions significantly impact decision-making processes by in-
fluencing attention, memory, judgment, and risk perception. Emotional states can bias
individuals towards certain choices, leading to decisions that may not always align with
rational or logical reasoning. For example, positive emotions can enhance creativity and
openness to new ideas, while negative emotions may narrow focus and increase risk aver-
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sion. By understanding how emotions shape decision-making, we can develop strategies
to mitigate biases and make more informed choices [27,28]. Emotions play a crucial role
in shaping behavior and social interactions, influencing how we perceive and respond to
others, communicate needs, and navigate social dynamics. For instance, emotions like
empathy, compassion, and gratitude foster prosocial behavior and cooperation, while anger,
fear, or jealousy may lead to aggression, avoidance, or withdrawal. By understanding the
interplay between emotions and behavior, we can promote positive social interactions,
conflict resolution, and emotional well-being in individuals and communities [29–33].

Emotion regulation refers to the ability to monitor, evaluate, and modify one’s emo-
tional reactions in response to internal and external stimuli. Effective emotion regula-
tion skills are essential for mental health, interpersonal relationships, and overall well-
being [34,35]. Affective computing leverages insights from neuroscience, psychology, and
technology to develop interventions and tools that facilitate emotion regulation. By enhanc-
ing individuals’ capacity to regulate their emotions, we can improve resilience, adaptive
coping strategies, and psychological flexibility. Emotions can sometimes bypass reasoning,
directly influencing actions, particularly in situations requiring rapid responses for survival
or adaptation. This comprehensive representation captures the complex and dynamic
interaction between perception, emotions, cognition, and behavior. Bayesian reasoning
using prior knowledge can mirror brain processes, merging senses to enhance perception,
facilitating the recognition of emotions, which subsequently influence decision-making and
behavioral responses in interactions with the environment [36–40].

Affective computing offers a multidisciplinary approach to understanding and har-
nessing the power of emotions in human cognition, behavior, and decision-making. By
integrating insights from neuroscience, psychology, and technology, we can develop inno-
vative solutions to enhance emotion regulation, promote mental health, and foster positive
social relationships in today’s increasingly complex and interconnected world [41].

2.2. Common AI/Machine Learning Techniques for Affective Computing

Advancements in affective computing leverage a diverse array of AI and machine
learning (ML) techniques, spanning both deep learning and classical methodologies. Deep
learning techniques, particularly Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), are prominent in this domain due to their ability to simulate
human-like learning processes. In image classification tasks, CNNs excel by extracting
hierarchical patterns and features through multiple layers, enabling them to discern intri-
cate details and nuances within images. Similarly, in audio analysis for speech emotion
recognition [42], features extracted from time–frequency spectrograms provide rich repre-
sentations of audio signals, which are then processed by deep neural networks to capture
subtle emotional cues and patterns [43].

In contrast, classical machine learning techniques are also widely employed, particu-
larly in tasks such as sentiment analysis. Pretrained models, such as Bidirectional Encoder
Representations from Transformers (BERT), offer powerful tools for natural language pro-
cessing, allowing for efficient sentiment analysis and emotion detection in textual data [44].
EEG data analysis using AI also plays a crucial role in understanding brain activity and
emotion regulation [45]. Signal processing techniques, including wavelet transforms, ex-
tract frequency-based features from EEG signals, facilitating the identification of neural
correlates of emotions. These features, along with statistical measures derived from fre-
quency bands, are then utilized by various classifiers, ranging from CNNs to classical
machine learning algorithms like Support Vector Machines (SVMs) and Random Forests
(RFs), to classify emotional states.
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Perception is inherently multisensory [46], where the integration of information across
multiple sensory modalities enhances the robustness of estimations and solves ambiguities.
If input from a single modality is insufficient for reliable assessment, the brain seamlessly
integrates data from various modalities to form a more accurate perceptual representation.
Perception, as a multisensory process, extends its relevance to emotion recognition by
incorporating cues from various sensory modalities [47].

Measuring uncertainties from multiple modalities and data fusion are essential com-
ponents in multimodal approaches [48]. Techniques such as Bayesian inference [49] and
ensemble learning are employed to combine information from multiple sensory modalities,
enhancing the robustness and accuracy of emotion recognition systems. Additionally,
AI models, including pretrained architectures and novel deep learning frameworks, con-
tinue to evolve, driving advancements in research and real-world applications of affective
computing. Data fusion techniques are essential, particularly in the domain of multisen-
sory integration [50]. Early fusion [51], also known as feature-level fusion, combines raw
data from multiple sources into a single representation at the earliest stage of processing,
preserving the integrity of the original data but with potential computational load and
complexity. On the other hand, late fusion [52], or decision-level fusion, processes data
from individual sources separately and combines results later, allowing flexibility in han-
dling heterogeneous data sources and accommodating varying levels of reliability and
uncertainty. This approach enables nuanced interpretations of emotional cues and enhances
system robustness.

2.3. Emotion Regulation and Technology

Technology can play a significant role in emotion regulation by providing tools and
interventions that help individuals better understand, manage, and express their emotions.
For instance:

• Emotion Tracking Apps: Mobile applications equipped with sensors can track phys-
iological indicators like heart rate, skin conductance, and facial expressions to pro-
vide real-time feedback on emotional states [53]. This information helps users iden-
tify triggers, recognize patterns, and implement coping strategies to regulate their
emotions effectively.

• Virtual Reality (VR) Therapy: VR technology offers immersive environments where in-
dividuals can engage in guided relaxation exercises, exposure therapy, or mindfulness
meditation to alleviate stress, anxiety, or phobias [54].

• Biofeedback Devices: Wearable biofeedback devices, such as smartwatches or EEG
headbands, monitor physiological signals associated with stress and relaxation [55].

• Chatbots and Virtual Assistants: AI-powered chatbots and virtual assistants equipped
with natural language processing capabilities can offer empathetic responses and
support individuals in managing their emotions [56].

• Biometric Feedback Systems: These systems enable users to visualize emotional states
through interactive displays based on physiological data [57].

Technology has the potential to transform emotion regulation by providing innovative
tools, interventions, and support systems that enhance self-awareness, coping skills, and
mental well-being. By harnessing the power of technology, individuals can navigate their
emotions more effectively, leading to improved mental health outcomes and a greater sense
of emotional balance and resilience.

