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Abstract
In this study, we harness the signal processing potential of neurons, utilizing the
Izhikevich point neuron model to efficiently decode the slope or amplitude of fluctuating
continuous input signals. Using biophysically detailed compartmental neurons often
requires significant computational resources. We present a novel approach to create
behaviours and simulate these interactions in a lower-dimensional space, thereby
reducing computational requirements. We began by conducting an extensive search of
the Izhikevich parameter space, leading to the first significant outcome of our study: i)
the identification of optimal parameter sets for generating slope or amplitude detectors,
thereby achieving signal processing goals using neurons. Next, we compared the
performance of the slope detector we discovered with a biophysically detailed
two-compartmental pyramidal neuron model. Our findings revealed several key
observations: ii) bursts primarily occurred on the rising edges of similar input signals,
iii) our slope detector exhibited bidirectional slope detection capabilities, iv) variations
in burst duration encoded the magnitude of input slopes in a graded manner. Overall,
our study demonstrates the efficient and accurate simulation of dendrosomatic
behaviours. Real-time applications in robotics or neuromorphic hardware can utilize our
approach. While biophysically detailed compartmental neurons are compatible with
such hardware, Izhikevich point neurons are more efficient. This work has the potential
to facilitate the simulation of such interactions on a larger scale, encompassing a greater
number of neurons and neuronal connections for the same computational power.

Introduction
There is a wide range of approaches to modelling neuronal activity. Single-neuron
models are often required to reproduce very specific features of existing experimental
data, e.g. replicating the bursting mechanisms and gradient detection of Pyramidal
neurons [5]. Often these models represent known biophysical mechanisms in
compartments, such as the pyramidal neuron model which combines the soma and axon
in one compartment and the dendritic region in another, forming a two-compartmental
model. These spatially complex models are usually focused on the computational
aspects of the information processing within the neuron, prioritizing accuracy and
biological realism rather than efficiency. However, in various research fields like
gas-based navigation in robotics, there is a need for less computationally expensive
models that efficiently process information, particularly amplitude and slope detectors.
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Amplitude and slope are important dynamical features of sensory signals, encoding
information about the scene [7, 9, 10]. The instantaneous dynamics of gas concentration
in a turbulent plume are extremely complex [4, 7], and this rich temporal structure and
spatial distribution of gas plumes demand rapid [4, 8, 14], low-latency responses to
temporal cues in these signals. We created a neuron from the Izhikevich [6] point
neuron model, which inherently processes information with less computation in
lower-dimensional space. We demonstrate how this neuron model can mimic the
behaviours from the biophysically detailed two-compartmental pyramidal neuron
model [5] without compromising accuracy.

Izhikevich [6] maintained an effective trade-off between the biological plausibility of
Hodgkin-Huxley-type dynamics and the computational efficiency of integrate-and-fire
neurons, making it a popular choice for implementing neuronal computations onto
neuromorphic hardware [12, 16, 17] and robotic platforms [13, 18]. Izhikevich presented a
two-dimensional system of ordinary differential equations (Eq. 1) with an auxiliary
after-spike reset (Eq. 2). The parameters in the equations map to known biological
features of neuronal spiking processes.

v′ = 0.04v2 + 5v + 140− u+ I

u′ = a(bv − u)
(1)

if v ≥ 30mV, then

{
v ← c

u← u+ d
(2)

The dimensionless variables, membrane potential (v) and recovery variable (u),
represent the core elements of the model. The parameters (a, b, c, d) control the
recovery rate of u, sensitivity of u, after-spike reset of v, and after-spike reset of u,
respectively. The model’s mathematical simplicity, with only one non-linear term (v2),
contributes to its computational efficiency.

