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Abstract 

 
 

The number of emergency (or unplanned) readmissions in the United Kingdom National 

Health Service (NHS) has been rising for many years. This trend, which is possibly related to 

poor patient care, places financial pressures on hospitals and on national healthcare budgets. 

As a result, clinicians and key decision makers (e.g. managers and commissioners) are 

interested in predicting patients at high risk of readmission. Logistic regression is the most 

popular method of predicting patient-specific probabilities.  However, these studies have 

produced conflicting results with poor prediction accuracies. We compared the predictive 

accuracy of logistic regression with that of regression trees for predicting emergency 

readmissions within forty five days after been discharged from hospital. We also examined 

the predictive ability of two other types of data-driven models: generalized additive models 

(GAMs) and multivariate adaptive regression splines (MARS). We used data on 963 patients 

readmitted to hospitals with chronic obstructive pulmonary disease. We used repeated split-

sample validation: the data were divided into derivation and validation samples. Predictive 

models were estimated using the derivation sample and the predictive accuracy of the 

resultant model was assessed using a number of performance measures, such as area under 

the receiver operating characteristic (ROC) curve in the validation sample. This process was 

repeated 1000 times—the initial data set was divided into derivation and validation samples 

1000 times, and the predictive accuracy of each method was assessed each time. The mean 

ROC curve area for the regression tree models in the 1000 derivation samples was 0.928, 

while the mean ROC curve area of a logistic regression model was 0.924. Our study shows 

that logistic regression model and regression trees had performance comparable to that of 

more flexible, data-driven models such as GAMs and MARS. Given that the models have 

produced excellent predictive accuracies, this could be a valuable decision support tool for 

clinicians (health care managers, policy makers, etc.) for informed decision making in the 

management of diseases, which ultimately contributes to improved measures for hospital 

performance management. 
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1. INTRODUCTION 

 

 

Under new United Kingdom (U.K.) Government plans the National Health Service (NHS) 

hospitals will face financial penalties if patients are readmitted as an emergency within a 

short period of time after being discharged (Department of Health, 2010). Hospitals in 

England will be paid for initial treatment but not paid again if a patient is brought back in 

with a related problem. This raises serious concerns for clinicians and hospital managers, that 

is, how do you identify and prevent those patients at risk of readmission after discharge?  

 

The ability to identify emerging risk patients will enable NHS organisations to take a more 

strategic approach to their care management interventions. For example, Clinical 

Commissioning Groups (CCGs) will be able to design and implement interventions and care 

pathways along the continuum of risk, ranging from, (i) prevention and wellness promotion 

for relatively low risk patients, (ii) supported self-care interventions for moderate risk 

patients, (iii) early intervention care management for patients with emerging risk, and (iv) 

intensive case management for very high risk patients. Therefore, accurately predicting will 

allow CCGs for effective patient risk stratification, thus permitting personalised care plan in 

the community for vulnerable patients most at risk. CCGs are groups of General Practitioners 

and from April 2013 they will be responsible for designing local health services in England.  

 

There is a growing body of literature attempting to describe and validate hospital readmission 

risk prediction tools (Kansagara, Englander, Salanitro, Kagen, Theobald, Freeman & 

Kripalani, 2011). These models have been categorised into three:  

(i) models relying on retrospective administrative data (Bottle, Aylin, & Majeed , 
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2006; Krumholz, et al., 2008a; Krumholz, et al., 2008b; Krumholz, et al. 2008c; 

Hammill, et al., 2011; Howell, Coory, Martin, & Duckett, 2009; Holman, Preen, 

Baynham, Finn, & Semmens, 2005)  

(ii) models using real-time administrative data (Amarasingham, et al., 2010; Billings 

& Mijanovich, 2007; Billings, Dixon, Mijanovich, & Wennberg , 2006), and  

(iii) models incorporating primary data collection (e.g. survey or chart review data) 

(Coleman, Min, Chomiak, & Kramer, 2004; van Walraven, et al., 2010; Hasan, et 

al., 2010).  

 

Most of these models had poor predictive ability, where the area under the receiver operating 

characteristic (ROC) curve ranged from 0.55 to 0.72, except Coleman et al. (2004) used 

administrative data on comorbidity and prior use of medical services along with functional 

status data and reported ROC curve value of 0.83. Here, ROC is defined to be the proportion 

of times the model correctly discriminates a pair of readmitted and non-readmitted patients. 

The area under the curve of 0.50 indicates that the model performs no better than chance; 

0.70 to 0.80 indicates modest or acceptable discriminative ability; and a value of greater than 

0.80 indicates good discriminative ability.  

          

Logistic regression is the most commonly used method for predicting the probability of an 

adverse outcome in the medical literature (including the readmission prediction models 

mentioned above). Recently, data-driven methods, such as classification and regression trees 

(CART) have been used to identify subjects at risk of adverse outcomes or of increased risk 

of having specific diagnoses (Nishida, et al., 2005; Kuchibhatla & Fillenbaum, 2003; Avila, 

Segal, Wong, Boushey, & Fahy, 2000; Schwarzer, Nagata, Mattern, Schmelzeisen, & 

Schumacher, 2003; Hasford, Ansari, & Lehmann, 1993; Stewart & Stamm, 1991; Sauerbrei, 
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Madjar, & Prompeler, 1998; El-Solh, Sikka, & Ramadan, 2001; Tsien, Fraser, Long, & 

Kennedy, 1998; James, White, & Kraemer, 2005; Long, Griffith, Selker, & D’Agostino, 

1993; Nelson, Bloch, Longstreth, & Shi, 1998; Lemon, Roy, Clark, Friedmann, & Rakowski, 

2003). Decision rules generated by CART could easily be interpreted and applied in clinical 

practice. Furthermore, CART methods are versatile at identifying important interactions in 

the data and in identifying clinical subgroups of subjects at very high or very low risk of 

adverse outcomes (Lemon et al., 2003).  