2.4. Ethical Considerations with Technological Applications in Affective Computing

As technology continues to advance, particularly in affective computing, addressing
the ethical implications of these innovations becomes imperative. Emotion recognition



Sensors 2025, 25, 1161 7 of 28

technologies, which utilize audio, video, text, brain activities, and attentional indicators,
raise concerns regarding privacy, consent, fairness, and potential biases. Key ethical
considerations include the following:

• Privacy and Consent [58–60]: Ethical concerns revolve around the privacy and in-
formed consent of individuals whose emotions are being monitored and analyzed [61].
The collection and processing of sensitive emotional data require transparent policies
and robust safeguards to ensure user autonomy, confidentiality, and data security.

• Fairness and Bias: There is a risk of algorithmic bias and unfair discrimination in
emotion recognition systems [62]. Biases in training data or model algorithms can lead to
inaccuracies and disparities, disproportionately affecting certain demographic groups.

• Accountability and Responsibility: With the increasing integration of affective com-
puting in various domains, accountability among developers, practitioners, and poli-
cymakers is essential [63].

Impact on healthcare, education, business, and marketing highlights the transfor-
mative potential of affective computing. In healthcare, these technologies facilitate early
mental health interventions, improve patient engagement, and enhance empathetic care. In
education, emotion-aware systems support personalized learning experiences. In business,
emotion analytics inform product design and customer experience strategies. Ensuring
ethical development and deployment is crucial for inclusive, equitable, and empathetic
advancements in affective computing.

2.5. Advancing Beyond the State of the Art

This work advances beyond the current state of the art by integrating multimodal
emotion recognition—encompassing facial expressions, speech emotions, and text senti-
ment—within real-time child–robot interactions. Unlike previous studies, this approach
combines robust computational models with psychological insights to provide a compre-
hensive understanding of children’s emotional and behavioral responses during structured
activities. The findings highlight the system’s capability to elicit and sustain positive
emotional engagement while minimizing negative responses, demonstrating its potential
for therapeutic and educational applications. This interdisciplinary perspective bridges
technological innovation and psychological analysis, offering a practical framework for
emotion-aware systems with real-world societal impact.

3. Real-World Case Study and Methods
This study aimed to explore CRI by using the NAO robot as a facilitator of emotional

engagement in pediatric settings. The goal was to assess emotional responses during struc-
tured interactions and to develop adaptive robotic behaviors based on detected emotions.

3.1. Experimental Design

The NAO robot engaged 14 children (aged 5–8 years) in a 10 min scripted interaction.
The session included five stages, as presented in Table 1.

The type of session described in Table 1 was designed with the assistance of clinical
psychologists to detect emotional expressions during child–robot interactions across various
tasks that require social interaction and sustained attention. Figure 1 shows the child–robot
interaction session and its stages.

Two technical modules operated in parallel during the sessions:

• Facial Expression Analysis: The robot analyzed facial expressions using an early fusion
of handcrafted features engineering with deep learning features (VGG16) with two
classical machine learning algorithms, Support Vector Machine (SVM) and Random
Forest (RF), fused via soft late fusion using a probabilistic ensemble model. When a
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negative expression (e.g., sad, disgusted, or angry) persisted in the past minute as
predominant, the robot paused its activity and initiated a dialogue followed by actions
such as playing a song or dancing, to address the child’s emotional state.

• Speech Emotion Detection: Speech emotions were detected during dialogues using
acoustic feature analysis and machine learning classifiers, an ensemble consisting of
a Convolutional Neural Network (1D-CNN) and a Multilayer Perceptron network
(MLP). When a negative emotion was identified as predominant over other emotions
in a period of time, the robot paused its activity and reacted (by playing a song or
dancing) to mitigate the negativity.

After addressing the detected negative emotion, the robot resumed the stages of the
session. These integrated approaches to facial and speech emotion recognition illustrate
the power of affective computing in creating systems capable of accurately interpreting
human emotions.

The defined Experimental Hypotheses and Factorial Design for our CRI sessions are
presented below. To systematically evaluate the interaction between the robot and the child,
we formulated the following hypotheses:

• H1: The robot’s adaptive emotional responses will lead to increased engagement and
positive emotions during structured interaction phases.

• H2: Differences in engagement levels will be observed based on gender and parental
involvement.

• H3: The accuracy of emotion recognition will remain stable across different phases,
validating the robustness of the multimodal system.

The study follows a 2 × 3 factorial design, with the following variables:

• Independent variables: (1) Gender (Male/Female) and (2) Interaction phase (e.g., Ice-
breaker, Guided Steps, Show and Glow).

• Dependent variables: (1) Emotional valence (positive/negative), (2) Engagement score
(measured via observation and system logs), and (3) System recognition accuracy.

This structured approach ensures clarity in statistical analysis and enhances result
interpretation as detailed in the Results section.

Table 1. Stages of child–robot interaction with duration and suggested names.

Stage Duration Interaction Focus Task Name

Stage 1 2 min Verbal communication for introduction
and getting to know the child Icebreaker Dialog

Stage 2 3 min Gestural communication and imitation
exercises Mirror Me

Stage 3 1 min Physical interaction, walking hand in
hand Guided Steps

Stage 4 3 min Teaching the robot about animals using
images and verbal explanations Knowledge Exchange

Stage 5 1 min Robot demonstration (dance) for visual
attention and child feedback Show and Glow

Using machine learning models and fusion techniques, affective computing provides
critical tools for improving human–machine interaction and providing emotionally intelli-
gent personalization in diverse applications.
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Figure 1. Overview of a child–robot interaction session with specific frames from each stage defined.

3.2. Ethical Considerations for the Experiments

This study was approved by the University’s Ethics Committee and adheres to ethical
guidelines for child studies involving AI-based interventions by using consent forms and
taking into consideration data privacy, as explained in Section 2.4. To mitigate potential
negative emotional responses, the system included real-time monitoring, allowing the facil-
itator to intervene if distress signals were detected. Additionally, parents remained present
during the session, ensuring emotional security for the children. Age appropriateness
was also considered: participants were aged 5 to 8 years, a range established in prior CRI
studies [64,65]. Younger children (below 5) were excluded due to challenges in interacting
with humanoid robots at a cognitive and social level.

3.3. Psychological Observations and Data Analysis

Together with a clinical psychologist, we monitored the sessions and assessed chil-
dren’s emotional responses, engagement, and acceptance. The Emotional Assessment Scale
(EAS) was used to quantify emotions, and parental questionnaires provided additional
insights into child–parent emotional concordance.