While the Izhikevich model does not capture specific biophysical mechanisms or the
spatial complexity of neurons, it has demonstrated the ability to replicate various types
of known neural behaviours, including intrinsically bursting and fast-spiking. In our
study, we compare a bursting slope-detecting neuron, that we created using the
Izhikevich model, with the two-compartmental biophysical neuron model [5]. It has been
reported [2] that pyramidal neurons detect temporal changes (slope) and frequently
firing short bursts of high frequency. The model includes a dendrite compartment with
persistent sodium and slow potassium currents responsible for bursting behaviour, while
the somatic region contains Hodgkin-Huxley-type [1] currents that generate fast spikes.

Through simulations with sinusoidal and naturalistic input currents, the biophysical
neuron model investigates the temporal features triggering bursting behaviour and
suggests that the neuronal output depends more on the slopes of the input signal than
the amplitudes. If the neuron we propose exhibits comparable behaviour (which we
later show to be the case), it could offer an efficient and accurate means of simulating
dendrosomatic behaviours.

Method
All simulations were created using PyNN and conducted using the NEURON
simulator [3] with the built-in Izhikevich neuron model [6]. In this section, we present
the methods employed in our study, including the search of the Izhikevich parameter
space and the comparison between the discovered Izhikevich bursting slope detector
neuron and the two-compartmental biophysical neuron model [5].
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i) Identifying slope and amplitude detectors in the Izhikevich
parameter space
We conducted a systematic search of the Izhikevich parameter space to identify sets of
parameters that produced either slope or amplitude detecting neurons. The parameters
a, c, and d were explored over a wide range of values. To define the search boundaries,
we examined parameters known to produce specific neural behaviours, such as
intrinsically bursting or fast-spiking. We fixed parameter b to a value of 0.2 based on
previous research and its ability to reproduce desired behaviours. By considering a
broad range of parameter values and known neural behaviours, we aimed to
comprehensively cover the parameter space and identify parameter sets that produce
slope or amplitude detecting neurons. Simulations were performed on the UH-HPC
cluster for efficient computational handling.

A rectified sinusoidal input signal with a frequency of 4Hz was injected into each
Izhikevich point neuron using the defined parameters. The spike trains were extracted
and compared to the original input signal to determine the features that triggered the
neuron’s response. We specifically looked at the spike rate corresponding to the rising
edges of the input signal to identify slope detectors and the spike rate corresponding to
the peaks of the input signal to identify amplitude detectors.

The slope detection percentage and amplitude detection percentage were calculated to
find the optimal parameter sets for the strongest detectors. The slope detection
percentage was calculated by determining the number of spikes that occurred on the
slopes of the input signal. For bursting neurons, only burst onsets were considered. This
count was then divided by the total number of spikes or burst onsets observed during
the simulation. The resulting fraction represents the proportion of spikes or burst onsets
that coincided with the rising edges of the input signal. By multiplying this fraction by
100, we obtained the slope detection percentage, which provides a quantitative measure
of the neuron’s ability to detect slopes.

Similarly, amplitude detection percentage was calculated by determining the number
of spikes that occurred on the peaks of the signal. We then investigated the relationship
between bursting behaviour and amplitude or slope detection. Bursting was defined by
an inter-spike interval (ISI) of 10ms. The burst percentage was calculated as the
percentage of spikes occurring within a burst.

To assess the robustness of the detectors we discovered, Gaussian white noise signals
were generated, low-pass filtered using a Butterworth filter (5Hz; µ = .006; σ = .015),
and injected into the detectors. The ability of the detectors to respond to different
input types was evaluated. If these detectors are robust, their capabilities should not be
restricted to sinusoidal inputs.

ii) Bursting slope detector comparison
We compared the Izhikevich bursting slope detector neuron we discovered to the
two-compartmental biophysical neuron model [5]. The biophysical neuron model
consists of a dendrite compartment responsible for bursting behaviour and a somatic
region generating fast spikes. To ensure a fair comparison, we created a robust neuron
that demonstrated 100% slope detection percentage and 100% burst percentage, as
identified in our previous investigations.

