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Abstract

We present a summary on the current status of two inversion algorithms that are
used in EARLINET for the inversion of data collected with EARLINET multiwavelength
Raman lidars. These instruments measure backscatter coefficients at 355, 532, and
1064 nm, and extinction coefficients at 355 and 532 nm. Development of these two al-5

gorithms started in 2000 when EARLINET was founded. The algorithms are based on
manually controlled inversion of optical data which allows for detailed sensitivity studies
and thus provides us with comparably high quality of the derived data products. The
algorithms allow us to derive particle effective radius, and volume and surface-area
concentration with comparably high confidence. The retrieval of the real and imaginary10

parts of the complex refractive index still is a challenge in view of the accuracy re-
quired for these parameters in climate change studies in which light-absorption needs
to be known with high accuracy. Single-scattering albedo can be computed from the
retrieved microphysical parameters and allows us to categorize aerosols into high and
low absorbing aerosols. We discuss the current status of these manually operated al-15

gorithms, the potentially achievable accuracy of data products, and the goals for future
work on the basis of a few exemplary simulations with synthetic optical data.

The optical data used in our study cover a range of Ångström exponents and
extinction-to-backscatter (lidar) ratios that are found from lidar measurements of vari-
ous aerosol types. We also tested aerosol scenarios that are considered highly unlikely,20

e.g., the lidar ratios fall outside the commonly accepted range of values measured with
Raman lidar, even though the underlying microphysical particle properties are not un-
common. The goal of this part of the study is to test robustness of the algorithms toward
their ability to identify aerosol types that have not been measured so far, but cannot be
ruled out based on our current knowledge of aerosol physics.25

We computed the optical data from monomodal logarithmic particle size distribu-
tions, i.e., we explicitly excluded the more complicated case of bimodal particle size
distributions which is a topic of ongoing research work. Another constraint is that we
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only considered particles of spherical shape in our simulations. We considered parti-
cle radii as large as 7–10 µm in our simulations. That particle size does not only cover
the size range of particles in the fine-mode fraction of naturally occurring particle size
distributions but also covers a considerable part of the coarse-mode fraction of particle
size distributions. We considered optical-data errors of 15 % in the simulation studies.5

We target 50 % uncertainty as a reasonable threshold for our data products, though we
attempt to obtain data products with less uncertainty in future work.

1 Introduction

The start of EARLINET (European Aerosol Research Lidar Network) in 2000 marked
the beginning of the development of inversion algorithms that can be used for the re-10

trieval of aerosol microphysical properties from Raman lidar observations. Based on
exploratory work (Qing et al., 1989) it seemed feasible that Raman lidar measurements
of backscatter coefficients and extinction coefficients could provide variables such as
particle effective radius and complex refractive index from which, under favorable mea-
surement conditions, single-scattering albedo could be derived.15

We followed two conceptual approaches. One methodology was developed at the
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany. The devel-
opment of the methodology continues at the University of Hertfordshire (UH). The sec-
ond method was developed at the University of Potsdam (UP) (Potsdam, Germany).
Both methods in part follow the same basic mathematical concepts in the sense that20

they are true inversion algorithms. The underlying mathematical equations that connect
the microphysical particle properties (which are the variables we are interested in) and
the optical properties (which are the variables that are measured with lidar) are solved
explicitly. That means we do not carry out forward computations, which commonly are
referred to as Mie-scattering computations. We do not use traditional look-up tables25

that contain an array of microphysical aerosol properties and the optical properties
that belong to these microphysical properties. Our approach neglects constraints that
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are used in forward computations, as for example the need to prescribe the shape of
the particle size distribution as input. The advantage is that we can identify the share
of fine-mode and coarse mode particles in particle size distributions, as the inversion
algorithms allow us to find approximate solutions of the underlying particle size dis-
tributions. The disadvantage is that measurement errors have a direct impact on the5

quality of the retrieval results. If measurement errors become too large, the inversion
algorithms will not be able to find reasonable solutions. The inversion algorithms also
respond strongly to systematic errors of the optical input data. This means if calibra-
tions of the optical profiles are not done carefully, or if optical data are faulty because
of the incomplete overlap between laser beam and field-of-view of the receiver tele-10

scope (Wandinger and Ansmann, 2002), the inversion algorithms will deliver wrong
microphysical particle properties.

1.1 Work at TROPOS/UH

With regard to work at TROPOS/UH exploratory algorithm development was based
on data we obtained from the first truly operational multiwavelength Raman lidar (Al-15

thausen et al., 2000) in the 1990s. This instrument provides backscatter coefficients
measured at 355, 400, 532, 710, 800, and 1064 nm and extinction coefficients at 355
and 532 nm. The system uses 4 lasers that operate simultaneously. The high costs of
this system and the labor-intensive measurement and data-analysis work showed us
fairly early that a wider use of the inversion technology in the lidar community would20

require reducing the optical data needed for data inversion. Based on exploratory work
(Müller et al., 2001b; Veselovskii et al., 2002; Böckmann et al., 2005) it seemed feasi-
ble that a Raman lidar consisting of only one Nd:YG laser could still fulfill the minimum
requirement with regard to optical data such that successful data inversion could be
carried out. This minimum requirement are measurements of backscatter coefficients25

at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm.
The algorithm that was initially developed at TROPOS is based on the concept of

Tikhonov’s inversion with regularization (Tikhonov and Arsenin, 1977). The algorithm
12827
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is based on a data-operator controlled environment. That makes this algorithm highly
labor-intensive and the output with regard to inversion results is rather low. However,
this approach allows us to carry out detailed sensitivity studies in order to test the qual-
ity of the data inversion products and to push the envelope in what can theoretically be
achieved in terms of aerosol characterization with state-of-the-art multiwavelength Ra-5

man lidar. Several sensitivity studies dealt with the ability of the algorithm to retrieve ef-
fective radius, and surface-area and volume concentration, and the complex refractive
index (CRI) (Müller et al., 1999a, b, 2001b; Veselovskii et al., 2002, 2004). Most sensi-
tivity studies dealt with monomodal particle size distributions, although some work has
also been done in the context of bimodal particle size distributions (Veselovskii et al.,10

2004).
The retrieval of the CRI remains a major challenge in our work. The accuracy re-

quirements for the imaginary part of the CRI are considerable if we want to obtain use-
ful values (high accuracy and precision) of the single-scattering albedo (SSA) which is
one of the key parameters in climate change studies. Nowadays we manage to obtain15

meaningful values of SSA, however at the expense of time-intensive, data-operator–
controlled data analysis which involves a careful evaluation of the inversion results
(particularly of the CRI). We learnt to retrieve the imaginary part to its correct order
of magnitude if it is less than 0.01i . This value describes moderately light-absorbing
aerosol. We learnt to keep the uncertainty bars to approximately ±50 % if the imagi-20

nary part is larger than 0.01i . Such values describe strongly light-absorbing particles.
We noticed that systematic biases of the imaginary part may occur if its value is close
to 0. This bias is naturally introduced as the imaginary part has a minimum value of 0.
This lower limit leads to an underestimation of SSA.

We analyzed plenty of different aerosol types in the course of 10 years of mea-25

surements, though a statistical significant set of results for each aerosol type still has
not been achieved because of the labor-intensive manual data analysis. Examples of
aerosol types we analyzed involve urban/industrial pollution over Europe, e.g., Müller
et al. (2005), East Asia, e.g., Noh et al. (2011), and South Asia, e.g., Müller et al.
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(2001a). We investigated properties of fresh and aged biomass burning aerosols pro-
duced in North America, e.g., Müller et al. (2005), Europe, e.g., Alados-Arboledas et al.
(2011), and West Africa, e.g., Tesche et al. (2011). We remain cautious with regard to
the inversion of optical data that describe non-spherical (mineral dust) particles as to
date we do not have a reliable light-scattering model that allows us to describe light-5

scattering at 180◦. We carried out some limited studies in which we used the AERONET
light-scattering model as a test on how far we can use this model as it has not been
designed for describing particle backscatter coefficients. We conclude from our limited
set of studies that we may be able to infer particle effective radius of dust particles and
the ratio of spherical-to-non-spherical particles (Veselovskii et al., 2010; Müller et al.,10

2013).

1.2 Work at UP

The Potsdam algorithm that was developed at UP is based on the concept of using trun-
cated singular value decomposition (TSVD) as regularization method, see e.g., Hansen
(2010). This method was adapted to work for the retrieval of the particle size distri-15

bution function (PSD) and is called hybrid regularization technique (Böckmann, 2001)
since it is using a triple of regularization parameters. Several simulation studies demon-
strated that the hybrid method is able to invert monomodal and bimodal PSDs (Böck-
mann, 2001; Böckmann et al., 2005). The minimum requirements are measurements
of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 35520

and 532 nm. The inversion of an ill-posed problem, such as the retrieval of the PSD, is
always a challenging task because very small measurement errors and tiny rounding
errors often will be hugely amplified during the solution process unless an appropriate
regularization method is used. Even using a regularization method requires a careful
determination of the associated regularization parameters. Therefore, in a next stage25

of our work we decided to use two regularization techniques in parallel for comparison
purposes. The second method is an iterative regularization method based on Páde
iteration (Kirsche and Böckmann, 2006; Böckmann and Pornsawad, 2008). Here, the
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number of iteration steps serves as the regularization parameter. This method was
adapted and tested successfully to invert the PSD (Böckmann and Kirsche, 2006). The
approximated PSD is a linear combination of B splines with appropriately determined
weights. The B splines of order d are polynomials of degree d−1. Since the distribution
of the B spline nodes also plays a critical role, we endowed the first algorithm TSVD5

with the possibility to also use non-equidistant node grids (Böckmann, 2001). The it-
erative method was equipped with an adaptive non-equidistant node grid in (Osterloh
et al., 2011).