Emotional responses were measured using intensity scales (0–100). The following
statistical techniques were applied:

• Z-Scores: Z-scores are calculated to measure how far a data point (e.g., emotional
intensity) deviates from the mean, expressed in units of standard deviation. Z-scores
helped to identify significant outliers in emotional responses and compare differences
across groups (e.g., children vs. mothers).

• p-Values: The p-value represents the probability that the observed difference between
groups occurred by chance. A p-value below 0.05 was considered statistically signifi-
cant, indicating that differences in emotional responses between children and mothers
were unlikely to be due to random variation.

• Wilcoxon Signed-Rank Test: This nonparametric test was used to compare paired
emotional intensity scores between children and their mothers. It is suitable for small
sample sizes and does not assume a normal distribution of data.

• Cronbach’s Alpha: Internal consistency was assessed to ensure the reliability of
emotional intensity measurements. Values above 0.7 indicated acceptable reliability,
with α = 0.87 for children and α = 0.68 for mothers.

To ensure ethical compliance in conducting this pilot project, we adhered to established
ethical research protocols. Before initiating the child–robot interaction experiments, we
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obtained approval from the institutional ethics review board. The parents of all participating
children were provided with detailed information about the study, including its objectives,
procedures, potential benefits, and measures to protect participant confidentiality. Informed
consent forms were distributed to the parents or legal guardians, who signed them to authorize
their children’s participation. These forms explicitly permitted the use of the collected data for
research purposes while ensuring anonymity and secure data handling. This rigorous ethical
approach ensured the well-being of the participants and the integrity of the research process.

3.4. Affective Computing: Facial and Speech Emotion

Affective computing, bridges the gap between emotional intelligence and technology
by leveraging advanced algorithms to detect, interpret, and respond to human emotions
in real time. Emotion recognition, as discussed in earlier sections, is a cornerstone of
human–machine interaction, as emotions play a critical role in shaping communication,
decision-making, and engagement. In human interactions, facial expressions and speech
serve as primary channels for conveying emotional states, making them highly relevant
modalities for emotion recognition in affective computing systems. Facial expressions
provide visual cues that reflect both conscious and subconscious emotional responses,
while speech conveys affective information through tone, pitch, and rhythm, offering
insights into a speaker’s emotional state. Together, these modalities enable a deeper
understanding of human emotions, fostering more intuitive and empathetic interactions
between users and machines.

Facial expression analysis plays a pivotal role in emotion recognition by enabling
systems to understand and respond to user emotions more effectively. A hybrid approach
was adopted [66–69], integrating early fusion at the feature level. This methodology
combines handcrafted geometric features derived from facial landmarks, such as distances
between landmarks, angles, and log-covariance of pairwise landmark distances, with
features extracted from a Histogram of Gradients (HoG), Local Binary Patterns (LBPs), and
deep learning features derived from the VGG16 model. To enhance feature selection, the
information gain criterion was employed, isolating the most relevant features for training
classifiers. Two classification algorithms were utilized: a linear SVM and an RF model. The
outputs of these classifiers were fused using an ensemble approach, specifically a Dynamic
Bayesian Mixture Model (DBMM) [70], which combines the strengths of the individual
classifiers to improve accuracy [71].

Speech emotion recognition, another critical aspect of affective computing, involves
analyzing audio signals to identify emotional cues. This process begins with feature extrac-
tion, encompassing 48 Mel-frequency Cepstral Coefficients (MFCCs), 128 mel spectrogram
features, 12 chroma features, 6 tonnetz features, and additional metrics such as pitch, en-
ergy, zero-crossing rate, and RMS energy. Statistical measures—including mean, standard
deviation, minimum, maximum, and median—are computed for these features, resulting
in a total of 950 features per audio sample. Two classification models were developed for
speech emotion recognition: an MLP and a 1D-CNN. The MLP comprises three fully con-
nected layers, with 320 neurons in the first layer, 192 neurons in the second layer, and a final
softmax layer with 4 output neurons corresponding to emotion classes. This architecture
contains 95,303 trainable parameters. The 1D-CNN employs a 1D convolutional layer with
128 filters, followed by max pooling, flattening, and a dense layer with 4 output neurons,
totaling 22,663 trainable parameters. Both models were trained using categorical cross-
entropy loss and optimized with the Adam optimizer. To further improve classification
accuracy, the outputs of the MLP and 1D-CNN were fused using the DBMM approach [70],
effectively integrating the strengths of both models via an weighting approach based on
entropy to measure the classifier with higher confidence. Transfer learning and calibration,
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including a brief recording session for user-specific adjustments, enhanced the framework’s
performance for classifying emotions from short audio clips of approximately 7 s.

Algorithms 1 and 2 present the facial expression and speech emotion classification
frameworks.

Algorithm 1 Facial Expression Recognition Using DBMM Ensemble

1: Input: Face image of size 224 × 224
2: Output: Predicted facial expression class
3: Step 1: Preprocessing the Image
4: Detect facial landmarks using a pretrained landmark detector (DLib or MediaPipe)
5: Normalize the face image to ensure consistent scale and orientation.
6: Resize the image to 224 × 224 (input size for VGG16).
7: Step 2: Feature Extraction
8: Handcrafted Geometric Features:
9: Extract distances among facial landmarks, angles from landmark triangles, and log-cov

matrices for landmarks pairwise distances.
10: Compute HoG features over the face image.
11: Compute LBP features from patches of the face image.
12: Deep Learning Features (VGG16):
13: Pass the preprocessed image through the VGG16 model (pretrained) and extract features from

its fully connected layers.
14: Step 3: Feature Fusion
15: Concatenate all extracted features into a single feature vector:
16: F = Concat(Fgeo, FHoG, FLBP, FVGG16)
17: where:
18: Fgeo are the geometric features,
19: FHoG are the HoG features,
20: FLBP are the LBP features,
21: FVGG16 are the VGG16 deep learning features.
22: Step 4: Feature Selection
23: Apply Information Gain to select the most relevant features:
24: IG(Fi) = H(C)− H(C|Fi)
25: where:
26: IG(Fi) is the information gain of feature Fi,
27: H(C) is the entropy of class labels,
28: H(C|Fi) is the conditional entropy given feature Fi.
29: Step 5: Train SVM and RF Classifiers
30: Train Support Vector Machine (SVM):
31: minw,b

1
2∥w∥2 subject to yi(w · xi + b) ≥ 1 ∀i

32: Train Random Forest (RF):
33: ŷRF = Majority Vote from 100 Decision Trees
34: Step 6: Individual Predictions by SVM and RF
35: Predict with SVM:
36: ŷSVM = SVM(Fselected)
37: Predict with RF:
38: ŷRF = RF(Fselected)
39: Step 7: Ensemble Prediction with DBMM
40: Compute Posterior Distribution using DBMM:

41: P
(
Ct|Ct−1:t−T , At) = ∏t−T

k=t P(Ck |Ck−1)×∑2
i=1 wt

i×Pi(At |Ct)

∑classes
j=1 [∏t−T

k=t Pi,j(Ck |Ck−1)×∑2
i=1 wt

i×Pi,j(At |Ct)]
42: where:
43: P(Ck|Ck−1) is the prior from previous posteriors,
44: wt

i is the weight for each classifier (SVM and RF),
45: Pi(At|Ct) is the likelihood from each classifier at time t.
46: Compute Weights for Classifiers using Inverse Entropy:

47: wi = 1 −
(

−∑s
k=1 Pi,k(·) log(Pi,k(·))

∑2
i=1(−∑s

k=1 Pi,k(·) log(Pi,k(·)))

)
48: where:
49: Pi,k is the class conditional probability of the i-th classifier,
50: s is the number of posteriors considered.
51: return: Predicted facial expression class
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Algorithm 2 Speech Emotion Recognition Using MLP, 1D-CNN, and DBMM Ensemble

1: Input: Audio signal of emotional speech
2: Output: Final predicted emotion class: {angry, happy, surprise, neutral}
3: Step 1: Feature Extraction
4: Extract features from the audio signal:
5: MFCCs: 48 features, Cn = ∑M−1

m=0 Mm(k) · cos
(

π
M

(
m + 1

2

)
n
)

6: Mel Spectrogram: 128 features, ( f , t) = ∑N
n=0 |X( f , t)|2

7: Chroma STFT: 12 features, Ci(t) = ∑K
k=0 P(k, t) · δ( fk − fi)

8: Tonnetz: 6 features
9: Additional Features: Pitch, Energy, Zero-Crossing Rate, RMS Energy (4 features)

10: Compute statistical features (mean, std, min, max, median) for MFCCs, Mel Spectro-
gram, and Chroma, Total features = 950.

11: Normalize the extracted features.
12: Step 2: MLP Model Training and Prediction
13: MLP Architecture:
14: Input Layer: Flattened input of 950 features.
15: Dense Layer 1: 320 neurons, ReLU activation.
16: Dense Layer 2: 192 neurons, ReLU activation.
17: Output Layer: Softmax layer with 4 neurons (emotion classes).
18: The MLP computes the predicted emotion class:
19: ŷMLP = arg max(softmax(W2 · ReLU(W1 · x + b1) + b2))
20: where x is the feature vector, W1, W2 are the weights, and b1, b2 the biases.
21: Step 3: 1D-CNN Model Training and Prediction
22: Input: Reshaped input features of size (950, 1)
23: 1D-CNN Architecture:
24: Conv1D Layer: 128 filters, kernel size 3, ReLU activation.
25: MaxPooling1D Layer: Pool size 2.
26: Flatten Layer.
27: Output Layer: Softmax layer with 4 neurons (emotion classes).
28: The 1D-CNN computes the predicted emotion class:
29: ŷCNN = arg max(softmax(WCNN · Flatten(Conv1D(xreshaped)) + bCNN))
30: Step 4: Ensemble Prediction using DBMM
31: Combine the predictions (MLP and 1D-CNN) using DBMM.
32: The posterior probability for each class:

33: P
(
Ct|Ct−1:t−T , At) = ∏t−T

k=t P(Ck |Ck−1)×∑2
i=1 wt

i×Pi(At|Ct)
∑classes

j=1 [∏t−T
k=t Pi,j(Ck |Ck−1)×∑2

i=1 wt
i×Pi,j(At |Ct)]

34: where:
35: P(Ck|Ck−1) is the prior from previous posteriors,
36: wt

i is the weight for each classifier (MLP and CNN),
37: Pi(At|Ct) is the likelihood from each classifier at time t.
38: Step 5: Final Prediction
39: Predicted class: ŷ = arg max P(Ct|Ct−1:t−T , At)
40: return: Final predicted emotion class

3.5. Quantifying the Engagement Score

To assess the level of engagement during child–robot interaction sessions, an Engage-
ment Score (E) was computed based on five key factors: proxemics, facial expressions,
speech emotion, participation, and the need for caregiver presence. This score was designed
to quantify observable behaviors and emotional states, providing a comprehensive measure
of engagement.

3.5.1. Factors and Their Measurements

• Proxemics P: This factor refers to the distance between the child and the robot during
the interaction. Observers visually estimated the distance without technological aid,
categorizing proximity into ranges (e.g., personal or social space). Distances were
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normalized to a 1–5 scale, where 1 represented the farthest distances (>3 m) and 5 the
closest proximity (<0.5 m).

• Facial Expressions F: This factor reflects the emotional state of the child during inter-
action. The facial expression recognition algorithm was used to detect and classify
emotions (happiness, neutrality, fear, etc.). The degree of emotional expressiveness
and variability contributed to the score, which was normalized to a 1–5 scale, where 1
represented negative expressions, 3 neutral, and 5 highly expressive emotions (sur-
prise/happiness).

• Speech Emotion S: Speech was analyzed using a speech emotion recognition algorithm,
categorizing the children feedback provided to the robot after the performed activities
(stages) into positive, neutral, and negative. The emotion and tone of the child’s
speech sentiment were normalized to a 1–5 scale, where 1 represented predominantly
negative tones and 5 predominantly positive tones.

• Participation A: This factor evaluates the child’s active involvement during the session.
Observers recorded behaviors such as verbal interaction (e.g., speaking or responding
to the robot), non-verbal interaction (e.g., gestures during activities and touching the
robot), and task completion (e.g., successfully engaging in activities posed by the
robot). Participation was scored from 1 (minimal or no interaction) to 5 (consistently
active engagement).

• Mother’s Presence M: This factor reflects the independence of the child during the
session. Observers noted whether the child required their mother or caregiver to
remain present. Independence was normalized to a 1–5 scale, where 1 indicated
constant caregiver presence and 5 full independence.

3.5.2. Weights Assigned to Factors

Weights were empirically assigned to reflect the relative importance of each factor in
assessing engagement. The final weights were as follows:

• WP = 0.3: Proxemics was weighted highest because physical proximity to the robot is
a fundamental indicator of comfort and interaction willingness.

• WF = 0.2: Facial expressions were weighted second, as emotional expressiveness
often correlates with engagement.