We conducted a comparison study of the behaviours observed in the biophysical
neuron model by generating a Gaussian white noise signal, applying a Butterworth
low-pass filter (5Hz; µ = .006; σ = .015), and injecting it into the slope-detector we
discovered. We investigated how this detector responds to input signals within a range
of frequencies. The response of this detector was evaluated using reverse correlation
techniques (spike-triggered average) to identify the features of the input signal
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triggering its response. By aligning the input signal with spike occurrences and
averaging across multiple spikes, it reveals the average input signal associated with the
detector’s spiking activity, providing insights into the specific characteristics driving the
detector’s response.

iii) Bi-directional slope detection
We investigated whether the slope-detector we discovered was capable of bi-directional
slope detection, as demonstrated by the biophysical neuron model [5]. We observed
whether it could detect positive slopes of the input signals and the down-strokes when
inverted.

To examine the excitatory response, we generated a Gaussian white noise signal
(5Hz; µ = .008; σ = .015) and directly injected it into the detector. To simulate the
inhibitory input, the sign of the signal was inverted, and the resulting signal was
injected into the neuron to observe the inhibitory response. We followed their method
so we could directly compare the results.

iv) Burst duration encoding
To conclude our comparison studies, we investigated whether the bursts from the
bursting slope detector neuron we discovered only marked the occurrence of signal
up-strokes or if they also signalled the slope magnitude. We therefore observed the
distribution of input slopes against burst durations, i.e., the number of spikes in a burst
which was defined by a fixed ISI of 10ms.

A Kernel Density Estimation (KDE) plot was created to display the number of
spikes per burst divided by a Gaussian density estimation, providing the fraction of
bursts for different signal slopes. From this, we created a ROC (Receiver Operator
Characteristic) curve to observe the discriminability between two burst length
distributions and used the composite trapezoidal rule to calculate the AUC (Area Under
the Curve) value. An AUC value of 1 indicates perfect discrimination between the two
burst length distributions, meaning there is no overlap and the burst length informs the
magnitude of the slope.

Results
We present the results from our search of the Izhikevich parameter space and analyse
their implications. We show how we located the optimal sets to create the strongest
slope and amplitude detectors and test for the neuron’s robustness. We then present the
results from our three-part comparison study, where we compared the Izhikevich
bursting slope detector neuron we discovered to a biophysically detailed
two-compartmental pyramidal neuron model [5]. The results were carefully displayed to
enable a side-by-side comparison with the results from the biophysical neuron model,
including the analysis.

i) Identifying slope and amplitude detectors in the Izhikevich
parameter space
In this section, we present the results of our search for optimal detectors in the
Izhikevich parameter space. We show three identical grids that cover a wide range of
values for the parameters a, c, and d. The grids display the slope detection percentage,
amplitude detection percentage, and bursting percentage for each parameter combination.
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For instance, a neuron with a 100% amplitude detection percentage only spikes on the
peaks of the input signal.

Figure 1a shows the grid for slope detection. We observed that low values of
parameter a, particularly with higher c values (such as c = −35), produced strong
slope-detecting behaviour. Based on this observation, we selected the neuron with
parameters {a:0.01, b:0.2, c:-35, d:5.0} as an example slope detector (Fig. 1b).

(a)

(b)

Fig 1. Top panel: results of the search for parameter combinations that enable
slope-detection; Izhikevich parameters d (x-axis), a (y-axis), and c (panels). The
slope-detection capability is confined to specific regions in parameter space. The slope
detection percentage highlights the regions that generate strong slope detectors (yellow).
Bottom panel: comparison of a slope detector we discovered with parameters {a:0.01,
b:0.2, c:-35, d:5.0} and a rectified segment of the 4Hz sinusoidal input signal. A burst
of spikes on the rising flank illustrates the slope-detection behaviour for which the
neuronal parameters have been optimized.

Figure 2a shows the grid for amplitude detection. We observed that lower values of d
combined with higher c values (such as c = −35) produced strong amplitude-detecting
behaviour. Higher c values also generated a larger area of slope-detecting neurons,
suggesting a commonality with the membrane voltage reset.