 

There are a number of studies that compared the performance of regression trees and logistic 

regression for predicting outcomes (Austin, 2007). Austin (2007) grouped these studies into 

three broad categories. First, studies that compared the significant predictors found by logistic 

regression with the variables identified by a regression tree analysis as predictors of the 

outcome. Second, studies that compared the sensitivity and specificity of logistic regression 

with that of regression trees. Third, studies that compared the predictive accuracy, as 

measured by the area under the ROC curve, of logistic regression with that of regression 

trees. Among these studies, the conclusions were found to be inconsistent. Six studies 

concluded that regression trees and logistic regression had comparable performance; five 

studies concluded that logistic regression had superior performance to regression trees.  

 

The current study had two objectives: First, to compare the predictive ability of conventional 

logistic regression with that of regression tree methods for predicting patients at risk of 

readmission within 45 days after discharge. Second, to compare the relative performance of 

two other-data driven methods of analysis: generalized additive models (GAMs) and 

multivariate adaptive regression splines (MARS) models. We used repeated split sample 

validation using a large sample of patients hospitalised with chronic obstructive pulmonary 
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disease (COPD) and asthma in a primary care trust in England. COPD is known to be one of 

the leading causes of emergency readmission in the UK (Roland, Dusheiko, Gravelle, & 

Parker, 2005). 

 

For the first time ever, four well established methodologies are rigorously evaluated and 

compared using newly derived variables (that have never being tested before) for the purpose 

of predicting patients at risk of readmission. Given that the NHS faces an unprecedented 

resource challenge: net savings of £20 billion must be achieved over the coming 3-4 years, 

representing a productivity challenge of around 4% a year (Hamm, 2010); the NHS policy 

documents stress the importance of measuring outcomes (i.e. patient readmissions) 

(Department of Health, 2011), and the Government’s initiative towards expanding case 

management (i.e. managing patients in the community) (Department of Health, 2005), this 

research will make a timely contribution.  

 

The development of models that are capable of accurately predicting patients at risk of 

readmission will inevitably enable clinicians, practitioners and senior managers’ to improve 

clinical outcomes and increase effective budgeting. This research will also support positive 

patient centred outcome for the local population through more timely and effective and cost 

effective interventions (reduction in waiting lists, mitigating financial risks, hence cost 

saving).  Therefore, this could be a valuable decision support tool for clinicians (health care 

managers, policy makers, etc.) for informed decision making in the management of diseases, 

which ultimately contributes to improved measures for hospital performance management. 
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2. METHODS 

 

 

2.1 Data Sources 

 

 

The data provided by a primary care trust (PCT) in England comprised three key sources of 

data: inpatient care, outpatient care, and accident & emergency (A&E). The inpatient care 

dataset provides a wide variety of information on admissions to NHS hospitals including 

patient details, when and where they were treated, care period, diagnosis, discharge, and 

geographical data.  The Outpatient dataset contains information on outpatient appointments to 

NHS hospitals (day cases). It includes appointment dates, attendance types and non-

attendances, waiting times, clinical and geographical data, patient details, socio economic 

factors, referral source and outcome results. The A&E dataset provides information on patient 

accident and emergencies to NHS hospitals including reason for and location of accident, 

hospital arrival, diagnosis, disposal, type of department attended, waiting times, and referral 

source. A full list of variables can be obtained from the hospital episodes statistics website 

(Hospital Episode Statistics, 2012).     

 

The data was provided in Microsoft Access and Excel format and necessary steps were taken 

to import the data into MySQL version 5.0, so that database programming could be carried 

out to prepare the data for analysis. Initial checks were made to ensure that the data sets 

provided contained encrypted NHS numbers for matching purposes. The data period is from 

01/04/08 to 31/12/10 (approximately 2.75 years). The total number of observations in the 

A&E dataset is 275,366 records, 122,446 inpatient care admissions, and 1,022,113 outpatient 

attendances. The first two years is used to develop the predictive models (derivation sample) 

and the third year (validation sample) to evaluate the observed vs. predicted results.    
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To model a representative subset of patients, we select patients according to either primary 

diagnosis or main specialty. We focus on patients with COPD and asthma as these are known 

to be the leading causes of early readmission in the UK (Roland et al., 2005). Readmission 

time is the time (in days) from the date of discharge to next emergency admission. Patients 

readmitted within 45 days after discharge (respectively, greater than 45 days) are classified as 

high risk group of readmission (respectively, low risk group), hence a binary response 

variable.  

 

Patients who had the primary diagnosis codes corresponding to COPD (ICD-10 codes J40– 

J44) and asthma (ICD-10 code J45) were extracted. After data cleansing process (e.g. 

removing missing values and outliers) the total number of readmitted COPD and asthma 

patients during the 2.75 year period was 963 (413 and 550 in the high risk and low risk group 

of readmission, respectively). All variables listed in Table 1 were derived through database 

programming. The variables are categorised into three areas:  medical comorbidity, prior use 

of medical services, patient characteristics, socio demographic and social determinants. 

 

Around 14.8% of patients were diagnosed with two or more long term conditions (LTCs) 

(Table 1). A LTC is defined to be COPD, asthma, coronary artery disease, congestive heart 

failure, hypertension and cancer. Note that all explanatory variables were derived based on 

the admission date prior to readmission, for example, if a patient is readmitted on 01/06/2009, 

then the derived variables for this particular patient is based on the data prior to 01/06/2009. 

Approximately 22.7% of patients had one emergency readmission in the past 30 days, 

whereas 30.9% had three or more emergency admissions in the past 365 days. The average 

total previous length of stay prior to emergency admission in the last 30 days is around six 

days (25
th

 and 75
th

 percentile is 0 and 7 days, respectively). Interestingly, almost a fifth of 
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patients had 6-10 outpatient attendances in the past two years. Furthermore, fifty five per cent 

had three or more A&E visits in the past one year.  

