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Abstract: In this work, we propose a novel Personalised Large Language Model (PLLM)
agent, designed to advance the integration and adaptation of large language models within
the field of human–robot interaction and human–computer interaction. While research in
this field has primarily focused on the technical deployment of LLMs, critical academic
challenges persist regarding their ability to adapt dynamically to user-specific contexts and
evolving environments. To address this fundamental gap, we present a methodology for
personalising LLMs using domain-specific data and tests using the NeuroSense EEG dataset.
By enabling the personalised data interpretation, our approach promotes conventional
implementation strategies, contributing to ongoing research on AI adaptability and user-
centric application. Furthermore, this study engages with the broader ethical dimensions
of PLLM, critically discussing issues of generalisability and data privacy concerns in AI
research. Our findings demonstrate the usability of using the PLLM in a human–robot
interaction scenario in real-world settings, highlighting its applicability across diverse
domains, including healthcare, education, and assistive technologies. We believe the
proposed system represents a significant step towards AI adaptability and personalisation,
offering substantial benefits across a range of fields.

Keywords: large language model; human–robot interaction; human-computer interaction;
personalised large language models; adaptive AI systems; AI agent

1. Introduction
Decision-makers provide the crucial link between the insights derived from machine

learning (ML) algorithms and their implementation in practical, real-world contexts [1–4].
Improving the accuracy of these systems allows intelligent agents to replicate human be-
haviour with greater fidelity. Yet, safely deploying such agents in real-world applications
demands strict adherence to established guidelines, ensuring they do not pose risks to
human well-being. In artificial intelligence (AI)-assisted environments, decision-making
frequently involves collaboration between human agents and AI systems. The human ele-
ment remains indispensable, especially in high-stakes areas such as healthcare and the legal
system, where ethical considerations necessitate human oversight [5]. Recent research [6–9]
further highlights various challenges faced by decision-makers in real-world scenarios,
including information overload, misaligned incentives, and the ethical ramifications of
algorithmic biases. Moreover, integrating AI systems into decision-making workflows calls
for attention to trust, fairness, and accountability, as well as for the adoption of robust
human-in-the-loop models to mitigate potential risks and ethical dilemmas [10–12]. These
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findings underscore the need for multidisciplinary approaches that bridge technical, ethi-
cal, and domain-specific expertise, enabling responsible and effective decision-making in
complex contexts.

Two prominent methods for constructing such systems are Reinforcement Learning
(RL) and LLMs. Although distinct in both methodology and application, these approaches
offer complementary strengths. LLMs excel in tasks requiring natural language under-
standing and production. By contrast, RL focuses on learning optimal actions through
trial and error in dynamic environments, making it particularly effective for sequential
decision-making tasks such as robotics and game-playing [13–15]. Nevertheless, RL’s
application in real-world settings often raises safety concerns, since conventional methods
may fail to guarantee predictable behaviour under changing conditions. As one study
notes, the inherent unpredictability of AI decisions demands the development of new safety
frameworks to address uncertainties surrounding RL systems [16]. Adapting models to
specific environmental conditions is consequently vital to improving agent accuracy and
reliability. In this respect, the emergence of LLMs has yielded positive outcomes for robotics
by enabling personalisation, allowing agents to adapt dynamically to their environment
with updated data and, in turn, operate more accurately and safely.

Despite these strengths, LLMs have demonstrated limitations, particularly in scenarios
that depend on human-based decision models [17,18]. As ref. [19] explains, a significant
challenge arises when agents trained on static datasets fail to adapt to new circumstances,
as the use of an offline (static) dataset trains model parameters on a snapshot of the data
distribution, which may be misaligned with evolving real-world conditions. This issue can
result in performance degradation when language distributions shift, such as the emer-
gence of novel vocabulary, specialised domains, or changing user preferences. In contrast,
online adaptation continually updates the model’s parameters with each new data point,
thereby absorbing fresh linguistic patterns and maintaining relevance. Through real-time
refinement, online adaptation mitigates the risk of outdated knowledge, reduces reliance on
assumptions derived from historical data, and ensures the model’s understanding remains
aligned with contemporary language use. Notably, personalisation constitutes a specific
application of online adaptation that customises the model’s behaviour to individual users
by capturing user-specific writing styles, vocabularies, and specialised knowledge. Both
online adaptation and personalisation rely on incremental parameter updates and share
the overarching goal of preserving model accuracy in dynamic linguistic environments.