• WS = 0.2: Speech emotion received equal weight to facial expressions, reflecting the
importance of verbal interaction.

• WA = 0.2: Participation was also weighted at 0.2, as active interaction behaviors are
crucial for measuring engagement.

• WM = 0.1: Mother’s presence was weighted lowest, as it is considered a secondary
factor indicative of independence rather than direct engagement.

The weights were determined through iterative observations and expert review, in-
formed by previous research and pilot observations. This empirical approach ensured that
weights reflected the observed contributions of each factor to overall engagement.

3.5.3. Quantification of Engagement Score

The engagement score E was computed as a weighted sum of the normalized factor
scores: E = ∑5

i=1 Wi · Xi, where

• Xi: Normalized value of each factor (P, F, S, A, M).
• Wi: Weight assigned to each factor, such that: ∑5

i=1 Wi = 1.

3.5.4. Observer Training

Observers were trained to ensure the consistent scoring of proxemics and participation.
Visual observations were guided by a structured rubric, and inter-observer reliability



Sensors 2025, 25, 1161 14 of 28

checks were conducted to minimize biases. This methodology provides a reproducible
framework for quantifying engagement during child–robot interaction sessions, balancing
the importance of behavioral and emotional factors in the overall engagement assessment.

4. Results
4.1. Technical Results: Data Analysis
4.1.1. Evaluating Facial Emotion Recognition on Benchmark Datasets

To classify facial expressions, we used a dataset combining the KDEF dataset [72] and
a Real Emotion dataset collected in our previous work [67]. The KDEF dataset (Karolin-
ska Directed Emotional Faces) consists of 4900 images of 70 individuals (35 women and
35 men) displaying seven emotions: happiness, sadness, anger, fear, surprise, disgust, and
neutral expressions. It is widely used for facial emotion recognition due to its controlled
conditions and high-quality labeling.

The Real Emotion dataset [67] was built by asking participants to watch emotionally
triggering video sequences, yielding a total of 30,600 frames. Participants consisted of six
individuals (three males and three females, aged 22–38). The dataset contains RGB images
annotated with ground truth labels based on expected reactions.

The merged dataset was used to train a DBMM ensemble model (combining SVM and
RF classifiers), as explained in Section 3. The classification performance of the model on the
training datasets is shown in Table 2.

Table 2. Facial expression classification performance on datasets.

Dataset Accuracy Precision Recall F1 Score

KDEF 89.31% 90% 91% 91%

Real Emotion 88.50% 90% 90% 90%

Merged Dataset 92.00% 94% 94% 94%

When applied to real-time classification during child–robot interaction sessions, the
model achieved an average classification accuracy of 85%, with over 90% accuracy for
classifying happiness and neutral emotions. The images were primarily captured by the
NAO robot’s camera. Additionally, auxiliary cameras in the environment were utilized to
ensure continuous facial detection in cases where the robot’s camera was unable to capture
the face due to head movements or occlusions during the interactions. This multi-camera
setup enhanced the robustness of the facial expression analysis.

An important consideration is that while the primary dataset used for facial emotion
recognition was trained on adult expressions, our model demonstrates strong generalization
to children by leveraging low-level facial features, such as micro-movements of the mouth,
eyebrows, and cheeks. These geometric attributes, combined with deep learning-based
feature representations, enable the robust detection of emotional expressions, even in
younger individuals. The use of the DBMM ensemble was also a key factor to improve
classification accuracy. Furthermore, transfer learning presents a valuable approach for
enhancing performance. As part of future work, we plan to fine-tune the model using a
child-specific dataset collected during our experiments to further optimize accuracy and
adaptability in recognizing children’s emotions.

Figure 2 presents sample frames captured by the NAO robot’s camera, showcasing the
facial expression recognition algorithm in action. The algorithm detects facial landmarks
and identifies expressions during CRI sessions.



Sensors 2025, 25, 1161 15 of 28

Figure 2. Examples of facial landmark detection and expression recognition performed on images
captured by the NAO robot’s camera. The images are intentionally filtered to blur the children’s faces,
ensuring their privacy.

4.1.2. Evaluating Speech Emotion Recognition on Benchmark Datasets

The speech emotion model was trained using the EmoUERJ dataset [73] and the ESD
(Emotional Speech Dataset) [74]:

• ESD: A multilingual emotional dataset containing over 35,000 recordings across five
emotions: neutral, happy, sad, angry, and surprised.

• EmoUERJ: Brazilian Portuguese speech labeled with multiple emotional categories.

The DBMM model (combining 1D CNN and MLP) achieved superior perfor-
mance compared to individual classifiers. The performance metrics on individual
datasets are presented in Table 3. The performance metrics on the multilingual dataset
(EmoUERJ + ESD) are shown in Table 4.

Table 3. Speech emotion classification performance on individual datasets.

Classifier Dataset Precision Recall F1 Score Accuracy

1D CNN EmoUERJ 89% 84% 84% 86%

MLP EmoUERJ 79% 81% 79% 77%

DBMM EmoUERJ 95% 93% 94% 94%

1D CNN ESD 87% 87% 87% 87%

MLP ESD 92% 92% 92% 92%

DBMM ESD 98% 97% 98% 97%

Table 4. Speech emotion classification performance on multilingual dataset (EmoUERJ + ESD).

Classifier Precision Recall F1 Score Accuracy

1D CNN 88% 87% 88% 87%

MLP 94% 94% 94% 94%

DBMM 98% 98% 98% 98%

For real-time classification during child–robot interactions, the speech emotion model
achieved an average accuracy of 83%. Audio clips ranging from 7 to 10 s were captured
using the NAO robot’s built-in microphones, either in response to the robot’s questions
or when the child initiated speech. This setup ensured reliable audio capture for effective
emotion classification during the interactions.

4.1.3. Data Analysis of Emotional Responses During the CRI Pilots

During the CRI sessions with 14 children, we analyzed facial expressions, speech
emotions, and text sentiment feedback across the five stages of the session, as described
in Table 1. After each stage, the robot prompted the children with a series of questions
to gather their feedback on each concluded task. Examples of these questions included
“Did you enjoy the last task?”, expecting a “yes”, “no”, or “more or less” response, and
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more open-ended questions like “What did you feel when performing the task?”, with
emotion options such as joy, fear, boredom, sadness, anger, or normal. This would allow
us to analyze their speech emotion and text sentiment by converting the audio to text and
applying a sentiment analysis [70] of the provided sentence to identify positive, neutral,
or negative sentiment given their answer, and also their facial expression when providing
the answer, so that we could summarize their answer and the automated detection of their
biophysical data. Table 5 presents the overall results detected by our affective computational
models during the session. It presents the average values of all 14 children’s sessions.