                                                           ------------------------------  

Insert Table 1 here  

                                                           ------------------------------ 

[All figures and tables are appended at the end of the paper.] 

 

2.2.  Initial Model for Predicting Patients at Risk of Readmission 

 

 

A parsimonious model for predicting patients at risk of readmission was implemented based 

on the univariate logistic regression method using repeated bootstrap resampling approach. 

This model was developed by drawing repeated bootstrap samples from the sample of COPD 

and asthma patients. Those variables that were identified as significant predictors of risk of 

readmission in at least 75 per cent of the bootstrap samples were retained for inclusion in the 

final predictive model. The resultant model comprised thirty eight variables (listed in Table 

2), that is, 38 were found to be significant in at least 75 per cent of the bootstrap samples out 

of the 79 variables listed in Table 1. This model will be used as the basis for some of the 

regression models that we will consider in this study. 

 

                                                           ------------------------------  

Insert Table 2 here  

                                                           ------------------------------ 

 

 

2.3.  Predictive Models for Risk of Readmission  

 
 

In this section, we describe the four different classes of predictive models that were used to 

predict patients at risk of readmission. All model fitting and model validation was done using 

the R statistical programming language (R Core Development Team, 2005).  

 

2.3.1. Logistic regression 
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Three separate logistic regression models were developed to predict patients at risk of 

readmission. The first model consisted of the thirty eight variables described in section 2.2, 

known as the reduced model. The second model was constructed using backwards variable 

elimination. This consisted of all the 38 variables along with all two-way interactions, with 

the thirty eight main effects being forced to remain in each model. The third model was also 

constructed using backwards variable elimination. However, in this instance, the initial model 

consisted of the 79 variables listed in Table 1. The logistic regression models were fitted 

using the glm function in R.  

 

Backwards variable elimination was done using the step function in R. This implementation 

of backwards variable elimination is based upon sequentially eliminating variables from an 

initial model. At each step the variable is removed from the current model that results in the 

greatest reduction in the Akaike Information Criterion (AIC). The process of eliminating 

variables terminates either when a pre-specified boundary model is achieved or when no step 

will cause a further reduction in the AIC criterion (Hastie & Pregibon, 1993).  

 

 

2.3.2. Classification trees 

 

 

Binary recursive partitioning methods are rarely used to construct regression trees to predict 

patients at risk of readmission. The R implementation of regression tree only allows for 

binary partitions (or splits). In addition, the R implementation only allows for splits on 

individual variables and does not allow for splits on linear combinations of predictor 

variables. At each node, classification tree partitions the input variables into a set of 

homogeneous regions. The splits should divide the observations within a node so that the 

class types within a split are mostly of one kind (i.e. readmitted or not readmitted). 
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One advantage of this approach is that it does not require the parametric specification of the 

nature of the relationship between predictor variables and the outcome. In addition, the 

assumptions of linearity that are frequently made in linear and generalized linear models are 

not required for tree-based regression methods. Furthermore, tree-based methods are adept at 

identifying important interactions between predictor variables. 

 

An initial tree was grown using all 79 candidate predictor variables listed in Table 1. Once 

the initial regression tree had been grown, the tree was pruned. A cross validation was used 

on the derivation data set to determine the optimal number of leaves on the tree (Faraway, 

2006). Predictions were obtained on the validation data set using the pruned tree. The 

regression tree models were fit using the rpart function in the rpart package for R. The 

following code was used in R: 

 

COPD.tree <- rpart(readmission ∼ x.1 + x.2 + · · · + x.79, data=COPD.derivation)             (1) 

 

Finally, the tree is pruned using the prune function with the cost complexity parameter (cp) 

prune.COPD.tree<-prune(tree.derive, cp=0.01)     (2) 

 

This final regression tree fit to the derivation sample was then used to obtain predictions for 

patients in the validation sample. 

 

 

2.3.3. Generalized additive models 

 

 

A generalized additive model (GAM) is an additive regression model of the form  

 

      ∑         
 
                                                      (3) 
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where the    are smooth arbitrary functions (e.g. lowess and smoothing splines) (Hastie & 

Tibshirani, 1990). Additive models are more flexible than the linear model, but still 

interpretable since the functions    can be plotted to give a sense of the marginal relationship 

between the predictors and the response. Categorical variables can be easily accommodated 

within the model using the usual regression approach. For example,  

 

      ∑            
 
                                                      (4) 

 

where   is the design matrix for the variables that will not be modelled additively, where 

some may be quantitative and others qualitative. The   are the associated regression 

parameters. 

 

In the current study, we considered three separate GAMs for predicting patients at risk of 

readmission. First, we considered the reduced model described above (variables listed in 

Table 2). Total length of stay variables and age at admission were modelled using smoothing 

splines. A second model was fitted that consisted of the above GAM, along with all two-way 

interactions. The third model contained all 79 variables, while the 12 continuous variables 

were modelled using smoothing splines. 

 

The GAMs were fitted using the gam function in the MGCV package in R. The first 

generalized additive was fit using the following code in R:    

 

COPD.gam <- gam(readmission ∼ s(x.1) + s(x.2) + · · · +s(x.9) +  x.10 + x.11 + · · ·  x.38, family 

= binomial, data=COPD.derivation)        (5) 
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Here, s(x.1) – s(x.9) are the continuous variables that were modelled using smoothing splines 

and x.11 – x.38 are the categorical variables listed in Table 2. This particular GAM is 

expressed as in equation (4).   