In such instances, personalisation enables agents to make precise decisions in diverse
and unfamiliar settings [20]. This capability marks a significant development across mul-
tiple applications, empowering systems to customise responses according to individual
users’ preferences, objectives, and contexts. By employing user-specific data, including
past interactions, interests, and linguistic patterns, LLMs can produce outputs of greater
relevance and significance [21]. Techniques such as fine-tuning [22] on domain-specific
datasets [23], employing retrieval-augmented generation, or utilising embeddings to en-
code user-specific knowledge further advance personalisation efforts. However, achieving
these outcomes requires meticulous balance to ensure that personalisation remains ethically
sound [24], protects user data privacy [25], avoids overfitting, and minimises biases [26].
Personalised LLMs are increasingly employed in sectors such as customer service, educa-
tion, healthcare, and entertainment, offering bespoke experiences that enhance engagement
and satisfaction [27–29].

In the present study, we examine the incorporation of LLMs as a leading approach
for constructing decision-making systems. In particular, we employ the OpenAI API to
utilise their LLM model in the analysis of Electroencephalography (EEG) sensor data as
a case study, showcasing the effective integration of LLMs into practical applications. To



Sensors 2025, 25, 2024 3 of 17

accomplish this, we use Streamlit to develop an interactive chatbot interface. We further
personalise the LLM agent using an EEG dataset and deploy the model on a robot, which
connects to the Muse device (Muse2, InteraXon Inc., Toronto, Canada) to gather EEG data.
The personalised LLM agent then interprets human emotions in a manner consistent with
the conditions under which the dataset was initially collected.

The following sections will explain each of the components of this study. Section 3
discusses the concept of personalisation and the procedure we employ to personalise an
LLM model using PLLM. Section 4 explains our AI agent and its components, along with
their functions. Section 5 presents a case study using an EEG dataset to evaluate the agent,
demonstrating its ability to process and interpret EEG data effectively.

2. Related Work
Uncertainty poses a significant challenge to decision-making processes in real-world

scenarios. It may stem from various sources, including incomplete information, dynamic en-
vironments, and unpredictable human behaviour. Addressing these uncertainties is essen-
tial for developing robust systems capable of operating effectively in real-world contexts.

Personalisation in LLMs, a subset of online adaptation, parallels RL adaptation, as
both involve refining systems to optimise their performance in specialised contexts through
distinct mechanisms. In LLM personalisation, a pre-trained language model is tailored
to user-specific preferences or tasks via techniques like fine-tuning or prompt optimisa-
tion [30]. Similarly, RL adaptation modifies an agent’s policy through interactions with an
environment, aiming to maximise cumulative rewards via exploration and exploitation [31].
Both approaches transition from general-purpose systems to specialised applications, util-
ising feedback loops—user inputs or corrections in LLMs [32] and reward signals in RL.
However, a key distinction lies in their learning paradigms: LLM personalisation typically
relies on static datasets [33], whereas RL adaptation requires real-time interaction with the
environment [31]. Despite this difference, both approaches share a conceptual overlap in
fine-tuning general systems for tailored applications.