There is another challenge that needs to be considered. The CRI is actually un-
known, too. In order to solve this problem, a grid of viable options for the CRI (all10

combinations of real parts of CRI (RPCRI) and imaginary parts of CRI (IPCRI)) is as-
sumed, otherwise one additionally has to deal with a non-linear problem. The CRI grid
technique is very time consuming, i.e., the computer run time of the inversion pro-
cess is very large. Therefore, we successfully developed a semi-automated software
for spherical particles which is able to run on a parallel processor machine (Osterloh15

et al., 2009), see Fig. 1. The software is adapted with a tool reading NetCDF-files from
the EARLINET data base (The EARLINET publishing group, 2014).

From a mathematical point of view, it is also very important (as a selection criteria for
an appropriate regularization method) to investigate the degree of ill-posedness of the
problem. Investigations show a moderate ill-posedness (Böckmann et al., 2005; Oster-20

loh et al., 2013) which is not the worst case. Furthermore, first investigations towards
non-spherical particles were made. Simulation studies show that the particle shape
is an important factor (Böckmann and Wauer, 2001a, b). First retrievals with a two-
dimensional spheroidal model, i.e., looking for two-dimensional PSDs depending on
radius and aspect ratio, using two-dimensional B splines, can be found in Böckmann25

and Osterloh (2014). Numerical simulations reveal that the Páde type regularization
method is able to retrieve two-dimensional PSDs using backscatter and extinction co-
efficient profiles, as well as depolarization information.
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The semi-automatic software was applied to measurement cases. We analyzed
Raman lidar measurement data with three backscatter coefficients at 355, 532, and
1064 nm and two extinction coefficients at 355 and 532 nm. From those optical particle
variables we retrieved microphysical particle properties of different aerosol types. Suc-
cessful retrievals have been made for biomass-burning and industrial-pollution aerosols5

over Germany (Wandinger et al., 2002), continental aerosols (Eixmann et al., 2002),
Arctic haze aerosols (Hoffmann et al., 2012), biomass-burning aerosols over Romania
(Osterloh et al., 2013) and over Athens (Papayannis et al., 2008). Moreover, the two-
dimensional spheroidal model was applied to a measurement scenario of Saharan dust
observed over Barbados (13.16◦N, 59.44◦W). We found promising results, in particu-10

lar, when we used additional depolarization profiles (Böckmann et al., 2012). Finally, in
Samaras et al. (2015) a direct quantitative comparison of the retrieved microphysical
properties with measurements from a Compact Time of Flight Aerosol Mass Spec-
trometer (AMS) was used to validate the algorithm for spherical particles. Focusing on
the fine mode we observed remarkable similarities between the retrieved PSD and the15

one measured by the AMS. Additionally, microphysical retrievals performed with sun
photometer data were also used to explore the results for biomass burning aerosols.

Section 2 summarizes the two methodologies. Section 3 presents some simulation
studies that illustrate the current status. Section 4 closes with a summary and outlook.

2 Methodology20

The microphysical properties are derived from solving Fredholm integral equations of
the first kind (Müller et al., 1999a; Veselovskii et al., 2002; Böckmann, 2001; Böckmann
et al., 2005; Ansmann and Müller, 2005). These equations can be written in general
terms as

g∗l (λi ) =

∞∫
0

Kl (m,r ,λi ,s) f ∗ (r)dr , (1)25
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The term g∗l (λi ) denotes the exact optical data at the measurement wavelength λi .
The optical data usually have an uncertainty as we use experimental data. The sub-
script l denotes the type of optical data, i.e., β denotes particle backscatter coefficients
and α denotes particle extinction coefficients.

The backscatter and extinction kernel functions are denoted by Kβ (m,r ,λ,s) and5

Kα (m,r ,λ,s). The kernel functions depend on the complex refractive index m of the
particles, i.e., m =mR−mIi . The term mR denotes the real part. The term mIi denotes
the imaginary part of the CRI. The radius of the particles is denoted as r . The shape
properties s of the particles determine their backscatter and extinction properties. We
only consider spherical shape of the particles and therefore drop this parameter in the10

following discussion.
The kernel functions Kl (m,r ,λi ) are calculated from Mie-scattering theory (Bohren

and Huffman, 1983). The term f ∗ (r) describes the exact (true) particle size distribution
which is described as the number of particles per unit volume between particle radius
r and r +dr .15

Equation (1) can be written as

g∗p =

rmax∫
rmin

Kp (m,r) f ∗ (r)dr +εlimits
p . (2)

The term g∗p describes the exact values of the optical data. The subscript p = (l ,λi )
describes the kind of the optical input data at given wavelength. The lower and upper
integration limit of the particle radii within which the inversion is performed are denoted20

by rmin and rmax. We write this radius interval as
[
rmin,rmax

]
. The term εlimits

p represents
the model error that results from the fact that the integration limits are not from 0 to∞.

Disregarding the model error term we obtain

g∗p =

rmax∫
rmin

Kp (m,r) fM (r)dr . (3)
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The investigated PSD fM(r) is obtained from the numerical solution of Eq. (3)
(Twomey, 1965; Zuev and Naats, 1983; Engl et al., 1996; Hansen, 2010). The nu-
merical solution is not an easy task since this compact Fredholm operator is ill-posed.
Firstly, the expression fM (r) is approximated by a sum that consists of the linear super-
position of base functions5

fM (r) = f (r)+ε (r) =
NB∑
j=1

fjBj (r)+ε (r) . (4)

The term f (r) is an approximation of the solution of Eq. (3). The expression fj de-
scribes weight coefficients. Bj (r) are B-spline base functions. NB is the number of
used base functions. The term ε (r) is the discretization error. This error is caused by
discretizing the PSD with the linear combination of base functions.10

Neglecting the discretization error term we can write the optical data as linear com-
bination by using Eqs. (3) and (4), i.e.,

gp =
NB∑
j=1

Apj (m) fj . (5)

The matrix elements Apj are calculated from the kernel functions and the base func-
tions as15

Apj =

rmax∫
rmin

Kp (m,r)Bj (r)dr . (6)

If we write the optical data as vector g =
[
gp
]

and the weight coefficients as vector
f =
[
fj
]

we can write Eq. (5) as a vector–matrix expression, i.e.,

g = Af . (7)
12833
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The matrix A =
[
Apj
]

is rectangular. It is called weight matrix. The elements of this
matrix are calculated from Eq. (6).

Since the operator is ill-posed as mentioned above the resulting linear equation sys-
tem Eq. (7) is ill-conditioned. Therefore, the system cannot be solved by standard rou-
tines. One needs particular regularization techniques to solve such systems.5

The unknown vector of the weight coefficients f is connected by the matrix operator
A with the optical data vector g. Notice, the data vector g contains measurement errors.
For ill-conditioned systems this means that small data errors may be amplified strongly
during a standard solution process. Finally, the total error contains the measurement
error and the mathematical approximation errors in an additive way.10

The TROPOS/UH algorithm and the UP algorithm use different appropriate regular-
ization methods. The first one uses Tikhonov regularization (Phillips, 1962; Tikhonov
and Arsenin, 1977) and the latter one deals with regularizing truncated singular value
decomposition (TSVD) (Engl et al., 1996; Hansen, 2010). Details of both algorithms
are described in the next subsections.15

2.1 TROPOS/UH algorithm

2.2 Solving the Fredholm equations

Detailed descriptions of solving the modified version of Tikhonov’s inversion algorithm
the way it is used in our work is explained in detail by Müller et al. (1999a) and
Veselovskii et al. (2002).20

The number of base functions, NB is equal or exceeds the number of optical data.
Veselovskii et al. (2002, 2004) prefer to keep the number of base functions nearly equal
to the number of input optical data.

In the case of the algorithm developed at TROPOS the base functions have tri-
angular shape on a logarithmic radius scale (Müller et al., 1999a, b). We tested two25

other shapes of base functions, i.e., histogram columns (Heintzenberg et al., 1981)
and monomodal logarithmic-normal distributions (Amato et al., 1995). We did not find
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significant improvement of our data products if we use these shapes of base functions.
We believe that one main cause for this result is the fact that the main error sources
in data inversion are incorrect optical input data gp, unknown complex refractive index
and uncertainties caused by the regularization procedure. All these errors outweigh
the potential improvements that could be obtained by using a more suitable descrip-5

tion of the investigated PSDs, e.g., base functions of logarithmic-normal shape. The
base functions of second order, i.e., first degree that we use have also shown to work
sufficiently well for the reconstruction of PSDs of bimodal shape (Veselovskii et al.,
2004).

We can solve Eq. (7) by introducing the transposed matrix AT. Assuming the exis-10

tence we use
(

ATA
)−1

as the inverse of matrix ATA. In that way we obtain the simple

normal solution of Eq. (7) for the weight factors, i.e.,

f =
(

ATA
)−1

ATg . (8)

The solution of Eq. (8) usually leads to physically useless results because the math-
ematical problem is ill-posed. The reason for it is that the matrix-operator A is ill-15

conditioned since it is the discretized representative of an infinite dimensional ill-posed
operator. Details on this property can be found in, e.g., Twomey (1977). Explanations
can also be found in, e.g., Müller et al. (1999a) who provide details on how to overcome
this problem. Briefly, we introduce the equation (Twomey, 1977; Tikhonov and Arsenin,
1977)20 (

ATA+γH
)
f = ATg . (9)

The expression H is the smoothing matrix operator (Twomey, 1977). This operator
describes the physical constraint that the retrieved PSD does not show “large” oscilla-
tions in the size range for which the PSD is retrieved. This size range is determined by
the inversion window.25
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Details on the appropriate choice of H can be found in Twomey (1977). H influences
the maximum difference between the weight factors of successive base functions. γ is
the Lagrange multiplier. It is the non-negative regularization parameter that determines
the degree of smoothing of the investigated PSDs, i.e., the strength of the operator H.