 

2.3.4. Multivariate adaptive regression spline models 

 

Multivariate adaptive regression splines (MARS) is an adaptive regression procedure well 

suited to problems with a large number of predictor variables (Friedman, 1991; Hastie, 

Tibshirani, & Friedman, 2001). The basic principle of MARS is that it divides the data into 

several regions, and fits a regression model to each region. MARS uses an expansion based 

on linear spline functions. For a given predictor    and a given value c taken by the predictor 

variable, one can define two linear spline functions: (    )+  and (    )+ , where ‘+’ 

refers to the positive part. For example, suppose    is ‘age at admission’ and the best split is 

at age 55 (i.e. c = 55), then (     )+  and (     )+  refers to the region greater and lower 

than 55, respectively.  

 

We examined three separate MARS models. Each used the 79 variables described in Table 1. 

The first model was an additive model that did not allow interactions between the predictor 

variables. The second model allowed for the inclusion of two-way interactions, while the 

third model allowed for the inclusion of all possible interactions, including 79-way 

interactions. MARS models are constructed using generalized cross-validation to determine 

the optimal number of terms in the model (Hastie, Tibshirani, & Friedman, 2001). This use of 

generalized cross-validation helps protect against over-fitting the model in the derivation 

sample. Thus, while the third MARS model allowed for the potential inclusion of all possible 
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interactions, the use of generalized cross-validation minimizes the likelihood that the final 

model will be over-fit to the derivation sample. The MARS models were fit using the earth 

function in the EARTH package. The following code was used to fit the first MARS model in 

R: 

COPD.mars <- mars(readmission ~ x.1 + x.2 + … + x.79, data = COPD.derivation, degree=1, 

glm=list(family=binomial)))      (6) 

 

where COPD.derivation denotes a matrix of the predictor variables (from the derivation 

sample), readmission denotes the binary outcome variable and degree = 1 refers to additive 

model (i.e. a model with no interactions).   

 

 

2.4. Evaluating the predictive powers of models 

 

 

Motivated by Austin (2007), repeated split-sample validation was used to compare the 

predictive accuracy of each statistical method. The data were divided into derivation and 

validation components. The first two years of data were used for model derivation and the 

remaining nine months of data was used for model validation. Each derivation sample 

consisted of 725 patients, while each validation sample consisted of 238 patients. This 

process was repeated 1000 times. 

 

Each model was fitted on the derivation sample. Predictions were then obtained for each 

patient in the validation sample using the model derived on the derivation sample. The 

predictive accuracy of each model was summarized by the area under the ROC curve, which 

is equivalent to the c-statistic (Harrell Jr, 2001). In medical literature, ROC is the most widely 

used statistic to assess the predictive power of models related to predicting adverse events. 

The area under the ROC curve was obtained for both the derivation and validation samples. 
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In addition to ROC, Austin (2007) used a number of other measures (suggested by Harrell Jr 

(2001)), such as the generalized   
  index (Nagelkerke, 1991) and Brier’s score (Harrell Jr, 

2001). Brier’s score is defined as  

 

  
 

 
∑ ( ̂    )

  
          (7) 

   

where  ̂  is the predicted probability and    is the observed response for the i th patient. We 

computed the generalized   
  index and Brier’s score in each of the validation samples. The 

area under the ROC curve, the generalized   
  index, and Brier’s score were computed using 

the val.prob function from the RMS package for R. We also report the sensitivity score and 

specificity score for the validation samples. Sensitivity score is the proportion of correctly 

classified readmitted patients, whereas specificity score is the proportion of correctly 

classified non-readmitted cases. These two measures are well known by clinical and 

managerial staff in the National Health Service.   

 

The above methods were repeated 1000 times: the initial data were divided into derivation 

and validation components 1000 times. Each predictive model was fitted using the derivation 

data set and predictions were then obtained on the validation data set. Results were then 

summarized over the 1000 validation data sets. By using 1000 different derivation/validation 

samples, we were able to assess the robustness of our results under different derivation and 

validation samples. This process was carried out using the boot function from the BOOT 

package for R.  

  



16 
 

3. RESULTS 

3.1. Predictive Performance 

The mean area under the ROC curve for each model in both derivation and validation 

samples are reported in Table 3.   

                                                           ------------------------------  

Insert Table 3 here  

                                                           ------------------------------ 

 

In the validation sample, the mean ROC curve area for the regression tree model was 0.924, 

while the mean ROC curve area for the stepwise logistic regression model was 0.928. The 

difference in ROC curve areas for the regression tree method and the stepwise logistic 

regression model ranged from a low of zero to a high of 0.137 across the 1000 validation 

samples (mean difference: 0.026). The ROC curve areas for the other modelling methods in 

the validation samples ranged from a low of 0.824 (MARS model with all interactions) to a 

high of 0.924 (GAM and MARS with all variables, i.e., full model). As both models included 

all variables (i.e. 79) this may mean that the full models were over fitted on the derivation 

samples.  

 

The mean ROC curve area for the regression tree decreased from 0.948 in the derivation 

samples to 0.924 in the validation samples – a very small decrease of 0.024. The decline in 

the mean ROC curve area between the derivation and validation samples was negligible for 

the logistic regression with the backwards elimination from the full model (0.049). Similarly, 

the drop in ROC curve area from the derivation sample to the validation sample was identical 

and small for the GAM (full model: 0.978 to 0.924) and the MARS full model. The highest 

difference in ROC curve areas between the derivation and validation samples was observed 

to be in the MARS model with all interactions (0.171), followed by MARS with two-way 

interactions (0.131) and the logistic regression with two-way interactions (0.122). The greater 
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decline in ROC curve area for the MARS models compared to the simpler logistic regression 

and regression tree may be indicative of a tendency of the more complex MARS models to 

over-fit on the derivation samples. For most models, the decrease in ROC curve area from the 

derivation sample to the validation sample was relatively modest.  