The work presented in [34] explores the reliability of using LLMs to evaluate user pref-
erences based on personas, addressing the growing demand for LLM personalisation. The
study identifies key challenges, including the limited reliability of existing LLM-as-a-Judge
frameworks and the issue of persona sparsity, where simplistic persona variables provide
limited predictive power. The authors propose integrating verbal uncertainty estimation
to allow LLMs to express confidence levels in their judgements and implement certainty
thresholding to focus on high-confidence samples, significantly improving accuracy. They
further suggest that future work should address persona sparsity and explore advanced
methods for uncertainty quantification, as well as extend the approach to multilingual
and cross-cultural contexts. This work highlights the potential of certainty-aware LLMs as
scalable solutions for personalisation tasks, especially in the absence of first-person data.

Another study introduces PersonalLLM [35], a benchmark designed to personalise
LLMs to align with diverse user preferences. Unlike traditional approaches that assume
uniform population-level preferences, this framework addresses the challenge of tailoring
responses to individual tastes, which often vary in complex and latent ways. It employs
meta-learning and in-context learning (ICL) to adapt responses for new users using limited
examples. Evaluations show higher diversity and alignment with human preferences
compared to baseline persona-prompting methods. However, ethical risks, such as filter
bubbles and stereotyping, are acknowledged, underscoring the need for transparency
and safeguards. This research lays the groundwork for advancing personalised AI while
promoting ethical considerations in its deployment.
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In [25], the authors proposed an end-to-end framework combining on-device LLMs
with smartphone sensing to deliver personalised, context-aware services. This framework
addresses privacy risks, latency, and costs associated with cloud-based LLMs by utilising
lightweight, on-device models. Challenges, such as limited computational resources and
occasional errors, are acknowledged, with future plans to enhance sensor diversity and
model robustness. Similarly, Ref. [36] presents a framework for personalised text generation
inspired by structured writing education. By employing multitask learning, the framework
aligns generated text with users’ styles and contexts, demonstrating significant improve-
ments over baselines across diverse domains. These works collectively advance the field of
personalised LLMs, offering novel methodologies and addressing pressing challenges.

Based on our literature review, summarised in Table 1, this study proposes an AI
agent for personalising large language models (PLLMs). The architecture demonstrates
how an LLM agent can be integrated with other projects to utilise its advantages. Figure 1
illustrates this architecture.

Table 1. Key contributions in large language models.

Year Author Achievement

2024 Rannen-Triki et al. [19] Proposes efficient online adaptation strategies to continually update model parameters in real
time, mitigate distribution shifts, and maintain performance across evolving domains.

2024 Chen et al. [20] Explores how LLMs enhance personalisation through interactive engagement, task expansion, tool
integration, and addressing privacy challenges.

2024 Dong et al. [34] Proposes a certainty-aware framework for predicting user preferences, achieving high accuracy
and surpassing human performance.

2024 Zollo et al. [35] Simulates user preferences via reward models, enabling ethical and scalable personalisation.

2024 Zhang et al. [25] Combines on-device LLMs with sensing for private, real-time, and personalised services, address-
ing privacy risks.

2023 Rao et al. [24] Proposes a framework for LLMs to reason ethically across diverse contexts, highlighting the need
for value pluralism over fixed moral alignment.

2023 Li et al. [36] Proposes a multistage framework enhancing LLM personalisation, achieving significant gains in
domain-specific text generation.
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Figure 1. The proposed Comprehensive Guide to Integrating Large Language Models (green area [37])
with Streamlit: Developing the Personalised LLM (PLLM) Framework.
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3. AI Model Personalisation
Personalising an AI model means adapting the model to individual requirements, pref-

erences, and contexts, thereby significantly enhancing user engagement, satisfaction, and
overall outcomes [38,39]. In fact, personalisation encapsulates the notion of model adapta-
tion, while a model continuously interacts with its environment to update its knowledge
based on observational feedback to align itself with the main contextual environment [40].