2.2.1 Identification of the solution space5

The solution finding requires the application of several constraints. These constraints
stabilize the inversion problem and help us reject mathematical solutions that are phys-
ically not reasonable. We use the simplifying assumption of a wavelength- and size-
independent complex refractive index of the aerosol particles.

The rationale for using a gliding inversion window is given by Müller et al. (1999a,10

b). We used to apply 50 inversion windows (Müller et al., 1999a) but subsequently
moved to 400 windows. We find that the quality of the retrieval can be improved if we
use more inversion windows on a smaller radius search grid. Figure 1 in Müller et al.
(1999a) shows how the inversion windows are formed.

We also discretize the CRI search space. In this contribution the real part mR varied15

from 1.325 to 1.8 with step 0.025. The imaginary part, i ·mI, varies from 0 to i ·0.05 with
step i ·0.003.

In that way we obtain k individual mathematical solutions for a given optical data set.

Each solution number k is characterized by an inversion window
[
r (k)
min,r (k)

max

]
and a CRI

value m(k) =m(k)
R − i ·m

(k)
I , which defines the vector f (k) of the weight coefficients and20

the vector g(k) of the optical data that can be backcalculated from the inversion results,
i.e.,

A(k)f (k) = g(k) . (10)

We calculate the discrepancy vector, as introduced by Veselovskii et al. (2002),

ρ(k) = A(k)
∣∣∣f (k)

∣∣∣−g (11)25
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and the normalized discrepancy value

ρ(k) =
1
NO

NO∑
j=1

ρ(k)
j

gj
100%. (12)

The symbol | ·| means that every element of the vector f (k) is converted into its abso-

lute value. The number of optical data is NO. The term ρ(k)
j denotes the j th component

of vector ρ(k). The j th component of vector g is gj .5

The simulations were carried out with the model data and with uncertainties added
to the data. The main purpose of the simulation with erroneous data was to learn
by how much the inversion products could deviate from the exact results for various
error levels. We tried to answer this question by distorting the optical data such that
extreme changes (distortions) of the spectra of the backscatter coefficients (at 355,10

532, and 1064 nm) and the spectra of the extinction coefficients (at 355 and 532 nm)
could be achieved. We assumed an uncertainty of 5, 10, and 15 % for the data points.
For example in the case of 15 % error, each data point in the first step was distorted
by up to 15 %, and independently of the other data points of a given 3 backscatter +2
extinction data set. The inversion was carried out for this distorted optical data set. In15

the next step, the optical data of the original (error free) optical data set were again
distorted by up to 15 %, and the inversion was carried out a second time. We repeated
this procedure 8 times, and in this way obtained 8 different solutions. We then averaged
these 8 solutions which provides us with a mean value of the inversion of the erroneous
data set and an uncertainty bar in terms of 1-standard deviation.20

2.2.2 Particle size distributions: examples

Table 1 summarizes the parameters of the PSDs that were used in the simulation
studies. Additional explanations are given in Sect. 3.1.
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Figure 2 shows examples of retrieved PSDs with the TROPOS/UH algorithm. The
task of deriving the shape of the particle size distribution is challenging as we are
dealing with a small number of optical data, i.e., the information content of the set of
optical data is low. However, during our development work we noticed that we can
obtain some information on the particle size distribution, too.5

The panel shows the results for moderately absorbing aerosols, i.e., the imaginary
part is 0.01i . The first row (a–c) shows the results for error free data and the assumption
that the real part can be derived to an uncertainty of 0.1. The second row (d–f) shows
the results for error free data and the ideal case that we can derive the real part to
0.05 accuracy. The rationale for using these uncertainties of 0.1 and 0.05 will be given10

in Sect. 3.1. The third row (g–i) shows the results for a measurement error of 15 %
and an uncertainty of 0.1 of the real part. The fourth row (j–l) shows the results for the
measurement error of 15 % and an uncertainty of 0.05 of the real part.

The left plot of each row (a, d, g, j) shows the results for a mean radius of 60 nm. The
middle plot in each row (b, e, h, k) shows the results for a mean radius of 140 nm. The15

right plot of each row (c, f, i, l) shows the results for 300 nm mean radius. These three
mean radii convert to effective radii of 0.23, 0.55, and 1.2 µm. The numbers describe
one PSD (in volume-concentration presentation) for which particles are mainly in the
fine-mode fraction (left column), one PSD for which particles are in the fine- and coarse-
mode fraction (center column), and one PSD for which the particles mainly are in the20

coarse-mode fraction (right column).
We see that the shape of the particle size distributions can be derived to some

degree. The individual solutions in general exhibit the same features. The panel shows
that we may not be able to derive the exact shape of the particle size distributions. The
individual PSDs show peaks that are not exactly at the position of the peak of the true25

PSD. Nevertheless, if we average all individual PSDs the mean solution is comparably
close to the true PSD.
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2.3 UP algorithm

2.4 Solving the Fredholm equations and description of the software

The Potsdam algorithm (UP) via TSVD as a hybrid regularization method is using collo-
cation with B splines Bj (r), j = 1, . . .,n, of variable order d . The discretization technique
of the Fredholm integral Eq. (3) itself follows the same rules as the TROPOS/UH al-5

gorithm, see Eqs. (6) and (7). For more details about the TSVD see also Engl et al.
(1996), Hansen (2010), and Böckmann (2001). In contrast to the TROPOS/UH algo-
rithm the UP method is using the number n and the order d of the B splines as the
first two regularization parameters. The TROPOS/UH algorithm is using fixed order 2,
namely B splines with triangular shape. We found in using TSVD that the number and10

shape of the B splines has a large influence on the accuracy of the inverted PSD. Our
experience shows that n = 3, . . .,8 and d = 3,4 are the most appropriate parameters.
The discretization dimension (number n of used B splines) has regularization proper-
ties, a well-known fact, see e.g., Hansen (2010). The matrix A is decomposed uniquely
into A = VTDU with orthonormal matrices U and V, and D is a rectangular diagonal ma-15

trix containing the non-negative singular values clustering to zero. Since small singular
values are amplifying the data noise (measurement errors) and generate oscillations
in the solution, namely the PSD, it is necessary to truncate them. The truncation level
of the singular values k = 0, . . .,min(5,n)−1 is the third regularization parameter of
the hybrid method. This results in a triple (d ,n,k) of parameters. The linear equation20

system Af = (VTDU)f = g with matrix A from Eq. (6) has to be solved for each pa-
rameter triple, e.g., n = 3, . . .,8, d = 3,4 and k = 0, . . .,min(5,n)−1. The PSD f (r) is
determined via linear combination with the particular B splines (number and order) as
f (r) =

∑n
j=1fjBj (r). For details on the additionally included non-negative constraint for

the PSD see Böckmann (2001).25

The spline number n and order d are not independent parameters; they are related
to each other through the number of B spline nodes. The algorithm has the possi-
bility to use an equidistant or a non-equidistant node grid. For the latter we employ
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a non-equidistant grid using the Chebyshev polynomial roots for the nodes that are
transformed into the interval [rmin,rmax] to avoid for frequently observed characteristics,
e.g., oscillations, of the PSD.

Figure 1 shows a screenshot of the developed software. The workflow of the software
is split into a setup-, a computation-, and an evaluation step. The setup step allows5

the user to specify input data, to define the parameter space to search, to configure
a simulation, and to select retrieval methods. The goal of this step is to create a job
description that is fed into the computation step.

For the computation step, we have developed a parallel software to cope either with
the vast parameter space or to enable a more refined search for a solution. This part10

of the software is designed to run separately from the interactive setup and evaluation
step in order to allow for parallel execution on a supercomputer or a computer cluster.
A master process splits the work into small units and delegates the calculation to any
available worker process. Once a worker has completed its task, it returns the results
to the master. The current search algorithm allows for what we describe as embarrass-15

ingly parallel processing (i. e. it does not require any interaction between the workers
and therefore scales to a large number of workers, see Osterloh et al., 2009).

The screenshot in Fig. 1 was taken from the result evaluation step after a completed
computation. The QT-based front-end allows the user to interactively explore the results
and to plot further details (right box) for selected coordinates (grid points) (left box).20

It is obvious that, by including the wavelength- and size-independent complex refrac-
tive index grid, see Fig. 1 (left box) the solution space of the algorithm is quite huge,
consisting of |n| × |d | × |k | × |RPCRI|× |IPCRI| solutions overall, where | · | denotes the
amount of different values of the specific parameter. The solution space is restricted in
the following way: For every specific refractive index the best triple (d ,n,k) is picked25

in terms of least residual error using forward calculation of Eq. (3) in contrast to the
TROPOS/UH algorithm where Eq. (7) is used. Afterwards the best triple at each grid
point is used and the associated least residual error is presented with a logarithmical
color scale relevant to the error magnitude, see Fig. 1. This visual representation is
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very convenient for the post-processing procedure. At this point we are able to screen
3 solution spaces for the colored grid (3 norm grids) with respect to different error level
types (mathematical measures): the 2-norm of the absolute or of the relative forward
error, and the maximum norm of the relative forward error.

As already mentioned in the introduction a second regularization technique was in-5

cluded into the software for comparison purpose. This regularization technique solves
the linear equation system Af = g in contrast to TSVD by using an iterative regulariza-
tion method. Kirsche and Böckmann (2006) and Böckmann and Kirsche (2006) devel-
oped a whole family of Páde iterations that are used to solve linear equation systems
by means of regularization. The well-known Landweber iteration is a member of this10

family, see e.g. Hansen (2010). We deal again with a triple of parameters (d ,n, j ) where
the third one is now the number of iteration steps j depending on the data noise level
ε by j = bε−1c where bε−1c denotes the integer part of the real number 1/ε. Experi-
ments have shown that this is an appropriate choice and, in case of an unknown noise
level ε, j = 30 is a good candidate, e.g., for moderate absorption. To account for the15

non-negative restriction of the PSD we use a projected iteration (Osterloh et al., 2011).
As noted above there is a strong connection between the distribution of the B spline

nodes and the quality of the reconstructed PSD. To take this into consideration, the
Páde algorithm adapts the nodes according to certain rules. Indeed, it is easy to see
how the PSD is strongly smoothed out in areas with only a few nodes and, therefore,20

sharp features require many nodes in their vicinity to be reconstructed accurately. In
order to account for this behavior, the nodes are sliding automatically, during the iter-
ation towards radius intervals that have larger weight in the PSD, in contrast to fixed
non-equidistant Chebyshev nodes. For more details see Osterloh et al. (2011).