(a)

(b)

Fig 2. Top panel: results of the search for parameter combinations that enable
amplitude-detection; Izhikevich parameters d (x-axis), a (y-axis), and c (panels). The
amplitude-detection capability is confined to specific regions in parameter space. The
amplitude detection percentage highlights the regions that generate strong amplitude
detectors (yellow). Bottom panel: results of the search for parameter combinations that
enable bursting behaviour, where a burst is defined by the inter-spike interval of 10ms.

The comparison between the slope detector grid (Fig.1a) and the amplitude detector
grid (Fig.2a) reveals cases where a set of parameters can produce both slope and
amplitude-detecting neurons. For instance, the neuron with parameters {a:0.04, b:0.2,
c:-35, d:5.0} exhibits a slope detection percentage and an amplitude detection percentage
of 50%, indicating that it spikes on both the rising edges and peaks of the signal.

Figure 2b shows the grid for bursting behaviour. Higher c values generally lead to
bursting, while the combination of parameters a and d also affects the bursting
mechanisms. Furthermore, we observed no strong relationship between the bursting grid
(Fig.2b) and the slope (Fig.1a) and amplitude (Fig. 2a) detector grids.

Figure 3a demonstrates an example of a slope detector without the bursting
mechanism. This neuron, with parameters {a:0.01, b:0.2, c:-50, d:8.0}, is one of the
strongest slope detectors, with a slope detection percentage of 100%. We tested its
robustness by injecting Gaussian white noise input (5Hz; µ = 0.006; σ = 0.015). We
show that the spike rate alone can indicate input slopes and that the detector is not
limited to sinusoidal input signals.

Finally, we present the output from one of the amplitude detectors and demonstrate
its robustness by injecting a similar signal. Figure 3b shows that the detector bursts
preferentially at signal peaks.
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(a)

(b)

Fig 3. Top trace: Gaussian white noise input nA (5Hz; µ = .006; σ = .015). Bottom
trace: membrane potential mV response. Top panel: the neuron has parameters
{a:0.01,b:0.2,c:-50,d:8.0}. Asterisks mark spikes (grey dotted lines added for clarity).
Bottom panel: neuron has parameters {a:0.05,b:0.2,c:-40,d:1.0}. Asterisks mark burst
onsets (grey dotted lines added for clarity). Bursts (ISI≤10ms) occur on the peaks of
the current. No single spikes were produced.

ii) Bursting slope detector comparison
In our comparison study, we conducted experiments to compare the bursting slope
detector neuron we discovered with the biophysical neuron model proposed by Kepecs et
al. [5]. We generated similar input signals and analyzed the output responses to
evaluate the performance of the detector.

The first result of our comparison study is shown in Fig. 4a, where we plotted the
membrane potential response of the bursting slope detector neuron to a Gaussian white
noise input signal with a frequency of 5Hz. The bursting slope detector neuron
successfully mimicked the biophysical neuron model’s ability to signal consecutive
up-strokes without intervening down-strokes. However, we observed that the detector
we discovered produced a cleaner and more efficient output, as there were no isolated
spikes present.

Furthermore, we analysed the response of the bursting slope detector to stimulus
up-strokes at different frequencies using the Spike-triggered Average (STA) plot, as
shown in Fig. 4b. The STA plot demonstrates that this detector is capable of
responding to stimulus up-strokes across a wide range of frequencies, similar to the
behaviour observed in the biophysical neuron model.