LLMs have demonstrated a potential for personalisation during interaction with the
environment, largely attributed to their extensive pre-trained knowledge and sophisticated
fine-tuning capabilities [30,41,42]. Such ability empowers LLMs to generate contextually rel-
evant outputs that resonate with users’ specific contexts or salient points encountered within
interactions [43]. Nevertheless, an effective adaptation of LLMs post-deployment remains
challenging, especially in highly dynamic environments where context rapidly evolves.

A highlighted challenge associated with model adaptation, particularly in continual
learning scenarios, is the phenomenon of Catastrophic Forgetting (CF) [44,45]. CF refers to
a model’s abrupt loss of previously learned knowledge when acquiring new information,
primarily due to the inherent limitations of conventional gradient-based learning methods
when subjected to limited, incremental data [46]. Models initially trained on large-scale
datasets through extensive procedures aimed at mitigating overfitting and underfitting
often find adaptation to new, typically sparse data streams challenging, resulting in com-
promised performance [47]. However, even considering these limitations, the targeted
adaptation can considerably enhance model utility by fine-tuning outputs to reflect new
environmental insights [48,49].

PLLMs draw inspiration from continual learning and personalisation paradigms [50,51],
offering an effective approach for integrating new datasets into existing models without
comprehensive retraining. PLLMs function as adaptive agents, assimilating new data
streams as discrete tasks or knowledge sources. This integration enriches the model’s
experiential knowledge, enabling nuanced reasoning about previously unseen scenarios.
Unlike traditional retraining methods, PLLMs utilise specifically engineered prompts to dy-
namically adjust model behaviour, ensuring that new datasets are seamlessly incorporated
into the model’s reasoning processes [52,53].

Improvement based on Feedback, a foundational principle of continual learning, is
a critical part of the personalisation process of PLLMs [54]. User validation, which in-
volves interactive verification of the model’s responses, mitigates risks associated with
misinterpretation and ambiguity, thereby significantly reducing the likelihood of over-
fitting. This interactive, user-driven feedback loop ensures the model’s newly acquired
knowledge remains accurate, contextually relevant, and robust [55,56]. The process is de-
picted in Figure 2, illustrating dataset introduction via prompts and subsequent user-driven
validation to reinforce correct data interpretation.

Moreover, PLLM architecture aligns well with emerging trends in agentic AI systems,
which emphasise autonomy, adaptability, and interactive user collaboration. The conceptual
architecture depicted in Figure 3 provides a comprehensive framework supporting adaptive,
personalised interactions, effectively capturing the dynamic interplay between model, data,
and user input.
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Here are the contents of the uploaded files: {data}. Consider all this data and ...

This data provides detailed information about the EEG. Can you interpret it?

The uploaded EEG data contains various columns representing signals ...

The data presents two main emotional metrics, Calmness and Stress ...

....
....

Introducing  a new dataset

LLM model reasoning
(feedback)

Figure 2. Overview of personalising data using PLLM.

Interaction Module

 Data Conversion and Aggregation

model 1 model 2 model n

Agent

data / user query

agent response

World

Figure 3. Proposed agentic AI architecture.

The practical efficacy of PLLMs in facilitating personalised interactions can be observed
through various functionalities demonstrated in Figure 4. The illustrations highlight
key capabilities, including seamless dataset integration and secure prompt processing.
Collectively, these functionalities underscore the operational robustness and versatility of
PLLMs in delivering personalised, contextually aligned user experiences [52,57]. The next
section explains how we design the PLLM as an AI agent to personalise it using a dataset
to enhance its knowledge.
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Figure 4. Interaction layer demonstration: Screenshot showcasing key functionalities: uploading PDF
file and querying its content, securely entering API key to send prompt.

4. AI Agent Creation
An agent can be defined as an application that attempts to achieve a goal by interacting

with its environment [58]. The agent may consist of various modules, including one or
more models, an interaction module for data acquisition and decision-making or action
execution, and a data conversion and aggregation module for preparing the collected data.
In this work, we design an agent incorporating these three key modules, as illustrated in
Figure 3.