Table 5. Combined results from child–robot interaction across stages.

Stage Facial Expressions (%) Speech Emotion (%) Text Sentiment (%)

Happy Neut Fear Sad Surpr Neut Happy Pos Neut Neg

Icebreaker 80 9 5 3 3 75 25 86 7 7

Mirror Me 75 15 5 0 5 75 25 72 14 14

Guided Steps 0 90 5 0 5 93 7 7 86 7

Knowledge Exch 25 70 0 0 5 20 80 93 7 0

Show and Glow 80 20 0 0 0 15 85 100 0 0

The children’s responses were analyzed using multiple modalities. Speech emotions
were detected directly from their vocal expressions, while their responses were converted
from audio to text for sentiment analysis, leveraging the method described in [70]. This
analysis classified their answers into positive, neutral, or negative sentiments. Simultane-
ously, we captured their facial expressions during the feedback process to complement the
emotional analysis. By integrating these data streams, we summarized the children’s verbal
and non-verbal emotional responses and the automated detection of their biophysical signals.

Table 5 presents the overall results detected by our affective computational models
during the sessions, summarizing the average values across all 14 children. These re-
sults provide a comprehensive view of the children’s emotional and behavioral responses
throughout the interaction.

Figure 3 presents the distribution of facial expressions across the five stages of
child–robot interaction. The emotions analyzed include happiness, neutral, fear, sadness,
and surprise.

Figure 3. Facial expression distribution per stage. This figure illustrates the distribution of emotions,
including happy, neutral, afraid, sad, and surprised, observed across the five stages of the child–
robot interaction.
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Key Observations from Facial Expression Analysis:

• Happy is most prevalent during the “Icebreaker Dialog”, “Mirror Me”, and “Show and
Glow” stages, highlighting strong positive engagement in these interactive moments.

• Neutral expressions dominate the “Guided Steps” and “Knowledge Exchange” stages,
indicating that these tasks required focus and attention rather than emotional arousal.

• Negative emotions, such as fear and sadness, are minimal across all stages, with minor
peaks during the “Guided Steps” stage.

This distribution suggests that the child–robot interactions elicited primarily positive
emotional responses, with neutral expressions reflecting concentration during more task-
oriented stages.

Figure 4 focuses on the distribution of speech emotion, comprising neutral and happy
categories, across the five stages of child–robot interaction.

Figure 4. Speech emotion distribution per stage. Our approach could detect only neutral and positive
emotions. Other emotions like fear, sadness, and anger were not detected.

Key Observations from Speech Emotion Analysis:

• Neutral speech dominates the earlier stages, such as “Icebreaker Dialog” and “Mirror
Me”, reflecting a composed engagement as children interact with and respond to the
robot.

• Happy speech significantly increases during the “Knowledge Exchange” and “Show
and Glow” stages, showcasing heightened emotional involvement in the robot’s
dynamic and entertaining activities.

The progression from neutral to happy speech across the stages emphasizes the robot’s
ability to foster positive emotional engagement as interactions evolve.

Figure 5 displays the distribution of text sentiment, based on feedback converted from
speech to text and analyzed for positive, neutral, and negative sentiments.
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Figure 5. Text sentiment distribution per stage. Based on the sentiment analysis of text converted from
speech, this figure shows the proportions of positive, neutral, and negative sentiments across the stages.

Key Observations from Sentiment Analysis (children’s feedback):

• Positive sentiment overwhelmingly dominates across all stages, peaking at 100% in
the “Show and Glow” stage, which involves an entertaining robot dance.

• Neutral sentiment is more prevalent in earlier stages, such as “Guided Steps”, where
the structured nature of the activity prompted balanced emotional responses.

• Negative sentiment remains minimal throughout the sessions, indicating an overall
favorable perception of the interaction.

These results highlight the effectiveness of the robot in eliciting positive emotional
feedback and maintaining minimal negative sentiment during the activities. When the
negative feedback is predominant, the robot just says: “I will play a song to cheer you up!”
and plays a 30 s happy song as an attempt to improve the engagement and prepare the
child for the next stage.

Figure 6 aggregates the results across facial expressions, speech emotion, and text
sentiment, summarizing the emotional states into three categories: positive (comprising
happy and surprised), neutral, and negative (comprising sad, afraid, angry, and disgusted).

Consequently, the following key observations were made:

• Positive emotions consistently dominate, peaking during the “Show and Glow” stage,
where both facial expressions and text sentiment align to indicate high engagement
and satisfaction.

• Neutral emotions are prominent in task-oriented stages, such as “Guided Steps” and
“Knowledge Exchange”, reflecting the children’s focus and attention.

• Negative emotions are negligible across all stages, further affirming the robot’s ability
to sustain positive interactions.
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Figure 6. Summary of positive, neutral, and negative emotional states per stage. This figure ag-
gregates the results from facial expressions, speech emotions, and text sentiment, summarizing
the emotional states into positive (happy and surprised), neutral, and negative (sad, afraid, angry,
and disgusted).

This summary emphasizes the effectiveness of child–robot interactions in fostering
positive emotional states, maintaining engagement, and minimizing negative responses.

4.2. Psychological Observations Related to Mother-Child Emotions and Acceptance During CRI

The most frequent emotions in children were happiness (M = 74.8; SD = 10.3) and
surprise (M = 65.3; SD = 17.4). Anxiety (M = 29.2; SD = 25.9) and fear (M = 20.3;
SD = 19.1) were observed at higher levels in children than mothers, who reported lower
means for these emotions. Table 6 summarizes the emotional responses.

Figures 7–9 provide insights into emotional responses and concordance. They illustrate
the mean intensity of emotional responses for both children and their mothers during the
child–robot interaction sessions. We observed that happiness and surprise were the most
frequently reported emotions, while anxiety and fear were more prominent in children
than in mothers, with statistically significant differences as indicated by the p-values.
Figure 8 shows the progression of children’s emotional states across different phases of the
interaction (Introduction, Imitation, Task, and Dance). The graph demonstrates a steady
increase in happiness and a concurrent decrease in anxiety, reflecting the effectiveness of
the robot’s engagement strategies. Figure 9 presents a scatter plot comparing the emotional
intensity scores of children and mothers, showing strong alignment for positive emotions
such as happiness and surprise, but notable differences in negative emotions like anxiety
and fear. These figures collectively emphasize the role of emotion-aware robot behaviors in
influencing the emotional dynamics of child–robot interactions.