Using either TSVD or Páde regularization we obtain a logarithmically colored re-25

fractive index grid that indicates the error magnitude, as explained above, Figs. 1 and
3. We note that also in the “noiseless” data case during the forward calculation that
is needed to simulate the backscatter and extinction coefficients, approximation and
rounding errors are added to the coefficients, i.e., the input data for the inversion are
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not truly noiseless. Even those small errors can be harmful for an ill-posed inversion
problem.

For the post-processing procedure we manually select the “best” complex refractive
indices depending on the “best” PSDs. In Fig. 3 we show a few examples using noise-
less data for fine-mode particles (gsd σ = 1.5) with real part of the CRI of 1.5 (left two5

columns) and for fine-coarse-mode particles (gsd σ = 2.1) with real part 1.5 (middle
two columns) and again for σ = 2.1 with real part 1.4 (right two columns). The rows in-
dicate non-absorbing and absorbing particles from top to bottom. The imaginary parts
of CRI are 0i , 0.005i , 0.01i and 0.05i . In Fig. 3 we show mostly the maximum norm
except for (e), (i), (k) and (m) where the 2-norm of the absolute error is screened.10

The selection procedure is easier for fine-mode particles, see Fig. 3 first column, than
for fine-coarse- and coarse-mode particles (not shown here) since the “best” CRIs are
located on a very thin diagonal, in particular, for real part 1.5 as shown in Fig. 3a, g, m,
s. We guess that “underneath” the diagonal structure some kind of lack on information
is hidden that keeps us from determining the refractive index uniquely. However, we will15

give an estimation for the CRI using the mean of approximately 10 to 20 “best” values;
details are given below.

For the real part 1.4 the diagonal structure disappears more or less for fine-coarse-
(see Fig. 3e, k, q) and coarse-mode particles (not shown here) except for strong light-
absorbing particles with imaginary part 0.05i , see Fig. 3w. We observe a similar behav-20

ior for the same particle types with real part 1.6 and non- or weakly-absorbing particles
(imaginary part 0i and 0.005i ), not shown here. All columns of Fig. 3 show that the se-
lection procedure becomes easier with increasing imaginary part. Note that we did not
use larger coarse-mode particles, e.g., with σ = 2.5 in our simulation study because of
the ill-posedness from a mathematical point of view, i.e., the smoothness of the kernel25

function in Eq. (1). Those investigations show that the Potsdam algorithm should not be
used for radii larger than 5–7 µm (rule of thumb), see Osterloh et al. (2013), Samaras
et al. (2015).
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2.4.1 Identification of the solution space

In this section we explain the selection procedure of CRI and PSD. The main selection
criteria are based on experiential knowledge for a grid mesh of 30×30 until 60×60 grid
points, see Figs. 1 and 3.

First, if grid points of the CRI are located on a diagonal they can be collected into one5

cluster as long as they result in a good representation of the PSD. Isolated grid points
which are not located in a cluster inside the diagonal region or in a cluster inside an
arbitrarily shaped region should be removed even for the case of a good mathematical
approximation of the PSD. But usually the approximation of the PSD resulting from
isolated grid points is not very good. Physically meaningful PSDs appear in clusters.10

Second, if grid points form a thin vertical or horizontal line and additionally provide
a bad approximation of the solution, i.e., of the PSD, all data points along the vertical or
horizontal line should be removed. If grid points appear isolated at the end of a diagonal
or an arbitrarily shaped region (we denote them as boundary points) they may be
removed, for example, if too many grid points are suitable, see next paragraph.15

Third, as a rule of thumb one should select at least 10 grid points (if necessary in
using accumulative 2 or 3 norm grids (as previously explained)) with a maximum of 20.
If more than one cluster existsand if it has the same number of solutions it is difficult to
decide which cluster should be preferred. Changing the mathematical measure (norm
grid) may help in the decision making. For more details see (Samaras et al., 2015).20

Finally, for fine-mode particles (σ = 1.5,1.7, i.e., narrow mono-lognormal PSD) we
suggest to use an equidistant B-spline node grid whereas our experience shows that
better results can be achieved for coarse-mode particles (σ = 2.3, expanded mono-
lognormal PSD) with a non-equidistant grid of left-hand Chebyshev nodes.

Furthermore, using the Páde iteration as regularization method leads often to very25

good results with respect to the “pattern” of the obtained refractive index grid. There-
fore, the manually-controlled selection process of the CRI, as described above, is often
easier to achieve than using TSVD regularization. This is especially true for the PSD
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examples with σ = 1.5,1.7,1.9 (fine- and intermediate-mode particles) independently
of the real and imaginary part of the CRI. In all cases, the selection process of the
CRI grid points associated with the “best PSD solutions” is very easy since the “best
solutions” in most CRI grids form distinctive diagonals (not shown here). No isolated
grid points occur in general, i.e., all points are located in clusters. In case of absence of5

a diagonal structure, experience shows that one could locate meaningful solutions in
arbitrarily-shaped clusters too, see Samaras et al. (2015). Coarser modes, σ = 2.1,2.3,
seem to be occasionally problematic in terms of seeking a solution-cluster, which could
lead to oscillatory PSDs. This is a huge improvement. Nevertheless, it should be men-
tioned that the retrieved mean PSD is less accurate for small radii compared to the10

PSD obtained with TSVD. Therefore, the Páde iteration was not used in this simulation
study. It is an ongoing work to combine both methods in an appropriate way to make
use of the different advantages associated with both methods.

2.4.2 Particle size distribution: examples

The UP algorithm was tested with the same examples, see Table 1, as the TRO-15

POS/UH algorithm.
Selecting the best CRI grid points, i.e., the mean CRI, is always strongly connected

with the corresponding PSD, i.e., we look for similar shapes of the PSD. The mean
retrieved PSD solution, Figs. 3 and 4 (red solid line), is the average of all selected CRI
grid points, which in most cases correspond to 10 to 20 PSD’s (grey solid lines), see20

Figs. 3 and 4 (initial PSD: black solid line).
Figure 3 shows 12 examples of retrieved PSDs in the noiseless data case. In that

case it is possible to retrieve the mono-lognormal shape of the input PSD very well with
regard to accuracy and precision in almost all examples, in particular peak height and
location match accurately, see Fig. 3. For the coarse-mode particles (gsd σ = 2.3, not25

shown here) a second peak very often occurs, although this second peak is very small
in most cases. The exception are weakly absorbing (0.005i , 0.01i ) particles with real
part 1.4. In that case the PSD is monomodal. For for non-absorbing particles or strong
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light-absorbing particles (0.05i ) with real part 1.4 the second peak also occurs for gsd
σ = 2.1, see Fig. 3f and x and gsd σ = 1.9, not shown here.

In summary, only for coarse-mode particles and for almost all real and imaginary
parts (not shown here) and for fine-coarse-mode particles with real part 1.4 and imag-
inary part 0i (Fig. 3f) or 0.05i (Fig. 3x) the retrieved PSDs show a small second peak,5

but this is probably only a mathematical feature (oscillation) which cannot be smoothed
out during the regularization process, probably because of the larger ill-posedness of
the underlying mathematical problem.

Figure 4 shows 24 examples for the retrieved PSDs in the case of noisy data (ran-
dom Gaussian noise of 15 %, 10 runs per example). Most of the results are good, in10

particular for gsd 1.7 and 1.9. In the case of noisy input data, oscillations of the PSDs fo
coarse-mode particles occur and show a second or even a third peak for all CRIs, i.e.,
gsd σ = 2.3. Examples are shown in Fig. 4d, f, j, l, p, r, v, x; accuracy is good (except
for strong light-absorbing particles with 0.05i , see Fig. 4v and x) but precision is not.
Additionally, all PSDs coupled with real part 1.4 and gsd 1.7–2.1 show more or less15

a second peak for all imaginary parts (not shown here).
For fine-mode particles with gsd σ = 1.5 the retrieved PSD is always monomodal. But

the peak height is underestimated and the peak is shifted to larger radii (see Fig. 4a,
e, g, k, m, q, s, w); the precision is still good but the accuracy is lower. The impact
(quantity) of both effects (location and height of the peak) is decreasing with increasing20

real part, independent of the value of the imaginary part. Examples are shown in Fig. 4,
first and fifth column.

For real parts 1.5 and 1.6 in combination with σ = 1.7,1.9 the retrieved PSD (red solid
lines) is monomodal. The peak height and its location overlap excellently the ones of
the initial distribution (black solid lines) for all imaginary parts. Examples are shown in25

Fig. 4, second and third column. Therefore, here the accuracy and precision is very
high even in the case of noisy data. In contrast, for σ = 2.1 (not shown here) the peak
height is often a little bit overestimated, but the peak location undergoes only a small
shift to the left or right.
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In summary, with 15 % noise added to the input data, the PSD can still be retrieved
very well for fine-coarse-mode particles with real parts 1.5 and 1.6 in combination with
all imaginary parts.

3 Simulation results and discussion

3.1 Generation of optical data for retrieving microphysical parameters5

Table 1 shows the parameters of the particle size distributions (effective radius and
geometric standard deviation) and the CRI that were used for the computations of the
optical input data. We used 5 different effective radii. Effective radii of 0.15 and 0.2 µm
are in the size range of the fine-mode fraction of particle size distributions. Effective
radii of 0.28 and 0.4 µm describe particle size distributions that have a significant share10

of particles in the coarse-mode fraction and the fine-mode fraction. An effective radius
of 0.57 µm describes a size distribution for which most of the particles are in the coarse-
mode fraction of the particle size distribution.