The Interaction Layer is a GUI application that gathers the required data and prompts,
as well as presents completions or results. The Data Conversion and Aggregation Module
is responsible for preparing data, which is then sent along with the prompts to the model.
The model in this system is OpenAI, with which we interact using the respective API. The
interaction layer provides a range of components that can be effectively utilised to construct
a discussion between the user and the LLM model to upload the dataset and obtain feedback
to personalise the model completely. This layer supports five distinct prompt types: text,
image, PDF, CSV, and EEG data. Users can select one of these options to send a prompt
tailored to the chosen type. In addition, it contains options for configuring the LLM model,
including a text field for specifying the number of tokens. Figure 4 illustrates the GUI
interaction layer.

At the core of the agent lies the model. The model serves as the primary decision-
making component of the agent and should be appropriately suited to the agent’s purpose.
However, it is typically not trained with specific configuration settings. However, it can
be refined to enhance its familiarity with a specific topic. In subsequent sections, we will
personalise the model to improve its ability to process EEG data.

A crucial parameter in model configuration is temperature, which controls the ran-
domness of the model’s output. This parameter influences token selection by adjusting the
probability distribution of possible next tokens. Lower temperatures (e.g., 0.2) produce
more deterministic outputs, prioritising high-probability tokens—ideal for tasks requiring
precision or factual accuracy. Conversely, higher temperatures (e.g., 1.5) encourage diversity
and creativity, leading the model to generate more varied and unconventional responses.
Adjusting the temperature parameter enables fine-tuning of the model’s behaviour to suit
specific applications, from structured problem-solving to imaginative storytelling. User
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interaction occurs using the interaction layer. Based on the prompt type selected, the system
sends the prompt to the model and retrieves the corresponding response.

The agent also allows users to upload a PDF or CSV file, extract its content, and
query it using the OpenAI API. The file is converted into text, and to comply with token
limitations, the text is segmented into manageable portions, each of which is processed by
the OpenAI API to generate responses.

4.1. Interaction Layer

In this work, the agent utilises Streamlit to develop a chatbot user interface (UI). Using
Streamlit, we design and implement a versatile chatbot UI, integrating it with an LLM
model to manage a diverse range of data sources. We aim to personalise the agent to
enhance its knowledge of a specific topic, which we refer to as the PLLM. Based on the
prompts sent, this agent personalises the model to produce results informed by the data
used to personalise it. In fact, the model will produce the results using its global knowledge
by considering the data that were utilised to personalise it. This is a difference of fine-tuning
which biases the model to a specific topic.

Figure 1 illustrates the architecture of this agent. Various data sources along with a
prompt are transmitted to the LLM model via the Streamlit application. Depending on the
data sources, the data are appropriately prepared and processed before being sent to the
LLM model. The resulting outputs are then returned and presented to the user through
the chatbot.

4.2. Data Conversion and Aggregation Module

To process the data effectively, all prompt types are converted into textual format,
as the LLM operates exclusively with text-based inputs. A specific conversion method is
applied according to the prompt type ensuring seamless integration into the LLM pipeline.

The subsequent step involves data aggregation. When a single prompt comprises
multiple files, these are merged into a coherent input to ensure consistency and context
preservation. However, as LLM models are subject to input size limitations, such as those
outlined in Table 2 for OpenAI models, this constraint must be addressed. To manage
this, prompts are segmented and sent in manageable chunks by the prompt analysis layer,
maintaining the integrity and relevance of the input.

Table 2. Token limits for OpenAI language models.

Model Maximum Tokens (Response + Input)

GPT-4 (8K) 8192
GPT-4 (32K) 32,768
GPT-3.5-turbo (4K) 4096
GPT-3.5-turbo (16K) 16,384
Davinci (text-davinci-003) 4096
DeepSeek (R1) 32,768
Curie 2048
Babbage 2048
Ada 2048

Ethical Challenges and Practical Integration of OpenAI’s Large Language Models

OpenAI’s large language models offer significant advantages in natural language
processing (NLP), enhancing productivity through automation and the generation of
high-quality text [30]. Their adaptability and pre-training on vast datasets make them a
robust choice for projects requiring advanced language comprehension and generation [59].
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However, despite these strengths, LLMs also present notable challenges and ethical consid-
erations that must be addressed.