(a)

(b)

Fig 4. Top panel: response of the neuron with parameters {a:0.01,b:0.2,c:-35,d:5.0}.
Top trace: Gaussian white noise input nA (5Hz; µ = .006; σ = .015). Bottom trace:
membrane potential mV response. Asterisks mark burst onsets (grey dotted lines added
for clarity). Bursts (ISI≤10ms) occur on the rising edge of the current. No single spikes
were produced. Bottom panel: spike-triggered Average (STA) showing features of the
input that triggered bursts at different frequencies. The results demonstrate that the
bursting slope detector neuron we discovered follows stimulus up-strokes over a wide
range of frequencies.

iii) Bi-directional slope detection
We present our second result of the comparison study of the bursting slope detector
neuron we discovered to the biophysical neuron model [5]. The results revealed that
bursts occurred on the up-strokes of the signal (e neuron) and on the down-strokes of
the inverted signal (i neuron), as demonstrated in Fig. 5, showing that the slope
detector we discovered was capable of bidirectional slope detection.
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Fig 5. Middle trace: input current nA (5Hz; µ = .008; σ = .015). Top trace:
membrane potential mV response from e neuron. Bottom trace: membrane potential mV
response from i neuron, where the middle trace was inverted. Asterisks mark burst
onsets (grey dotted lines added for clarity).

iv) Burst duration encoding
We present our final result from the comparison between the bursting Izhikevich slope
detector we discovered and the biophysical neuron model [5]. Our studies revealed that
the detector not only marked the occurrences of slopes in the signal but also encoded
the magnitude of input slopes in a graded manner through the length of bursts,
indicated by the number of spikes (Fig.6a, Fig.6b).

(a) (b)

Fig 6. Left: distributions of input slopes for bursts durations, where the point neuron
with parameters {a:0.06,b:0.2,c:-35,d:5.5} produces 7- or 8-spike bursts. Right: receiver
operator characteristics (ROC) curve showing discriminability of 7- and 8-spike burst
distributions (from Fig. 6a). The area under the curve (AUC) value is included for
clarity.

In this case, we increased the variable a from 0.01 to 0.06, resulting in the neuron
producing bursts of 7 or 8 spikes (B7, B8 in Fig.6a). These burst durations
corresponded to different slope magnitudes with little overlap, as indicated by the area
under the curve (AUC) value of 0.97 for the receiver operating characteristic (ROC)
curve in Fig.6b.

Discussion
The main aim of this work was to create a neuron which exhibits a processing necessity.
Our study provides valuable insights into the creation of amplitude and slope-detecting
neurons with computational efficiency. We identified sets of model parameters that
enable neurons to signal the rate of change in an input signal, while being minimally
affected by its absolute value. Such behaviour could be useful e.g. to implement a
high-pass filter with model neurons in a neuromorphic signal processing context, moving
beyond the sole goal of mimicking biological observations.

Such slope-detecting neurons could be applied to various fields of research, for
example, gas-based navigation in robotics. Amplitude and slope are important
dynamical features of sensory signals, encoding information about the scene [7, 9, 10].
The ability to detect both up-strokes and down-strokes of the input signal enables
potential applications in gas-based navigation research [4, 9, 11, 15], where detecting the
presence and absence of gas provides valuable information about the olfactory scene.
The ability of the model to report the magnitude of input slopes in a graded manner
through the length of bursts produced further supports an application in gas-based
navigation studies, where the duration of slope durations can inform the distance to an
odour source [9].

Sensor devices that can very quickly respond to temporal cues in these signals are a
prerequisite to decode information encoded in rapid concentration fluctuations [4, 8, 14].
Power-economic electronic olfaction devices have been demonstrated that can resolve
temporal dynamics of stimulus intensity with sub-second precision [19]. They are
portable and function in uncontrolled natural environments [20], paving the way for an
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application in robotics, in particular in combination with neuromorphic computing. A
spiking electronic olfaction device capable of high temporal resolution has been
described [21]. Spike trains from such devices could be fed into networks of these slope
detectors, which may aid in gas-based navigation tasks [11,15,22].

Such robotics applications could be particularly useful in combination with
neuromorphic computing. Biophysical neuron models are inherently inefficient to
emulate on event-driven neuromorphic hardware. A point neuron model such as the one
used in this study requires a minimal set of parameters and only needs to communicate
with other neurons in the network upon firing an action potential, therefore fulfilling the
criteria of communication sparseness and memory locality that is a prerequisite for
efficient operation on fully-distributed neuromorphic computing approaches. Izhikevich
models have been successfully employed in various applications on neuromorphic
hardware [12,16,17].