With regard to the complex refractive indices we tested 3 real parts, i.e., 1.4, 1.5,
and 1.6. To our opinion these values cover a realistic range of real parts that can be15

expected for atmospheric particles. Values of around 1.4 describe highly refractory
particles. Sea salt belongs to this class of particles. The value of 1.5 can be used to
describe industrial pollutants as for example sulfuric acid. Soot has a high real part
of 1.8, but usually it is not found in pure form. Thus, if soot mixes with other aerosol
components the real part reduces. We estimate that 1.6 is a representative value of20

pollution, as for example biomass-burning particles that contain some amount of black
carbon.

The imaginary part varies over several orders of magnitude. Our goal is that we can
find the correct value at least to within ±50 %.

An accuracy of approximately ±0.03 for single-scattering albedo is often assumed as25

basic requirement in order to test the sensitivity of light-absorbing aerosols in climate
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change studies. This accuracy, however, cannot be expressed in terms of a single
number of the accuracy of the imaginary part. The reason for it is that the particle size
distribution also influences the value of SSA. A small change of the imaginary part
may have a large impact on SSA if the particles are in a specific radius range. A small
change of the imaginary part may not have a significant impact on SSA if the particles5

are in another part of the radius range of atmospheric particles. In the first step we
tested if we are able to derive the imaginary part to within ±0.005 in absolute values.
This accuracy may not be achievable all the time, but it would significantly increase our
chances to retrieve highly accurate values of single-scattering albedo.

We had to restrict our simulations to a few imaginary parts because the inversion al-10

gorithms are manually operated and the data analysis is time consuming. We selected
a few imaginary parts that were meant to give us a reasonable overview on the re-
trieval performance if particles are non-absorbing (imaginary part = 0i ) and if particles
are highly light-absorbing (imaginary part = 0.05i ).

One point that must be considered in these simulations is the fact that we likely will15

not find all possible combinations of the particle size parameters (effective radius, real
and imaginary part of the complex refractive index) listed in Table 1. The reason why
we believe that this will not happen can be seen from the following Table 2.

Table 2 shows the minimum and maximum values of the extinction-related and
backscatter-related Ångström exponents that follow from the combinations of the 520

effective radii and the CRIs listed in Table 1. The other three values (5 in total) for each
of the Ångström exponents falls within these minimum and maximum values. We also
show the individual values of the lidar ratios, and the ratio of the two lidar ratios (at 355
and 532 nm) that we obtain from all the combinations of the real and imaginary parts
for each effective radius tested in this sensitivity study.25

The extinction-related Ångström exponents largely reflect our experience we gained
from measurements of extinction coefficients at 355 and 532 nm. We regularly mea-
sure extinction-related Ångström exponents of 1–2 in regions that are affected by an-
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thropogenic pollution. Maximum values that have been measured are as high as 2.5
but we did not test this scenario in our study.

Values below 1 describe large particles in the coarse mode fraction. The most likely
candidate of an aerosol type with extinction-related Ångström exponents below 1 is
mineral dust. However, we cannot simulate with reasonable confidence optical data that5

describe mineral dust particles. Until now we could not identify a light-scattering model
that would allow us to model trustworthy values of particle backscatter coefficients,
i.e., scattering at 180◦. However, we measured in the past extinction-related Ångström
exponents of 0.5–1 which are related to aged biomass-burning aerosols (Müller et al.,
2005). In a few instances extinction-related Ångström exponents of aged biomass-10

burning aerosols were less than 0.5.
We also considered the case of extinction-related Ångström exponents around 0.

Again, this scenario most likely occurs if large mineral dust particles are present. How-
ever, also large sea-salt particles may show extinction-related Ångström exponents of
around 0 and for that reason we simulated such cases as well. We point out that it is not15

unlikely to find extinction-related Ångström exponents slightly less than 0, as shown in
Table 2. It is unclear if negative values can be resolved by lidar measurements in view
of realistic measurement errors of 10–20 %.

The critical point in this table are the lidar ratios. Several values quite obviously are
very unusual. Some lidar ratios are considerably higher than 100 sr, and some values20

are considerably lower than 20 sr. Lidar ratios of approximately 100 sr describe strong
light-absorbing aerosols and lidar ratios around 20 sr describe non-absorbing sea salt.
There remains the question if it is justified to simulate scenarios in which lidar ratios
considerably exceed 100 sr respectively drop below 20 sr. We believe that we should
consider such extreme outliers in at least a few studies for two reasons. First, we can25

test the robustness of our algorithms for such extreme cases. If we learn how the inver-
sion algorithms behave in such cases we have the confidence that we could analyze
aerosol scenarios in which the measured optical parameters might be outside the com-
monly accepted range of values for lidar ratios and Ångström exponents. The second
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point is that the underlying microphysical properties do not seem to be completely out
of range of numbers we can expect for atmospheric particles. It is simply the combina-
tion of specific values of particle size distribution and CRI that creates the outliers of
lidar ratios.

3.2 Simulation results of TROPOS/UH algorithm5

We carried out the inversions as described in the methodology section. We tested how
well we can retrieve the parameters of interest under favorable circumstances. In this
study we define favorable circumstances as the situation in which we have approximate
knowledge of the real part of the complex refractive index. This latter assumption is
based on a recent study by Chemyakin et al. (2014) who show that the “Arrange and10

Average” Algorithm may be a method that could allow us to constrain the real part of
the refractive index to 0.1 or even 0.05 uncertainty; see Table 3 in Chemyakin et al.
(2014). We made use of this possibility in this study. We explicitly did not attempt to
further optimize our inversion results by selecting a subset of best possible solutions
in the sense of manually selecting solutions from the solution space that follows from15

constraining the real part to either 0.05 or 0.1. We obtain a family of individual solutions
for which the real part is within either 0.1 or 0.05 deviation from the true value. We
average this family of solutions and thus obtain mean value and uncertainty, which
in this study will be expressed in terms of accuracy (systematic error or bias) and
precision (statistical error or noise).20

We also tested our algorithm under the assumption of comparably unfavorable mea-
surement error scenarios. We distorted each optical data point by its maximum value
of either 5, 10, or 15 %. In that regard errors of 15 % represent the worst case scenario
in this study. We did this distortion without considering the possibility that data points
may be correlated to each other and thus error bars may also not be independent of25

each other. We assume that the inversion of such “extremely” distorted backscatter
and extinction spectra would result in microphysical parameters that also deviate to
a maximum value from the correct values. This assumption of course has the flaw that
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the inversion is a non-linear problem. That means, an extreme distortion of optical input
data may not necessarily need to lead to a maximum deviation of the retrieved micro-
physical parameters from their true values. However, we believe that we will learn more
about this type of error analysis in this first attempt and that we can refine it in future
studies.5

3.2.1 Results for error cases 0 and 15%

Figure 5 shows a summary of the retrieval performance of effective radius, number,
surface-area, and volume concentration, and the real and imaginary part we obtain with
the TROPOS/UH algorithm. The left panel shows the results of simulations carried out
for error free data. The right panel shows the extreme error estimation of the retrieval10

results.
According to (Chemyakin et al., 2014) the real part of the CRI of the optical data used

in this study can be retrieved to an accuracy of approximately 0.1 with 2-σ confidence
for the case of noiseless optical data, see Table 3 in Chemyakin et al. (2014). We made
use of this result in our simulations as we are mainly interested in finding out about15

the performance of the algorithm under favorable condition of input parameters and
constraints to the search space of the refractive index grid which poses the greatest
challenge in our retrieval algorithm. If we learn more about the impact of the refractive
index search grid we hope to learn more about how to modify our algorithm in order to
improve the overall retrieval performance for all parameters investigated in this study.20

Under this assumption of known refractive index the other parameters then can be
derived accordingly. These results are shown as squares. We see that effective radius
can be derived to high accuracy if particles are in the fine mode fraction. With regard
to particles in the intermediate state (transition from fine mode to coarse mode, i.e.,
effective radii of 0.28 and 0.4 µm) and the coarse mode the performance on average25

still is acceptable (in view of the uncertainty bars) although we find outliers for particles
with real parts of 1.4.
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Surface-area concentration on average shows exceptionally high accuracy. The pre-
cision (the uncertainty bars reflect the statistical noise in terms of 1-standard deviation)
is high compared to the error bars we obtain for effective radius and volume concen-
tration. We find one outlier (see Fig. 5e) which cannot be explained at the moment.

Volume concentration in general shows the same features as effective radius, i.e.,5

the retrieval accuracy generally is good for particles in the fine mode fraction. We find
some outliers for the intermediate cases and the coarse-mode case, mainly for real
parts of 1.4.

The real parts follow from the application of the methodology suggested by Che-
myakin et al. (2014), see Table 3 in Chemyakin et al. (2014). If the real part is known,10

we can derive the imaginary part, too, as the solutions for the real and imaginary part
are correlated in the way shown in Fig. 5 for the UP algorithm. A similar behavior has
also been found for the TROPOS/UH algorithm, see for example Fig. 3 in Müller et al.
(2001b).

The imaginary part can be found within ±50 % uncertainty if imaginary parts are15

0.01 or larger. This result has already been found in previous studies, e.g., Müller et al.
(1999b). We know that we cannot derive the exact value of an imaginary part of 0i . The
inversion results for each data product always are the mean of several results, even if
we assume that the correct optical data are used in the inversion, i.e., no error bars
are considered. We carry out the inversion for a grid of complex refractive indices. In20

general we will find acceptable inversion results even for cases in which the imaginary
part is not 0i (Ansmann and Müller, 2005; Müller et al., 1999b). If we average these
individual values we naturally obtain a bias toward mean values larger than 0i . The
noteworthy point and a new result compared over previous studies is that our simula-
tions give us an impression on the likely value of this overestimation of the imaginary25

part. If the true imaginary part is less than 0.01 we may overestimate the imaginary
part by, on average 0.005i . This value may be lower in future if we refine our search
grid of refractive indices which is currently set to 0.003i for the imaginary part. That
means the next nearest value to 0i that can be found with our algorithm is 0.003i , and
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that stepsize likely is a reason for the overestimation of the mean imaginary part (in the
retrieval), which in turn leads to an underestimation of the single-scattering albedo for
low light-absorbing aerosols particles.