One of the primary concerns is bias, as these models learn from publicly available
data that often contain inherent biases [26]. This can lead to the reproduction or even
amplification of biased perspectives, potentially resulting in unfair or problematic out-
puts. OpenAI actively mitigates these risks through pre- and post-processing techniques
designed to reduce bias and by curating datasets with diverse representation. Additionally,
transparency initiatives, such as publishing documentation on model limitations and biases,
aim to inform users of potential risks [60].

Another major ethical consideration is the misuse of generative AI. The powerful text
generation capabilities of LLMs can be exploited for spreading misinformation, imperson-
ation, or other malicious activities, raising significant ethical concerns. OpenAI addresses
this issue by implementing robust content moderation systems, enforcing responsible use
policies, and collaborating with external researchers and organisations to develop safety
frameworks [61].

The cost and accessibility of LLMs also pose challenges, as their high computational
requirements make training and deployment resource-intensive. This can create disparities
in access, limiting their use primarily to well-funded organisations. OpenAI alleviates
this issue by offering APIs that provide access to powerful models without requiring
users to host or train them, thereby democratising access while maintaining computational
efficiency [62].

Despite these challenges, OpenAI’s APIs are designed to be developer-friendly, en-
abling the seamless integration of advanced NLP capabilities into various applications.
Unlike traditional models that require extensive fine-tuning, OpenAI’s LLMs are pre-trained
on large-scale internet text, allowing them to perform a wide range of tasks effectively
without additional customisation [63]. This makes them particularly suitable for research
and real-world applications, as they provide state-of-the-art language comprehension while
maintaining ethical safeguards [64]. However, it is important to note that while these mod-
els leverage extensive datasets, they do not retrieve real-time information during runtime,
which limits their ability to provide up-to-date responses [65].

By combining technical sophistication with robust safety measures, OpenAI’s LLMs
offer a powerful tool for AI-driven solutions while maintaining a commitment to ethical AI
deployment. Addressing biases, preventing misuse, and ensuring equitable access remain
critical factors in their responsible integration into real-world applications. Considering
OpenAI’s LLM model, we will employ it to build our AI agent.

5. Proof of Concept for EEG Case Study
The NeuroSense dataset [66] is a novel EEG dataset collected using the cost-effective

and portable Muse 2 device, which features only four electrodes. The objective of this work
is to employ this dataset to personalise an LLM agent via PLLM. OpenAI’s LLM serves as
the model, which undergoes personalisation by processing the dataset.

Following this, real-time data are collected using the Muse 2 device and transmitted to
the LLM to predict the participant’s emotional state. Additionally, a Nao robot is integrated
with the agent to facilitate data collection from the Muse device. The PLLM processes the
EEG data in collaboration with the LLM model and returns the results to the robot for
presentation. Figure 5 provides an overview of this case study and its architecture.

The subsequent sections detail the implementation and integration of PLLM within
the context of this case study, along with an in-depth explanation of the dataset.
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Figure 5. An overview of the integration of the proposed PLLM agent with EEG data.

5.1. Electroencephalography Data

Electroencephalography (EEG) is a neurophysiological monitoring method that
records electrical activity in the brain. EEG signals are generated by the collective fir-
ing of neurons, particularly in the cortex, and are captured non-invasively using electrodes
placed on the scalp [67]. These signals provide rich temporal insights into brain func-
tions, such as cognitive processes, emotional states, and neural disorders, making EEG an
essential tool in neuroscience, psychology, and biomedical engineering.