We observed the following situation during the CRI experiments:

• Three girls (aged 5, 5, and 6) experienced negative emotions such as fear, sadness,
and anger, possibly due to their anxiety, for over a minute, given by the predominant
emotion observed in the past minute. The robot successfully engaged them with
dancing and music, transitioning their emotions to neutral or positive states.

• Some children displayed brief negative facial expressions lasting less than 5 s. These
short-lived expressions did not trigger the robot’s intervention, as they were not the
predominant emotional state observed within the past minute. The robot calculates
the percentage duration of each detected emotion over a one-minute interval, identify-
ing the most prevalent emotion. The robot’s emotion regulation strategies, such as
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playing a song or performing a dance, are activated only when negative emotions are
predominant within that time frame.

• Speech emotion detection revealed happiness, surprise, and neutral as predominant
emotions. Negative emotions (e.g., anger) were rare and context-dependent, primarily
occurring as reactions to the robot’s dancing, but related to surprise and excitement
rather than anger.

Figure 7. Emotional response distribution (children vs. mothers).

Figure 8. Child emotional trends during interaction.
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Figure 9. Parent–child emotional concordance.

Table 6. Summary of emotional responses in children and mothers.

Emotion Children’s Mean (SD) Mothers’ Mean (SD) Z-Score p-Value Wilcoxon
Test (W)

Happiness 74.8 (10.3) 85.4 (3.3) −1.75 0.08 66.0

Surprise 65.3 (17.4) 64.6 (18.9) −0.12 0.91 45.5

Anxiety 29.2 (25.9) 8.9 (12.5) −2.20 0.03 * 36.0

Fear 20.3 (19.1) 10.2 (10.0) −2.02 0.04 * 42.0

Guilt 10.0 (5.0) 18.5 (6.7) 2.02 0.04 * 39.5
Note: Cronbach’s Alpha for children’s emotional responses was α = 0.87, indicating excellent internal consistency.
For mothers, α = 0.68, reflecting acceptable reliability. The Wilcoxon Signed-Rank Test compares paired emotional
responses between children and mothers, with W representing the test statistic. * Significant at p < 0.05.

4.3. Practical Implications of the Observational Data

The statistical analyses conducted in this study provide valuable insights into the
emotional responses elicited during child–robot interaction (CRI). These findings have
significant practical implications for the development of emotionally adaptive robotic
systems and their application in pediatric contexts.

4.3.1. Implications of p-Values

The p-values derived from the statistical tests highlight several key differences in
emotional responses:

• Significant Anxiety and Fear: The p-values for anxiety (p = 0.03) and fear (p = 0.04)
indicate that children experienced these emotions at significantly higher levels than
their mothers during CRI. This suggests that children may require additional support
when interacting with robots in unfamiliar or potentially stressful situations.

• No Significant Differences in Happiness and Surprise: The lack of significance in
happiness (p = 0.08) and surprise (p = 0.91) between children and mothers indicates
that both groups positively engaged with the robot. This reinforces the idea that
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CRI fosters positive emotional experiences, making it a viable tool for therapeutic or
educational interventions.

4.3.2. Implications of the Wilcoxon Signed-Rank Test

The Wilcoxon Signed-Rank Test results (W) provide deeper insights into the emotional
dynamics between children and their mothers:

• The significant results for anxiety (W = 36.0, p = 0.03) and fear (W = 42.0,
p = 0.04) highlight the importance of designing robotic behaviors that address these
negative emotions. For instance, the robot’s ability to detect and respond to prolonged
negative states (e.g., playing music or dancing to alleviate anxiety) proved effective in
transitioning children to neutral or positive emotional states.

• The higher guilt scores reported by mothers (W = 39.5, p = 0.04) suggest that
caregivers may experience emotional reactions related to their perceptions of the
interaction’s impact on their children. This underscores the need to educate and
involve caregivers in the CRI process to ensure a supportive environment.

4.3.3. Implications of Z-Scores

• For anxiety (Z = −2.20) and fear (Z = −2.02), the negative values indicate that
these emotions were significantly more pronounced in children. This aligns with
developmental psychology theories, which suggest that children at this age are more
prone to experiencing heightened anxiety and fear in novel settings. Practical impli-
cations include tailoring robotic interventions to gradually acclimate children to the
interaction to reduce emotional distress.

• The Z-score for happiness (Z = −1.75) shows a smaller difference between chil-
dren and mothers, suggesting that both groups benefitted similarly from the robot’s
engagement strategies, particularly during positive activities such as dancing and
imitation exercises.

4.3.4. Integration into Robotic Design

These findings have direct implications for the design and functionality of emotion-
aware robots:

1. Adaptive Emotional Response: Robots should be programmed to detect negative
emotions persisting beyond a threshold (e.g., 5 s) and respond with specific strategies
such as verbal reassurance, playful gestures, or music to re-engage the child.

2. Parental Inclusion: Designing interventions that include caregivers can help mitigate
feelings of guilt or uncertainty, ensuring a collaborative and emotionally supportive
environment.

3. Personalized Interaction: The differences in emotional responses suggest that CRI
should be personalized to accommodate individual needs, particularly for children
who may exhibit heightened anxiety or fear.

The statistical analysis provides robust evidence for the emotional impact of CRI on
children and their caregivers. These insights can guide the development of emotion-aware
robotic systems that are sensitive to the unique emotional needs of pediatric users and their
families. Future work should focus on expanding sample sizes and exploring longitudinal
effects to further refine these implications.

4.4. Engagement Scores: Gender-Based Analysis

The updated table provides a detailed summary of the engagement scores for
14 children (7 females and 7 males) based on their interactions with the robot. Engagement
scores were calculated using a weighted formula that incorporated five factors: prox-
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emics, facial expressions, speech emotion, participation, and mother presence. Each factor
was normalized to a 1–5 scale, with weights assigned to reflect its relative importance in
determining engagement.

The results show a notable difference between male and female participants. Male
participants achieved a higher average engagement score (4.40) compared to females (3.79).
This difference is primarily driven by the consistently higher scores for male participants
in proxemics and participation, which were heavily weighted in the formula. Male par-
ticipants were observed to interact more closely with the robot, staying within personal
space (≈0.8 m), and demonstrated higher levels of active engagement during activities.
Additionally, males scored higher in independence, as none required the presence of
a caregiver.