Figure 5 also shows results if we assume that we could retrieve the real part to an
accuracy of 0.05 (open circles). In that case we again make use of the results published5

by Chemyakin et al. (2014) who show that an uncertainty of 0.05 is possible with 1σ
confidence if the “Arrange and Average” Algorithm is applied.

We obtained the results by selecting only those individual solutions for which the real
part deviates less than 0.05 from the true value. The microphysical properties do not
differ significantly from the results if the real part is retrieved to 0.1 accuracy, if we take10

account of the overall uncertainties of our inversion results. I.e., any attempts to further
improve the real part retrieval may not necessarily result in significant improvements of
other data products and we consider this an important outcome of our study.

With regard to single-scattering albedo Fig. 5 shows the results for each case sepa-
rately, i.e., each case of true imaginary part contains 5 different cases (corresponding15

to the 5 different particle size distributions tested in the simulations). The true value of
each of the cases is shown by a thick horizontal line. The color of each of these hori-
zontal lines corresponds to the same color of the symbols that represent the inversion
results for a given set of optical data.

The retrieved single-scattering albedo on average can be derived to within ±0.0520

regardless whether the real part is known to within 0.05 or 0.1. If single-scattering
albedo is larger than 0.9, the inversion results become worse and tend to underestimate
the true single-scattering albedo. Particularly, if the true single-scattering albedo is 1,
the retrieved value is around 0.95.

With regard to measurement errors of the optical input data we carried out numerous25

simulation studies in the past (Müller et al., 1999b; Veselovskii et al., 2002, 2004). We
also learnt about the impact of measurement errors from the analysis of experimental
data. We know that on average measurement uncertainties should be less than 20 %
in order to obtain microphysical parameters with low uncertainty. One point we are
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struggling with is that uncertainty needs to be expressed in terms of accuracy and
precision. All previous studies were only designed to estimate the uncertainty and we
kept our studies fairly simple with respect to error analysis of the inversion results. We
did not separately study systematic and statistical errors.

In this study we made the first step toward refining our error analysis. We used5

5, 10, and 15 % noise for each optical data point. We wanted to test by how much the
microphysical parameters could shift for a given measurement uncertainty. In this study
we are mainly interested in the likely maximum shift of the mean value of each data
product. We try to provide a first answer to that question by what we call extreme error
estimation.10

We distorted the backscatter and extinction spectra to their extreme and took the
average of the extreme error runs as the final inversion result. For example we added
15 % to the extinction coefficient measured at 355 nm and we subtracted 15 % from the
extinction coefficient at 532 nm. We did not apply any smoothing constraints that would
reduce these extreme slopes of the extinction and backscatter spectra, and thus we15

also create extreme values of the extinction- and backscatter- and lidar-ratio–related
Ångström exponents.

Another idea behind this approach of using maximum distortion is to find out what
could possibly go wrong in data inversion if we do not know the error model that de-
scribes the uncertainty bars of the optical input data. For example we need to know20

how systematic and statistical error are computed from the Raman lidar data, as this
definition would allow us to compute the uncertainty bars of the microphysical parame-
ters in a more refined way. We need to know, if a Gauss-like error distribution function
sufficiently well describes the error bars of the optical input data, or if a different error
distribution function is more appropriate. We emphasize that error distribution functions25

contain information that can be used in data inversion as additional piece of constrain
that might help us to improve the inversion results.

Our procedure needs to be taken with caution. It is just the first step toward deal-
ing with the concept of error analysis in a more concise way. For example, we applied
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the noise for each data point individually, i.e., we did not consider that errors of the
individual data points of a given 3β+2α data set may be correlated to each other.
Such an effect would likely have a significant impact on the inversion results. We also
did not take account of the situation that certain situations of distorted data (i.e. val-
ues of Ångström exponents) may be less likely than other situations. We would like5

to use these results as motivation regarding the need for clearly defined data-analysis
protocols, because the quality of the optical data significantly impacts the quality of
the microphysical parameters, or in other words: if the input optical data do not meet
certain quality standards, the inversion algorithms cannot fix that problem.

In the following we only discuss the results for 15 % error, see right panel of Fig. 5.10

15 % error mainly disrupts the retrieval results if lidar ratios are above 100 sr, regardless
of particle size and the real part. We notice that the effect is particularly pronounced
for imaginary parts of 0.03 and 0.05. We find that a systematic shift could occur (loss
of accuracy), but it would not necessarily lead to a change of the statistical uncertainty
(loss of precision).15

This effect of the loss of accuracy is obvious for effective radius and the uncertain-
ties could become unacceptably large for some of the retrieved effective radii if we do
not use other types of information to constrain the results, or if we do not know the
mathematical function that describes the error bars.

Surface-area concentration remains within a reasonable range of uncertainty if we20

use 50 % as benchmark. It remains rather well behaved for the two PSDs that describe
fine-mode particles, but also the other types of PSDs, i.e., the transition type and the
coarse-mode type still deliver useful results.

Volume concentration shows reasonable results (we use around 50 % error as
benchmark when we talk about useful results) for all imaginary parts except the value25

0.05i . The results worsen for large particles, i.e., for effective radii of 0.57 µm, but we
would be able to identify measurement situations in which coarse-mode particles dom-
inate. We measure the extinction-related Ångström exponent, and large particles are
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linked to low Ångström exponents. Thus we can use the values from extinction mea-
surements at two wavelengths as quality flag parameter of the inversion results.

The imaginary part is our main target of future studies as it allows us to derive light-
absorption coefficients of particles. We find that the uncertainty (variation) of the imag-
inary parts that we obtain from erroneous data largely does not differ from the results5

of error free data. The exception are high imaginary parts (0.05i ). In that case there is
a high probability that we would systematically underestimate the imaginary part, if the
error model is not known.

We find on average that single-scattering albedo is underestimated, regardless of
the true value of the single-scattering albedo. We do not see a significant difference10

between the results for single-scattering albedo at 355 nm and single-scattering albedo
at 532 nm.

3.2.2 Results in terms of correlation plots

Figure 6 presents the inversion results in terms of correlation plots. This representation
allows for easier identification of the general performance of the inversion algorithm.15

The left panel of Fig. 6 shows the results for error-free optical data, the right panel
shows the results for optical data errors of 15 %. The left column of each panel shows
the results if the real part is known to 0.05. The right panel shows the results if the real
part is known to 0.1.

The main results were already discussed in the context of Fig. 5. We find that on20

average the results slightly worsen if the real part is known to 0.1 instead of 0.05 ac-
curacy. Figure 5i and j clearly shows the overestimation of the retrieved imaginary part
if the true value drops below 0.01i . Single-scattering albedo accordingly is underesti-
mated, and this underestimation becomes quite apparent if the true single-scattering
albedo rises above 0.95.25

If we introduce errors in the optical data the quality of the inversion results worsens.
Our approach of creating an extreme distortion of the optical spectra gives us some
insight into the maximum uncertainties that may occur. We find that effective radius
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and volume concentration may exceed 50 % uncertainty. Surface-area concentration
in most cases stays within ±50 % uncertainty. The imaginary part interestingly stays
within ±50 % uncertainty if the true value is above 0.01i . If the true value is below
0.01i the retrieved imaginary part may show a positive bias of 0.01 to 0.02. Regardless
of the increased uncertainty of the microphysical properties single-scattering albedo5

still can be derived to ±0.05 in many cases. However, as noted before (see Fig. 5)
single-scattering albedo is on average underestimated.

3.2.3 Results in terms of accumulative distributions and comparison to results
from UP algorithm

Figure 7 shows the accumulative distribution, i.e., the number of case studies for which10

each of the investigated parameters deviates less than a given value (shown on the
x axis of each plot). We also compare our results to the ones obtained with the UP
algorithm, see Fig. 7 (second panel).

With respect to effective radius the solid horizontal line shows that approximately
50 % of all solutions show less than 5–8 % deviation from the true results. We find that15

75 % of all solutions have uncertainties of less than 15 % and that all solutions deviate
less than 50 % from the true results.

If uncertainties of the optical data are 15 % only 50 % of all solutions may have errors
less than 50 %, and uncertainties of the other 50 % of the solutions may have consid-
erably larger uncertainties. We note that this is an extreme estimate, as we distorted20

the optical backscatter and extinction spectra to the maximum.
In the case of surface-area concentration 75 % of all simulated cases deviate less

than 10 % from the true results, regardless if the real part is known to 0.05 or 0.1
accuracy. If we introduce uncertainties we find that 75 % of all solutions deviate less
than 20 % from the true results.25

In the case of volume concentration we find that 50 % of all solutions deviate less
than 10 % from the true values. 75 % of all cases deviate less than 20 % from the true
values and in 90 % of all simulated cases the retrieval error is less than 50 %. If we
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assume uncertainties of 15 % for the optical data, volume concentration may deviate
less than 20 % from the true value in 50 % of all simulation cases.

With respect to the imaginary part the deviation is less than approximately 0.006 in
75 % of all cases. If measurement errors are included the deviation is ≤ 0.01 in 75 % of
all cases.5

Single-scattering albedo at 355 and 532 nm can be derived to better than 0.04 in
75 % of all cases if the real part is known to 0.05–0.1. In 90 % of all simulation cases we
can retrieve single-scattering albedo to better than 0.06. If we introduce measurement
errors the uncertainty of single-scattering albedo is ≤ 0.06 in 50 % of all cases and
≤ 0.08 in 75 % of all cases.10

3.3 Simulation results of UP algorithm

We split the discussion of our results into two parts: the first part deals with the re-
sults obtained with noiseless data. The second part deals with the case of noisy data.
Moreover, we note that the complete evaluation is done without any restriction and
constraints with respect to the real part of the CRI as it was used previously for the15

evaluation of the TROPOS/UH algorithm.