 

The distribution of the area under the ROC curve in the 1000 validation data sets for each 

modelling approach is described in Figure 1. The distribution of ROC curve areas for the 

MARS model with two-way interactions and all interactions, logistic regression with two-

way interactions, and GAM with two-way interactions shifted downwards (and to the left) 

compared to that of the other modelling approaches (i.e. greater variability in ROC curve 

areas). This clearly demonstrates that models with two way interactions (or higher) had 

consistently poor performance than the other models.  

 

The distributions of ROC curve areas for the logistic regression model obtained from the full 

model using backwards elimination, the reduced logistic regression model, and the regression 

tree model were almost identical. The same phenomenon was observed for the GAM reduced 

model and GAM full model. 

                                                           ------------------------------  

Insert Figure 1 here  

                                                           ------------------------------ 
 

The generalized   
  index is reported in Table 3 for each of the modelling strategies. The 

index ranged from a low of 0.701 for MARS with all interactions (and logistic regression 

with two-way interactions) to a high of 0.859 for the logistic regression model obtained from 

the full model using backwards elimination, that is, this model explained substantial 

proportion of the observed variation. The Brier’s score is also reported in Table 3 for each of 

the modelling strategies. Of note is the fact that there isn’t too much variability in the 
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estimated Brier’s score for all the modelling strategies except logistic regression and GAM 

with two-way interactions and MARS with all interactions. The distribution of the 

generalized   
  index and Brier’s scores in the 1000 validation data sets for each modelling 

approach are described in Figures 2 and 3, respectively.  

                                                           ------------------------------  

Insert Figure 2 here  

                                                           ------------------------------ 

 

                                                           ------------------------------  

Insert Figure 3 here  

                                                           ------------------------------ 

 

Similar observations can be made concerning the distribution of the generalized   
  index in 

the validation samples as was made above for the distribution of the ROC curve areas for the 

different models in the validation samples. In the case of the distribution of Brier’s score 

(Figure 3) the logistic regression model (two-way interactions) shifted the most to the right 

(i.e. the least effective model), whereas the regression tree, logistic regression (obtained from 

backwards elimination), and GAM (full model) exhibited the least variability with the most 

effective predictive ability. The remaining models can be considered to be comparable (0.137 

to 0.151).   Sensitivity and specificity scores are also reported in Table 3. The highest mean 

sensitivity and specificity scores over the 1000 validation samples is from the regression tree 

model (0.862 and 0.904, respectively) and logistic regression based on backwards elimination 

from the full model (0.821 and 0.897, respectively). Figures 4 and 5 illustrate the distribution 

of sensitivity and specificity scores, respectively. Note that the distribution of specificity 

scores for all modelling strategies (except logistic regression with two-way interactions) are 

very similar, whereas some variability is observed in the distribution of sensitivity scores.  

                                                           ------------------------------  

Insert Figure 4 here  

                                                           ------------------------------ 

                                                           ------------------------------  

Insert Figure 5 here  
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                                                           ------------------------------ 

 

3.2.Miscellaneous results 

 

The best modelling strategy is selected from each method and key findings are presented 

here. Judging from the predictive performance measures from Table 3, the stepwise logistic 

regression, GAM (full model) and MARS (full model) are selected. The regression tree 

obtained using one of the derivation samples is illustrated in Figure 6.  

                                                           ------------------------------  

Insert Figure 6 here  

                                                           ------------------------------ 

 

This particular regression tree had seven terminal nodes. Six variables were used in creating 

the tree which are all related to prior use of medical services (e.g. length of stay, previous 

history of readmissions). If a patient had one previous emergency readmission in the last 30 

days, then there is a 100% chance of being readmitted within 45 days after discharge 

(N=166). This can be considered to be clinically relevant, as patient’s short previous history 

is related to risk of adverse outcomes (e.g. readmission, mortality).  Similarly, there is a 90% 

chance of a patient being readmitted if their previous length of stay in hospital (emergency 

and non-emergency) was greater than half a day and had two or more emergency admissions 

in the past 90 days (N = 80).   

 

From the logistic regression obtained from backwards elimination, twenty three variables (out 

of a total of 79) were included in the final model, of which nineteen had a p-value less than 

0.05. Patients who had four or more distinct in-patient primary diagnosis (i.e. clinical 

conditions) were eight times more likely to have been readmitted. Interestingly, those who 

had two or more emergency readmissions in the last 90 days were 65 times more likely to be 

readmitted.  
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Figure 7 describes the relationship between log odds of readmission and “total emergency 

and non-emergency length of stay in the past 90 days” and “total emergency length of stay in 

the past 90 days” from the GAMs full model. Note that these two variables are not the same, 

where the latter takes into account length of stays based on emergency admissions only, 

whereas the former includes non-emergency admissions as well (e.g. planned surgeries). For 

each value of a given variable, we determined the predicted log-odds of readmission, holding 

the other continuous variables fixed at the sample average and the binary predictor variables 

set to absent.  

                                                           ------------------------------  

   Insert Figure 7 here  

        ------------------------------ 

 

One observes that the relationship between the two variables and log-odds of readmission is 

non-linear up-to 30 days of length of stay and approximately linear thereafter.  The risk of 

readmission increases with an increasing total emergency length of stay in the past 90 days 

prior to next readmission. Conversely, increasing LoS at emergency and non-emergency 

admissions reduces the risk of being readmitted. One explanation for this phenomenon is that 

when “emergency” admissions are coupled with “non-emergency admissions”, further 

complications at the non-emergency admission phase for sick and frail patients may have 

been prevented, and consequently the more the patient is cared/treated at both admissions, the 

lower the risk of future readmissions.  

 

Figure 8 describes the relationship between the log-odds of readmission and the two LoS 

variables used above from MARS full model. One observes that up-to a total of 10 LoS days 

(emergency and non-emergency LoS) log odds of readmission increase rapidly, where this 

risk gradually decreases after a LoS greater than 20 days.  In relation to emergency LoS only, 
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the log-odds of readmission are low for patients who stayed in hospital for less than six days 

(in the last 90 days prior to next readmission) and gradually increases thereafter.  