EEG data are characterised by their high temporal resolution and continuous time-
series nature, typically segmented into frequency bands such as delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz). These bands reflect
various cognitive and physiological states. For example, alpha waves are often associated
with relaxation, while beta waves correlate with active thinking and attention [68]. EEG’s
non-invasive nature and versatility make it a valuable resource for applications in affective
computing, mental health, and human–computer interaction.

However, EEG data are inherently noisy due to artefacts from eye movements, muscle
activity, and environmental interference. Advanced preprocessing techniques, including
filtering, artefact removal, and segmentation, are essential to extract meaningful features
from the raw signals for further analysis.

5.2. Personalisation of LLM Model with EEG Data

To enable real-time EEG signal processing, the LLM model is personalised using the
NeuroSense dataset. This process involves introducing the dataset to the model through
a structured prompt, allowing it to adapt to EEG data and refine its ability to predict
emotional states. The dataset is first integrated into the model, followed by an interactive
validation phase where the model’s comprehension is assessed and adjusted as necessary
(see Figures 2 and 6a).

Once the model has been personalised, the agent collects real-time EEG data from
a Muse 2 device and transmits it to the LLM for analysis (see Figure 6b). The processed
results are then relayed to a robot, which verbalises the predictions as spoken dialogue for
the participant. This approach ensures that the model can effectively interpret EEG signals
and respond meaningfully, demonstrating its ability to adapt to individual users’ cognitive
and emotional states.
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(a) Uploading participants’ data to personalise the LLM agent.

(b) Result of sending real-time data to the agent to predict the participant’s
emotional state.

Figure 6. Overview of data uploading and EEG result processing using the LLM agent.

To illustrate the effectiveness of this process, we examine two case studies from the
dataset. Figure 7 depicts EEG data from two participants recorded while listening to
different pieces of music videos. In the first case, Participant 1 was listening to Miniature
Birds, while in the second case, Participant 26 was listening to Love Shack. Based on the
dataset analysis, the LLM inferred that Participant 1 exhibited a Neutral emotional state,
whereas Participant 26 demonstrated a Happier state after listening to their respective
music selections.

To achieve this personalisation, the dataset is introduced to the model through a
structured prompt, with the LLM analysing the EEG data and formulating an emotional
assessment of the participant.

Here are the contents of the uploaded files: {data}. Consider all this data and, using your
knowledge, provide a single word (e.g., happy, sad, nervous, etc.) to describe how the participant
was feeling emotionally after listening to this music. If the participant is not happy, suggest how
you, as an assistant, could help make the participant happy. If your suggestion includes listening to
music, please provide some music recommendations.

Additionally, if the participant is not happy, the model suggests potential ways to
improve their mood, including personalised music recommendations.
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Figure 7. Annotating emotional state for Participants 26 and 1 using sessions 18 and 15.

This structured approach ensures that the LLM is adapted to process EEG data effec-
tively, improving its ability to provide meaningful responses and assist users based on their
emotional state.

5.3. Real-Time EEG Signal Acquisition from Muse 2

To evaluate the performance of our agent, we integrated it with a Nao robot. The robot
is responsible for collecting EEG data from the Muse 2 device, capturing a 10 s segment
from a participant while they listen to music, replicating the conditions of the dataset
scenario. These data are then transmitted to the PLLM, which processes the EEG signals
to predict the participant’s emotional state. The robot subsequently communicates these
results to the participant in real time. Figure 5 illustrates this process.
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To facilitate this scenario, we extended our Streamlit application by introducing a
new prompt type, referred to as robot. This prompt type enables the robot to establish a
connection with the Muse 2 device, facilitating EEG data acquisition and its transmission
to the PLLM for analysis. The Muse data collector is deployed directly on the robot,
ensuring seamless communication with the Muse 2 device, real-time data retrieval, and
interaction with the PLLM to process the collected information before presenting the results
to the participant.