3.3.1 The noiseless data case

First, we evaluate the effective radius retrieval and the retrievals of total surface-area
and volume concentration. In case of noiseless input data, for almost all fine-mode
particle examples (σ = 1.5,1.7) the effective radius can be retrieved with a relative error20

less than 7.5 % except for CRI 1.6+0i , 1.6+0.05i with σ = 1.5 (not shown here) and for
CRI 1.5+0.03i , 1.5+0.05i , 1.6+0.03i , 1.6+0.05i , i.e., for strong-absorbing particles,
with σ = 1.7, see Fig. 8c. In that case the relative error is less than 10 %.

For almost all fine-coarse-mode and coarse-mode particles (σ = 2.1,2.3), the effec-
tive radius is underestimated, see Fig. 8a. The underestimation is between 2 and 13 %.25

We find outliers for coarse-mode particles σ = 2.3 with CRI 1.4+0i , 1.5+0i and 1.6+0i ,
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i.e., non-absorbing particles. The accuracy of the retrieved effective radius is here only
about 25 %. But in 90 % of all simulation examples, the retrieval errors are below 13 %,
see Fig. 7b.

The total surface-area and volume concentrations are two very stable microphysi-
cal parameters. Almost all cases can be retrieved to better than 15 %, ranging from5

nearly 0 to 15 %. For the first parameter, there are only two outliers for σ = 1.5 with
CRI 1.4+0.01i and 1.4+0.03i . In case of volume concentration we find 6 outliers.
5 of the outliers have real part 1.4. In almost all cases, the surface-area concentra-
tion is overestimated for σ = 1.5,1.9,2.1, see Fig. 8d. The volume concentration shows
a very stable behavior, see Fig. 8g. In summary, 96 % of all examples with respect to10

total surface-area concentration and 90 % of all examples with respect to total volume
concentration result in retrieval errors well below 15 %, see Fig. 7d and f.

Second, we evaluate the retrieval of the CRI. The retrieval of the real part is very
stable, in particular for 1.5, see Fig. 10a and c, the relative error is below 3 % except
for two outliers (not shown here). In summary, the relative error is below 5 % for all real15

parts and all simulation examples (two outliers) and the absolute deviation (90 % of all
examples) is below 0.06, see Figs. 9b and 7h, respectively.

The imaginary part has a larger variation if the particles are more absorbing, see
Fig. 10d. This result holds true for all real parts and is more pronounced for real part
1.4. The error bars are larger (standard deviation of all selected CRI grid points from20

the mean). Moreover, for the real part 1.4 (except 1 outlier) the imaginary part is always
overestimated for strong-absorbing particles.

The relative error is less than 55 % except for 8 outliers which for most part have an
imaginary part of 0.01i . At the moment the reason for this behavior is unknown.

However, in summary, with respect to the imaginary part 83 % of all examples show25

retrieval errors below 50, and 94 % of all investigated imaginary parts show retrieval
errors below 70 %, see Fig. 9b. We note that we do not include non-absorbing particles
with 0i for our evaluation of the relative error since division by zero fails. Figure 10d
shows that both the absolute deviation from zero and the error bars are very small.
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Concerning the absolute error 70 % of all examples are below 0.005 absolute deviation
and 85 % are below 0.01, see Fig. 7j.

3.3.2 The noisy data case

In the case of noisy input data (15 %), the relative error of the effective radius is mono-
tonically decreasing with the real part of the CRI, i.e., for real part 1.4 the relative error5

is less than 60 %, for 1.5 it is less than 40 % and for 1.6 it is less than 30 %. For real
part 1.4 the effective radius is overestimated in all examples of investigated PSDs. For
the real parts 1.5 and 1.6 this overestimation still occurs in the case of the fine-mode
particles, see Fig. 8b. It is worth mentioning that the relative errors for fine-mode par-
ticles are for the most part larger than for the intermediate and coarse-mode particles.10

In summary, 85 % of all investigated examples show retrieval errors below 50 %, see
Fig. 7b. However, by including only the real parts 1.5 and 1.6, 98 % of all examples
show retrieval errors below 40 %.

The surface-area concentration is the most stable parameter in the case of noisy
data. The retrieval error is less than 20 % (1 outlier) with respect to real part 1.4. In15

the case of real parts 1.5 and 1.6 the retrieval error is less than 15 % (2 outliers). The
parameter is slightly overestimated for fine-coarse- and coarse-mode particles, see
Fig. 8e, but stays within the error bars. The retrieval for fine-mode particles is excellent
for real parts 1.5 and 1.6 and all imaginary parts. In summary, 99 % of all investigated
examples show retrieval errors below 20 and 85 % of all investigated examples show20

retrieval errors below 15 %, see Fig. 7d. We note that the retrieval error for most of the
examples does not exceed the level of the input data error.

The volume concentration is also slightly overestimated, but in contrast to surface-
area concentration this is for the most part only happening for fine-mode particles, see
Fig. 8h. The overestimation stays mostly within the error bars for real parts 1.5 and 1.6.25

Moreover, volume concentration is overestimated for all particles with real part 1.4. The
retrieval error is less than 35 % for real parts 1.5 and 1.6. This means, that on average
it stays within the input data error level. For the real part 1.4 the volume concentration

12859

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/12823/2015/amtd-8-12823-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/12823/2015/amtd-8-12823-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
8, 12823–12885, 2015

EARLINET inversion
algorithms

D. Müller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

has a retrieval error less than 55 % except for σ = 2.1,2.3 where it is 70 %. For fine-
mode particles the volume concentration has a retrieval error less than 40 % for all
CRI. In summary, 88 % of all investigated examples have a retrieval error below 50 %
with respect to the volume concentration, see Fig. 7f. However, if we consider only real
parts 1.5 and 1.6 the retrieval error is below 40 % in 100 % of those examples.5

In contrast to the noiseless data case, the real part of CRI 1.4 is always underesti-
mated (1 outlier) in the case of noisy data, see Fig. 10b. Moreover, it is nearly always
(all real parts) underestimated for fine-mode particles and the relative error is larger
than for intermediate and coarse-mode particles. But the retrieval error is still very
small, i.e., 89 % of all examples are below 5 and 100 % of all examples are below 6 %10

retrieval error. With respect to the absolute deviation 85 % (noiseless case) and 65 %
(noisy case), respectively, are below ±0.05 and 100 % (in both cases, two outliers) are
well below ±0.1, see Fig. 7h.

Concerning the imaginary part of CRI we found that the error bars are very large for
strong-absorbing particles (precision is low), i.e., imaginary parts 0.03i and 0.05i , see15

Fig. 10e. But for non- and weak-absorbing particles the accuracy and precision is good.
In summary, 90 % of all investigated examples are below 40, 93 % are below 50, and
100 % (only 2 outliers) are below 60 % retrieval error, see Fig. 9b. Notice again, that
non-absorbing particles with 0i are not included here for the relative error evaluation.
But one can see from Fig. 10e that the absolute deviation as well as the error bars are20

very small for non-absorbing particles.
In detail, as already remarked above, if we want to obtain an absolute accuracy

of approximately ±0.03 for the SSA, which is a basic requirement for climate change
studies, one needs to test if it is possible to retrieve the imaginary part of CRI within
±0.005 in absolute values. We found that for non- (0i ) and weak-absorbing (0.005i ,25

0.01i ) particles this is possible, i.e., accuracy ±0.005 in absolute values is achievable;
for real part 1.6 it seems to be even possible for strong-absorbing particles (0.03i ,
0.05i ), see Fig. 9a. For the rest of strong-absorbing cases the absolute error stays
within ±0.015 except two outliers. In summary, 82 % of all examples stay below ±0.005
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and 92 % below ±0.01 absolute retrieval error, see Fig. 7j. A closer look to Figs. 7j and
9a shows that for the imaginary part, the noisy data case delivers better results than
the noiseless one. This fact needs further investigation in future.

3.3.3 Evaluation results for SSA

Here we evaluate the accuracy of single-scattering albedo for the noiseless and noisy5

case. As expected from the absolute retrieval error of the imaginary part of the CRI –
which is larger for strong-absorbing particles – the single-scattering albedo at 355 and
532 nm shows more or less the same behavior in the noiseless and noisy case, respec-
tively, see Figs. 9d–f and 11a, b, d, e. For noiseless data, 91 % of all examples (355
and 532 nm) are below 6 % retrieval error. 99 % of all examples at 355 nm and 95 % of10

all examples at 532 nm are below 10 % retrieval error, see Fig. 9c. With respect to 15 %
noisy data, we found that 100 % of all examples achieve retrieval errors below 12 % for
the single-scattering albedo at 355 and 532 nm. In more detail, the SSA retrieval errors
are well below 6 % in 87 % of all examples at the wavelength 355 nm or in 88 % of all
examples at the wavelength 532 nm, respectively, see Fig. 9c.15

Regarding the absolute deviation and the cases of noiseless input data we found
an underestimation of SSA at 355 nm (and similar for SSA at 532 nm) for non- and
weak-absorbing particles in the intermediate and coarse-mode. For non- and weak-
absorbing particles in the fine-mode the accuracy limit of ±0.03 (in absolute values) is
achieved, see Fig. 9d. In the noisy data case this underestimation (in the intermediate20

and coarse-mode) of SSA at 355 and 532 nm only occurs for all imaginary parts at
real part 1.4, see Fig. 9e and f. For nearly all non- and weak-absorbing particles with
real parts 1.5 and 1.6 the accuracy limit ±0.03 is achieved in all 5 modes at 532 nm
whereas at 355 nm in such cases the accuracy limit is ±0.05 (one outlier), see Fig. 9e
and f. In summary, 70 % (65 %) of all examples stay below ±0.03 for SSA at 532 nm25

((at 355 nm) and 88 % of all examples (both wavelengths) stay below ±0.05, see Fig. 7l
and n).
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3.3.4 Results in dependence of increasing noise level

We complete the evaluation in showing how the retrieval error is increasing with respect
to the noise level using one example namely fine-mode particles with gsd σ = 1.7.
We investigated 0, 5, 10 and 15 % input noise. Figure 8c shows the retrieval error of
the effective radius for increasing noise level. For the real part 1.4 we clearly see the5

expected behavior, i.e., the retrieval error increases with increasing noise level. The
same is true for real part 1.5 and strong-absorbing particles. For all other CRI, the
noise level seems to have less influence. Additionally, in Fig. 8c and i, one can see that
for noiseless data one obtains very good retrieval results for the effective radius and
for the volume concentration, more or less independently of the CRI. However, Fig. 8i10

shows that for the volume concentration the noise level itself seems to have nearly
always only a minor impact on the results.