 

Rapid patient discharge to free beds for incoming patients is a controversial debate in the UK. 

Some argue that patients may have been discharged too soon, raising the issue that patients 

are being discharged ‘sicker and quicker’ (Capewell, 1996). As a result, early discharges may 

generate high levels of readmissions, which could possibly be seen as patients being 

discharged inappropriately. In this respect, Figures 7 and 8 points to the fact that when 

patients are cared and treated for longer periods of time (as an emergency and non-emergency 

LoS) the risk of future readmission diminishes, which may result in the reduction of 

emergency readmissions, increase patient and staff satisfaction, reduce waiting lists, increase 

the performance of the hospital, and given the economic conditions in the UK, cost savings.   

 

                                                         ------------------------------  

Insert Figure 8 here 

   

4. DISCUSSION 

 

In the National Health Service, changes to commissioning arrangements have increased the 

focus and drive to reduce hospital admissions.  Approximately 35% of hospital admissions in 

England are emergency admissions costing £11 billion per annum (2010/11), which represent 

36.7% of hospital admissions in England (5.3 million admissions in 2010/11). Given that the 

tough economic conditions are expected to be with us for quite a while in the future, the UK 

Government’s target is to provide personalised care plan for vulnerable people most at risk. 

Managing emergency readmissions will inevitably reduce the burden on non-emergency 

health care and resource use, which may lead to substantial amount of cost savings, reduction 

on waiting lists, and more importantly positive patient centred outcomes for patients and 



22 
 

carers. Therefore, an appropriate toolkit is needed to aid clinical commission groups in their 

intervention policies to provide treatment in the community to those patients who are at high 

risk of readmission. There has been an increasing interest in developing statistical models to 

identify patients at increased risk of readmission within a short period of time after discharge 

(e.g. 45 days). Many models have been developed in the UK and other countries where these 

studies produced conflicting findings, resulting in poor predictions.  

 

In the current study, we have demonstrated, using a large sample of patients with chronic 

obstructive pulmonary disease that conventional logistic regression and regression trees 

produced comparable results to that of modern flexible regression methods such as GAMs 

and MARS models. The mean ROC curve area for conventional logistic regression with no 

interactions and regression trees was 0.928 and 0.924, respectively in the validation sample, 

while the corresponding value for GAMs and MARS was 0.854 and 0.721, respectively. The 

highest observed ROC curve area was for the logistic regression model obtained from the full 

model using backwards elimination. In addition to comparing the predictive accuracy of 

regression methods from different families of methods, we also compared the predictive 

accuracy of models with differing complexity from the same family of models. We found that 

more complex models from the same family had lower predictive accuracy (GAMs and 

MARS). Similar results were observed when the generalized   
  index, Brier’s score, 

sensitivity score and specificity score were used to quantify the predictive accuracy of 

different regression models.  

 

Nevertheless, GAMs and MARS provided very useful insights. First, analyses conducted 

using GAMs indicated that the relationship between log-odds of readmission (within 45 days 

after discharge) and “total emergency length of stays in the past 90 days” was non-linear up-
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to a LoS of 30 days and approximately linear thereafter. One can observe that the risk of 

readmission increases after patients having spent above 30 days as an emergency admission. 

Clinicians, nurses and key decision makers for COPD patients could pay particular attention 

to those patients who have been in emergency care for a total of 30 or more days. Note that 

thirty or more days refer to the cumulative length of stays in the past 90 days as emergency 

admissions only. This finding was also confirmed by the MARS full model (additive model).  

 

The conventional logistic regression model was able to exploit the strong underlying linear 

relationships in the data. For example, commissioning managers (and the clinical team) 

would need to be extra cautious on patients who had two or more emergency admissions in 

the past 90 days prior to next readmission, simply due to the fact that this group of patients 

are 65 times more likely to be readmitted.  The regression tree model partitioned the sample 

using binary decision rules and one useful partition was that if a patient had one previous 

emergency readmission in the last 30 days, then there is a 100% chance of being readmitted 

again. A closer look at this particular node revealed that out of the 166 patients that were 

assigned to this node, approximately 88% of patients were correctly identified in the 

validation sample. 

 

We offer the following three suggestions to researchers and practitioners assessing the 

predictive accuracy of regression models to predict patients at risk of readmission. First, the 

data should be split into a derivation sample and validation sample, so that the predictive 

accuracy of regression models can be assessed using a summary measure such as the area 

under the ROC curve. Second, do not just rely on sensitivity and specificity scores (the 

proportion of correctly identified readmitted and non-readmitted cases, respectively), as this 

approach has been criticised for a variety of reasons (Harrell Jr, 2001). Third, repeated split-
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sample validation should be employed to assess the variability in the performance measures 

across the 1000 validation samples.  To the best of our knowledge, no study has ever 

compared CART and logistic regression with other data driven methods (GAMs and MARS) 

using repeated split sample validation approach to examine the robustness of the findings to 

predict patients at risk of readmission within forty five days after discharge.  

 

In conclusion, we demonstrated that logistic regression had superior predictive ability 

compared to modern data-driven methods. Furthermore, regression trees had comparable 

predictive ability to the conventional logistic regression. A message to key decision makers in 

the NHS (and other countries) is that to the best of our knowledge this particular research has 

produced the highest predictive accuracies that have ever been published. Based on the 

rigorous evaluation of 1000 validation samples, the area under the ROC curve is 0.93 with an 

overall classification accuracy of 0.90 (the highest previously reported area under the ROC 

curve is 0.83 by Kansagara, et al., 2011). Therefore, the methods outlined in this study will 

enable practitioners and managers in the NHS to develop a robust decision support toolkit to 

provide treatment in the community to patients at high risk of readmission.  This can be a 

valuable tool in helping to tailor community care to local needs and ultimately contribute to 

improved measures in reducing readmissions. 
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Table 1: Derived variables and characteristics of the study sample. 0/1 refers to dichotomous 

variables with their corresponding proportion of cases. For example, 14.8% of COPD and 

asthma patients have two or more long term conditions (LTCs). The index of multiple 

deprivation (IMD) score is a weighted index based on seven factors: income, employment, 

health and disability, education, skills and training, barriers to housing and services, living 

environment and crime.  