6. Discussion
This study introduced PLLM (Personalised Large Language Model), a novel AI agent

designed for integrating LLMs with HRI and HCI applications. By leveraging personalisa-
tion techniques, the proposed approach enhances LLM adaptability, enabling models to
process domain-specific data while maintaining general language understanding. As a use
case, we utilised the NeuroSense EEG dataset to personalise OpenAI’s LLM, allowing it to
analyse real-time EEG signals from a Muse 2 device and predict emotional states. Through
this framework, we demonstrated a systematic pipeline for dataset preparation, model
personalisation, real-time data processing, and interactive response generation.

A major strength of the PLLM framework is its flexibility and scalability. The archi-
tecture allows seamless integration with different data sources and projects, making it
applicable beyond EEG-based affective computing. The use of OpenAI’s LLM provides a
pre-trained, robust, and adaptable model, reducing the need for computationally expensive
retraining. Additionally, the Streamlit-based chatbot simplifies user interaction, enabling
both expert and non-expert users to personalise AI models in an intuitive interface.

Despite these advantages, several limitations and challenges remain. First, generalisa-
tion across different datasets remains an open question. While our framework effectively
personalises an LLM using the NeuroSense dataset, expanding this approach to diverse
datasets with varying data distributions requires further investigation. Second, the Muse
2 EEG device, while portable and cost-effective, has limited spatial resolution with only four
electrodes. This constraint affects the granularity of emotional state prediction and could
be improved by integrating higher-resolution EEG systems or multimodal data sources,
such as facial expression analysis, voice modulation, or physiological sensors.

Another critical aspect to consider is ethics and user privacy. Personalising an LLM
with EEG data introduces challenges related to data security, consent, and bias mitigation.
Although OpenAI enforces content moderation policies and security measures, ensuring
that AI models do not reinforce biases or generate misleading responses remains a key
concern. Future work should explore techniques such as differential privacy, federated
learning, and bias-correction algorithms to enhance fairness, security, and trustworthiness
in AI-powered decision-making.

Furthermore, computational efficiency and cost must be considered when scaling
PLLM for real-world applications. While OpenAI’s API offers state-of-the-art NLP capa-
bilities, its reliance on cloud-based processing can be costly for large-scale deployments.
Future research could explore on-device LLMs or hybrid approaches that combine local
inference with cloud-based fine-tuning, ensuring a balance between efficiency, accessibility,
and performance.

Overall, the PLLM framework successfully demonstrates the potential of personalised
AI agents in HRI, HCI, and cognitive computing. While challenges exist, our work lays the
foundation for further advancements in adaptive AI systems, emotion-aware robotics, and
intelligent user interaction.
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7. Conclusions
We devised a PLLM agent to enhance the adaptability and data interpretation in HRI

and HCI scenarios. Our proposed methodology focuses on the personalisation of LLMs
using the NeuroSense EEG dataset, enabling the interpretation and adaptation of the AI
agent to the user-centric data dynamically. By enabling personalised data interpretation,
PLLM enhances the conventional implementation strategies of LLMs, contributing to
ongoing research on AI adaptability in diverse applications.

Key contributions of this work are as follows: (i) a novel approach prensented to
personalise an LLM model utilising target datasets to enable adaptation and context-aware
interactions without requiring full model retraining; (ii) the integration of the proposed
PLLM has been achieved for a HRI scenario, where our system successfully adapted the AI
agent to the target dataset in a HRI scenario; and (iii) a scalable and ethical AI personalisa-
tion framework, supporting multi-source data integration and making it applicable across
diverse domains such as healthcare, education, and assistive technologies.

Future research should focus on enhancing multimodal adaptability by incorporat-
ing speech analysis, facial expression recognition, and physiological signals for a more
comprehensive user adaptation.

In conclusion, we believe PLLM represents a significant step towards AI personal-
isation and adaptability, offering a structured approach for integrating LLMs into user-
centric applications.
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