In contrast, female participants predominantly maintained social distance from the
robot (≈2.0 m), reflected in lower proxemics scores. Their engagement was further influ-
enced by a greater reliance on caregiver presence and a tendency toward neutral facial
expressions and speech emotions, which contributed less to the overall score due to their
lower weights in the formula. However, some female participants exhibited positive speech
emotion and active participation, narrowing the score gap between genders in individual
cases. Figure 10 shows examples of boys and girls interacting with the NAO robot, show-
casing their proxemics and highlighting specific moments when girls sought the presence
of their mother nearby.

It is important to consider that since this study involved only a single session per
child, this might have influenced the comfort level, shyness, or confidence of the female
participants. In particular, a lack of familiarity with the robot and the environment could
have contributed to their preference for maintaining social distance and showing less
emotional variability. Longitudinal studies could help reduce these factors over time, as
repeated interactions might increase their confidence, trust, and comfort with the robot.
Such studies could provide valuable insights into how engagement evolves with familiarity
and whether gender-based differences diminish with repeated sessions.

Figure 10. Sample frames showcasing interactions between boys and girls with the NAO robot. The
examples highlight their proxemics relative to the robot and instances where mothers participated
during specific parts of the session. The images are captured from both the environment camera and
the robot’s onboard camera.

These findings highlight gender-based differences in engagement during child–robot
interactions. While males demonstrated higher overall engagement, the results emphasize
the influence of behavioral and emotional factors such as proximity and participation.
These insights provide a basis for further investigation into tailoring robotic interactions to
accommodate individual preferences and needs. However, it is important to note that the
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sample size is limited, and these results should not be generalized to all children. Future
studies with larger cohorts can validate these observations and refine the engagement
scoring methodology.

Therefore, we can state that the analysis revealed significant differences in engagement
scores between the participants in our study. As demonstrated in Table 7, the gender-based
engagement scores highlight differences in sustained attention and responsiveness. Addi-
tionally, parental involvement played a crucial role in emotional regulation, particularly
for female participants, as parents actively encouraged participation, fostering greater
confidence during the interaction. However, despite this increased confidence, female par-
ticipants maintained a greater social distance from the robot compared to male participants,
who engaged in closer personal interactions.

Table 7. Updated gender-based engagement scores.

Child ID Gender
Proxemics
Distance

(m)

Proximity
Space

Mother
Presence

Engagement
Score

Facial
Expression

Speech
Emotion

Text
Feedback

1 Female 1.8 Social Yes 3.79 Neutral Neutral Positive

2 Female 2.0 Social Yes 3.79 Neutral Positive Positive

3 Female 2.0 Social Yes 3.79 Neutral Neutral Positive

4 Female 2.0 Social Yes 3.79 Neutral Neutral Positive

5 Female 2.0 Social Yes 3.79 Neutral Neutral Positive

6 Female 2.0 Social Yes 3.79 Neutral Neutral Positive

7 Female 1.8 Social Yes 3.79 Positive Neutral Positive

8 Male 0.7 Personal No 4.40 Neutral Positive Positive

9 Male 0.7 Personal No 4.40 Neutral Neutral Positive

10 Male 0.7 Personal No 4.40 Positive Neutral Positive

11 Male 0.8 Personal No 4.40 Positive Positive Positive

12 Male 0.8 Personal No 4.40 Positive Neutral Positive

13 Male 0.8 Personal No 4.40 Positive Neutral Positive

14 Male 1.0 Personal No 4.40 Positive Neutral Positive

Average -
Female:

1.94; Male
0.79

- -
Female:

3.79; Male:
4.40

- - -

The results analyzed in the context of the formulated hypotheses confirmed H1,
demonstrating that adaptive emotional responses significantly increased engagement levels
(p < 0.05). Gender-based differences (H2) were observed, with male participants exhibiting
higher engagement score, as shown in Table 7. Regarding H3, the system maintained stable
accuracy across different interaction phases, reinforcing the robustness of multimodal
emotion recognition.

4.5. Limitations

Due to the small cohort size, and short-term sessions, these findings cannot be gener-
alizable to all children with ADHD or neurotypical peers. However, the data highlight the
potential for future studies to explore gender-based differences in proxemics, engagement,
and emotional responses during child–robot interactions with a longitudinal study to
represent possible patterns between different groups.
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5. Conclusions and Future Work
The findings of this study demonstrate the transformative potential of emotion-aware

technology in real-world applications, particularly in pediatric settings. By integrating
affective computing techniques using biophysical data, the system effectively identified
and responded to children’s emotional states during child–robot interactions. The results
highlight the capability of the NAO robot to elicit positive engagement and emotional
regulation across structured activities. For instance, happiness was the dominant emo-
tion in interactive stages like “Icebreaker Dialog” and “Show and Glow”, while neutral
expressions prevailed in task-oriented stages such as “Guided Steps” and “Knowledge
Exchange”. Minimal occurrences of negative emotions further underscore the robot’s ability
to sustain positive and neutral emotional states. Speech emotion analysis revealed a similar
progression, with neutral tones dominating the early stages and a significant increase in
happy speech during dynamic tasks. Text sentiment analysis corroborated these findings,
showing overwhelmingly positive feedback from the children, particularly in engaging
stages. These results demonstrate the potential for emotion-aware systems to improve
emotional engagement and assist professionals in understanding children’s biophysical
and behavioral responses. From a societal perspective, emotion-aware technology can sig-
nificantly impact healthcare, education, and therapeutic interventions. By enabling robots
to detect and adapt to emotional states in real time, this technology promotes emotional
well-being, enhances engagement, and fosters personalized experiences, particularly for
children with unique emotional or developmental needs.

Future Work

While the current findings are promising, several areas warrant further investigation:

• Data Expansion and Generalization: Incorporating a more diverse dataset, includ-
ing additional languages, cultural contexts, and children with neurodevelopmental
conditions, will enhance the robustness and applicability of the models.

• Integration of Multimodal Data: Future iterations should incorporate physiological
signals such as heart rate or galvanic skin response to provide a more comprehensive
emotional profile.

• Adaptive Interventions: The development of more nuanced robot behaviors to address
complex emotional states, such as combining verbal reassurances with interactive
activities, could further improve emotional regulation.

• Longitudinal Studies: Exploring the long-term impact of emotion-aware robots on
children’s emotional and cognitive development will provide deeper insights into
their therapeutic potential.

In summary, this study highlights the efficacy of emotion-aware robots in fostering
positive interactions and emotional regulation. Continued interdisciplinary research will
further bridge the gap between technological innovation and societal impact, creating
empathetic systems that enrich human experiences across diverse domains.
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