Medical comorbidity   

One and only one long term condition (0/1) 54.1 per cent 

Two or more long term conditions (0/1) 14.8 per cent 

Two distinct in-patient primary diagnosis (0/1) 22.6 per cent 

Three distinct in-patient primary diagnosis (0/1) 10.4 per cent 

Four and above distinct in-patient primary diagnosis 22.2 per cent 

Prior use of medical services:  Inpatient care  

One emergency admission in the past 30 days (0/1)  22.7 per cent 

More than one emergency admission in the past 30 days (0/1) 5.4 per cent 

One emergency admission in the past 90 days (0/1) 32.5 per cent 

Two or more emergency admissions in the past 90 days (0/1) 19.1 per cent 

One emergency admission in the past 180 days (0/1) 33.2 per cent 

Two or more emergency admissions in the past 180 days (0/1) 33.7 per cent 

One emergency admission in the past 365 days (0/1) 35.1 per cent 

Two emergency admissions in the past 365 days (0/1) 14.7 per cent 

Three or more emergency admissions in the past 365 days (0/1) 30.9 per cent 

One emergency admission in the past 730 days (0/1) 35.1 per cent 

Two emergency admissions in the past 730 days (0/1) 15.8 per cent 

Three emergency admissions in the past 730 days (0/1) 9.0 per cent 

Four or more emergency admissions in the past 730 days (0/1) 28.2 per cent 

Total previous emergency length of stay prior to emergency admission in the last 30 days 0.9 (0-0) 

Total previous emergency length of stay prior to emergency admission in the last 90 days 3.3 (0-3) 

Total previous emergency length of stay prior to emergency admission in the last 180 days 6.0 (0-7) 

Total previous emergency length of stay prior to emergency admission in the last 365 days 10.2 (0-12) 

Total previous emergency length of stay prior to emergency admission in the last 730 days 14.6 (1-16) 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 30 days 

1.0 (0-0) 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 90 days 

3.5 (0-4) 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 180 days 

6.4 (0-8) 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 365 days 

10.8 (0-13) 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 730 days 

15.3 (1-17) 

One previous emergency readmission as high risk group in the last 730 days (0/1) 41.7 per cent 

Two previous emergency readmission as high risk group in the last 730 days (0/1) 24.8 per cent 

Three previous emergency readmission as high risk group in the last 730 days (0/1) 17.4 per cent 

Four previous emergency readmission as high risk group in the last 730 days (0/1) 12.7 per cent 

Five previous emergency readmission as high risk group in the last 730 days (0/1) 9.7 per cent 

Prior use of medical services:  Outpatient care  
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One out-patient specialty visit in the last 30 days (0/1) 15.9 per cent 

Two out-patient specialty visit  in the last 30 days (0/1) 4.4 per cent 

Three or more out-patient specialty visit  in the last 30 days (0/1) 2.4 per cent 

One out-patient specialty visit  in the last 90 days (0/1) 20.8 per cent 

Two out-patient specialty visit  in the last 90 days (0/1) 11.4 per cent 

Three or more out-patient specialty visit  in the last 90 days (0/1) 13.9 per cent 

1-5 out-patient specialty visits  in the last 730 days (0/1) 38.7 per cent 

6-10 out-patient specialty visits  in the last 730 days (0/1) 19.7 per cent 

Eleven or more out-patient specialty visits  in the last 730 days (0/1) 15.2 per cent 

Prior use of medical services:  Accident & Emergency  

If the patient had an X-ray in their A&E visit in the last 180 days (0/1) 53.0 per cent 

Arrived by ambulance in the last 90 days (0/1) 41.2 per cent 

The patient was discharge to hospital in the last 180 days (0/1)   53.1 per cent 

One A&E visit in the last 365 days (0/1) 16.1 per cent 

Two A&E visit in the last 365 days (0/1) 14.5 per cent 

Three or more A&E visit in the last 365 days (0/1) 55.2 per cent 

Patient characteristics, socio demographic and social determinants  

Age group 0-4 (0/1) 6.0 per cent 

Age group 5-14 (0/1) 4.5 per cent 

Age group 15-39 (0/1) 9.3 per cent 

Age group 40-59 (0/1) 18.5 per cent 

Age group 60-64 (0/1) 6.7 per cent 

Age group 65-69 (0/1) 8.4 per cent 

Age group 70-74 (0/1) 13.2 per cent 

Age group 75-79 (0/1) 10.5 per cent 

Age group 80-84 (0/1) 14.1 per cent 

Age group 85-89 (0/1) 6.5 per cent 

Age group 90-94 (0/1) 2.2 per cent 

Age 95+ (0/1) 0.1 per cent 

Gender (female) (0/1) 51.2 per cent 

Age (continuous variable) 60 (51-79) 

Index of multiple deprivation (continuous variable) 24.9 (18-31) 

Ethnicity  

British (White) (0/1)  63.9 per cent 

Irish (White) (0/1) 3.3 per cent 

Any other white background (0/1) 1.3 per cent 

White and Black Caribbean (Mixed) (0/1) 0.4 per cent 

White and Black African (Mixed) (0/1) 0.3 per cent 

White and Asian (Mixed) (0/1) 0.2 per cent 

Indian (Asian or Asian British) (0/1) 14.1 per cent 

Pakistani (Asian or Asian British) (0/1) 3.3 per cent 

Bangladeshi (Asian or Asian British) (0/1) 0.1 per cent 

Any other Asian background (0/1) 3.7 per cent 

Caribbean (Black or Black British) (0/1) 0.3 per cent 

African (Black or Black British) (0/1) 0.8 per cent 

Any other Black background (0/1) 0.8 per cent 

Chinese (other ethnic group) (0/1) 0.2 per cent 

Any other ethnic group (0/1) 7.1 per cent 



30 
 

 