In this light, one area of potential future work is to focus on more complex stimuli.
Gas concentration dynamics in a turbulent plume are extremely complex [4, 7]. The
Gaussian white noise input signal used in this study is limited in its ability to represent
the rich temporal structure encountered in real odour plumes. One opportunity could
be to use time series data obtained from real odour plumes in wind tunnels [23].

Therefore, the broader impact of this study extends beyond simple bio-mimicry. It
supports a paradigm shift in neuromorphic computing, moving towards genuine
computing approaches that harness the specific efficiency of employing a neuronal
approach, where time is implicitly included in the computation process.

Future research can implement these detectors in various fields of study that require
rapid computations and low-latency responses, paving the way for advancements in
neuromorphic hardware, gas-based navigation research, robotic platforms, and other
domains where efficient neuronal computations are essential.
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Fig 1. Top panel: results of the search for parameter combinations that enable
slope-detection; Izhikevich parameters d (x-axis), a (y-axis), and c (panels). The
slope-detection capability is confined to specific regions in parameter space. The slope
detection percentage highlights the regions that generate strong slope detectors (yellow).
Bottom panel: comparison of a slope detector we discovered with parameters {a:0.01,
b:0.2, c:-35, d:5.0} and a rectified segment of the 4Hz sinusoidal input signal. A burst
of spikes on the rising flank illustrates the slope-detection behaviour for which the
neuronal parameters have been optimized.
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Fig 2. Top panel: results of the search for parameter combinations that enable
amplitude-detection; Izhikevich parameters d (x-axis), a (y-axis), and c (panels). The
amplitude-detection capability is confined to specific regions in parameter space. The
amplitude detection percentage highlights the regions that generate strong amplitude
detectors (yellow). Bottom panel: results of the search for parameter combinations that
enable bursting behaviour, where a burst is defined by the inter-spike interval of 10ms.
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(a)

(b)

Fig 3. Top trace: Gaussian white noise input nA (5Hz; µ = .006; σ = .015). Bottom
trace: membrane potential mV response. Top panel: the neuron has parameters
{a:0.01,b:0.2,c:-50,d:8.0}. Asterisks mark spikes (grey dotted lines added for clarity).
Bottom panel: neuron has parameters {a:0.05,b:0.2,c:-40,d:1.0}. Asterisks mark burst
onsets (grey dotted lines added for clarity). Bursts (ISI≤10ms) occur on the peaks of
the current. No single spikes were produced.
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Fig 4. Top panel: response of the neuron with parameters {a:0.01,b:0.2,c:-35,d:5.0}.
Top trace: Gaussian white noise input nA (5Hz; µ = .006; σ = .015). Bottom trace:
membrane potential mV response. Asterisks mark burst onsets (grey dotted lines added
for clarity). Bursts (ISI≤10ms) occur on the rising edge of the current. No single spikes
were produced. Bottom panel: spike-triggered Average (STA) showing features of the
input that triggered bursts at different frequencies. The results demonstrate that the
bursting slope detector neuron we discovered follows stimulus up-strokes over a wide
range of frequencies.

e neuron

i neuron

Fig 5. Middle trace: input current nA (5Hz; µ = .008; σ = .015). Top trace:
membrane potential mV response from e neuron. Bottom trace: membrane potential mV
response from i neuron, where the middle trace was inverted. Asterisks mark burst
onsets (grey dotted lines added for clarity).
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Fig 6. Left: distributions of input slopes for bursts durations, where the point neuron
with parameters {a:0.06,b:0.2,c:-35,d:5.5} produces 7- or 8-spike bursts. Right: receiver
operator characteristics (ROC) curve showing discriminability of 7- and 8-spike burst
distributions (from Fig. 6a). The area under the curve (AUC) value is included for
clarity.
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