Table 2: List of variables for the reduced model 

One and only one long term condition (0/1) 

Two or more long term conditions (0/1) 

Two distinct in-patient primary diagnosis (0/1) 

Three distinct in-patient primary diagnosis (0/1) 

Four and above distinct in-patient primary diagnosis 

One emergency admission in the past 90 days (0/1) 

Two or more emergency admissions in the past 90 days (0/1) 

One emergency admission in the past 180 days (0/1) 

Two or more emergency admissions in the past 180 days (0/1) 

Three or more emergency admissions in the past 365 days (0/1) 

One emergency admission in the past 730 days (0/1) 

Two emergency admissions in the past 730 days (0/1) 

Three emergency admissions in the past 730 days (0/1) 

Four or more emergency admissions in the past 730 days (0/1) 

Total previous emergency length of stay prior to emergency admission in the last 90 days 

Total previous emergency length of stay prior to emergency admission in the last 180 days 

Total previous emergency length of stay prior to emergency admission in the last 365 days 

Total previous emergency length of stay prior to emergency admission in the last 730 days 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 90 days 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 180 days 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 365 days 

Total previous emergency and non-emergency length of stay prior to emergency admission 

in the last 730 days 

One previous emergency readmission as high risk group in the last 730 days (0/1) 

Two previous emergency readmission as high risk group in the last 730 days (0/1) 

Three previous emergency readmission as high risk group in the last 730 days (0/1) 

Four previous emergency readmission as high risk group in the last 730 days (0/1) 

Five previous emergency readmission as high risk group in the last 730 days (0/1) 

One out-patient specialty visit in the last 30 days (0/1) 

1-5 out-patient specialty visits  in the last 730 days (0/1) 

Eleven or more out-patient specialty visits  in the last 730 days (0/1) 

If the patient had an X-ray in their A&E visit in the last 180 days (0/1) 

Arrived by ambulance in the last 90 days (0/1) 

The patient was discharge to hospital in the last 180 days (0/1)   

One A&E visit in the last 365 days (0/1)   

Two A&E visit in the last 365 days (0/1)   

Three or more A&E visit in the last 365 days (0/1)   

Age (continuous variable)  

If the patient had a long term condition in the past (0/1) 
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Table 3: Model discrimination in the 1000 repeated split samples 

Model ROC area: 

derivation 

sample 

ROC area: 

validation 

sample 

  
 : 

validation 

sample 

Brier’s 

score: 

validation 

sample 

Sensitivity 

score: 

validation 

sample 

Specificity  

score: 

validation 

sample 

Regression Tree 0.948 0.924 0.721 0.089 0.862 0.904 

Logistic regression (backwards 

elimination from full model) 

0.977 0.928 0.859 0.101 0.821 0.897 

Logistic regression  

(reduced model) 

0.954 0.880 0.759 0.137 0.773 0.868 

Logistic regression  

(two-way interactions) 

0.976 0.854 0.701 0.198 0.701 0.804 

GAM (full model) 0.978 0.924 0.854 0.106 0.802 0.896 

GAM (reduced model) 0.959 0.875 0.778 0.138 0.753 0.863 

GAM (two-way interactions) 0.963 0.856 0.792 0.149 0.744 0.851 

MARS (full model) 0.978 0.924 0.721 0.142 0.813 0.892 

MARS (two-way interactions) 0.991 0.863 0.712 0.143 0.794 0.879 

MARS (all interactions) 0.995 0.824 0.701 0.151 0.801 0.872 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of ROC curve areas in 1000 validation samples 
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Figure 2: Distribution of 𝑹𝑵
𝟐  index in 1000 validation samples 

Figure 3: Distribution of Brier’s scores in 1000 validation samples 



33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Distribution of sensitivity scores in 1000 validation samples 

Figure 5: Distribution of specificity scores in 1000 validation samples 
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725 

(45.0%) 

559 

(28.1%) 

166 

(100%) 

One emergency readmission in the 

last 30 days = No 

One emergency readmission in the 

last 30 days = Yes 

204 

(37.0%) 

355 

(8.0%) 

Total emergency and non-

emergency LoS in the last 

90 days < 0.5 days 

Total emergency and 

non-emergency LoS 

in the last 90 days 

>= 0.5 days 

 

80 

(90.0%) 

Two or more emergency 

readmissions in the last 

90 days = Yes 

Two or more 

emergency 

readmissions in the 

last 90 days = No 

124 

(55.0%) Total emergency 

LoS in the last 90 

days >=14 days 

14 

(86.0%) 
110 

(40.0%) 

Total emergency 

LoS in the last 90 

days < 14 days 

78 

(47.0%) 

32 

(22.0%) 

28 

(64.0%) 

50 

(38.0%) 

One previous 

emergency 

readmission in the 

last 2 years = Yes 

One previous 

emergency 

readmission in the 

last 2 years = No 

Three emergency 

readmissions in 

the last 2 years = 

Yes 

Three emergency 

readmissions in 

the last 2 years = 

No 

Figure 6: Regression tree for patients at risk of readmission 45 days after discharge. Each 

node contains the number of patients in that node and the risk of readmission rate of those 

patients [N (risk of readmissions)]. The derivation sample has 725 patients of which 45% 

were readmitted within 45 days after discharge. 
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Figure 7: Relationship between selected variables and risk of readmission: generalized 

additive models (full model) 

Figure 8: Relationship between selected variables and risk of readmission: multivariate 

adaptive regression splines (full model) 