Although the surface-area concentration is a very stable parameter in the retrieval
process, Fig. 8f shows surprisingly reverse results with respect to increasing noise
level, in particular, for real parts 1.5 and 1.6.15

The retrieval of the real part of the CRI, see Fig. 10c, shows more or less what
one would expect for noiseless data. Whereas the noise level seems to be again less
important for the relative retrieval error. In contrast the imaginary part of the CRI, see
Fig. 10f, and the single-scattering albedo, see Fig. 11c and f, show no regular behavior
even for noiseless input data, in particular, for strong-absorbing particles with respect20

to real parts 1.5 and 1.6. This behavior needs further examinations.

4 Summary

We summarize the status of two manually operated data inversion algorithms (TRO-
POS/UH algorithm and UP algorithm) that are used to derive microphysical parameters
of atmospheric particles observed with EARLINET multiwavelength (3β+2α) Raman25

lidar. The algorithms provide particle effective radius, and surface-area and volume
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concentration, and the real and imaginary part of the complex refractive index. Single-
scattering albedo can be computed from the derived particle size distributions and
complex refractive indices with Mie-scattering algorithms.

4.1 TROPOS/UH algorithm

We tested the algorithms ability to derive the investigated particle parameters as ac-5

curately as possible, if the optical input data are error free and if the real part of the
complex refractive index is known to 0.1, respectively 0.05 uncertainty. This latter as-
sumption was introduced in our simulation study in view of results published by Che-
myakin et al. (2014) who show that it may be possible to constrain the result for the
real part by the “Arrange and Average” Algorithm. We point out that this algorithm is10

currently further studied with respect to this interesting feature of being able to iden-
tify the real part of particles. Thus our own study can merely be considered as a first
exploratory study, too. We also investigated the situation of noisy optical input data. In
that regard we were not interested in investigating by how much we can compensate
for measurement errors in the inversion and still retrieve accurate microphysical parti-15

cle properties. We were rather interested in the opposite goal: by how much can the
derived microphysical parameters deviate from the true results, if a certain uncertainty
level (5, 10, and 15 %) is reached. For that purpose we distorted the spectra of optical
spectra (backscatter at 3 wavelengths and extinction at 2 wavelengths) to a maximum,
which likely will not occur under real experimental situations. We made the simplifying20

assumption that an extreme distortion of the optical input spectra leads to an extreme
(maximum) deviation of the microphysical parameters from the true values. We ac-
knowledge that this assumptions requires more studies to corroborate it.

We find that effective radius of the PSDs in the fine-mode, the intermediate case
(fine and coarse mode particles), and the coarse-mode can be retrieved well. Accu-25

racy usually is better than 25 % in all cases, though we notice outliers. Surface-area
concentration can be retrieved with an accuracy of approximately 10 %. Statistical er-
rors (precision) is just about large enough to include the true values, too. In most cases
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we slightly underestimate the true values. Volume concentration can be retrieved well
for the fine-mode, intermediate case, and coarse mode. Accuracy is better than 20 %
except for six outliers out of 75 investigated cases.

The real part was retrieved to either 0.1 or 0.05 uncertainty according to the method-
ology by Chemyakin et al. (2014), and thus is not part of the performance study of our5

inversion method.
It seems that the accuracy of the retrieved imaginary part in general is better than

30 % for all investigated cases if the true imaginary part is ≥ 0.1. Taking into account
precision (statistical error) we find that we still can derive the imaginary part to within
±50 %.10

If the imaginary part is less than 0.01 we can merely decide if the mean value is ≤
0.015, and if we include statistical noise we lose precision as well. This results confirm
previous, less systematic studies in which we found that we can merely determine the
order of magnitude if the imaginary part is below 0.01.

Single-scattering albedo can be derived to approximately 0.05 in many of the investi-15

gated cases. Accuracy is in part better than 0.05, but if we include statistical errors we
find deviations up to 0.1. These results however depend on the constraint of the real
part. We find that if we can constraint the real part to 0.05, singles-scattering albedo
can be derived to better than 0.05 as long as its true value is ≤ 0.9. We find a sys-
tematic underestimation of single-scattering if the true value is above 0.9. This effect20

is caused by the fact that our TROPOS/UH inversion method cannot accurately derive
imaginary parts if they are less than 0.01. Particularly the fact that we cannot derive an
imaginary part of 0 currently poses the greatest challenge.

We finally notice that it may not be so important for the retrieval quality of effective ra-
dius, and surface-area and volume concentration if the real part cannot be constrained25

to better than 0.1. Effects are more pronounced with regard to the imaginary part,
though accuracy nearly always stays within ±50 % as long as the true imaginary part is
≤ 50 %. Below 0.1 (true) value the imaginary part is overestimated by on average 0.01.
The quality of single-scattering albedo also depends on how accurate the real part can
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be retrieved. If it can be retrieved to 0.05 we find that the retrieved single-scattering (at
355 and 532 nm) in nearly all investigated cases remains within 0.05 accuracy. Signif-
icant underestimation occurs if single-scattering albedo is above 0.9, as in that case
the overestimation of the imaginary part plays a role. The quality of single-scattering
albedo becomes notably worse if the real part is retrieved to only 0.1. In that case5

accuracy maybe be only 0.1.
With regard to our extreme error computations we find that results for the most part

remain below 50 % accuracy and in many cases the accuracy is significantly better. We
find outliers. We do not have sufficient information from this limited set of simulations
that allows us to identify a pattern that could explain when the outliers occur. We believe10

that the inversion method is robust enough to provide microphysical size parameters
with ≤ 50 % error(accuracy plus precision) even in cases of 15 % measurement error
if the exact error-model of the optical uncertainty bar is unknown. We nevertheless
emphasize that one goal of optical data analysis must be the characterization of the
underlying error model of the optical data as it would likely improve significantly the15

microphysical inversion products.
With regard to the imaginary part we notice that on average the accuracy worsens

with increasing noise level. We find more cases of overestimation respectively underes-
timation of the true imaginary part compared to the case of correct optical data. Results
slightly differ if the real part is constrained to 0.05 respectively 0.1. However, if we take20

only results for which the true imaginary part is larger than 0.01, we still find that the
retrieved imaginary parts are within ±50 % from the true values.

Single-scattering albedo seems to be significantly underestimated compared to the
results for single-scattering albedo in the case of noiseless optical data. Particularly
we notice a wider scatter of values of single-scattering albedo around the true values.25

In contrast, in the case of noiseless optical input data the results for single-scattering
albedo remain rather well confined within a narrow band of ±0.05 deviation around the
true values, except for the cases of single-scattering albedo ≥ 0.9, see comments in
Sect. 3.1.1.
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4.2 UP algorithm

We summarize here our results of the UP algorithm for 15 % noisy input data.
The total surface area concentration is the most stable parameter within the mi-

crophysical retrieval procedure, i.e., 99 % of all examples are below 20 and 85 % are
below 15 % retrieval error. The retrieval error level stays mostly within the input data er-5

ror/noise level. With respect to the effective radius 85 % of all examples are below 50 %
retrieval error. Additionally, by including only the real parts 1.5 and 1.6, 98 % of this
examples are below 40 % retrieval error. For the total volume concentration we found
88 % of all examples are below 50 % retrieval error and, moreover, by including only
real parts 1.5 and 1.6 the retrieval error stays below 40 % in 100 % of the examples.10

We found for the imaginary part of the CRI that for non- (0i ) and weak-absorbing
(0.005i , 0.01i ) particles in all modes (fine, intermediate, coarse) the accuracy ±0.005
in absolute values is achievable. For real part 1.6 it is on average even achievable
for strong-absorbing particles (0.03i , 0.05i ). In summary, 82 % of all examples stay
below ±0.005. Concerning the real part of CRI the relative retrieval error is very small,15

i.e., 100 % of all examples are below 6 % retrieval error. With respect to the absolute
deviation 65 % of all examples are below ±0.05 and 100 % are well below ±0.1.

The evaluation statistics show that the relative retrieval errors of effective radius and
total volume concentration are prominently larger for the real part 1.4. The retrieval
of the imaginary part of the CRI has significantly larger error bars for strongly light-20

absorbing particles of 0.03i and 0.05i . The error bar behavior is monotonically increas-
ing with an increasing light-absorption level. These observations are in agreement with
mathematical theoretical studies which show that in general the degree of ill-posedness
of the inverse problem grows both with increasing imaginary part and decreasing real
part.25

For fine-mode particles with gsd σ = 1.5 the relative retrieval errors of the effective
radius and real part of the CRI are largest for almost all CRIs. The same is true for
total surface area concentration but here only for real part 1.4, or for total volume con-
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centration only for real part 1.6, respectively. For coarse-mode particles with σ = 2.3
the post-processing procedure is very complicated and time consuming since the CRI
domain often has neither a diagonal structure nor any other well-defined domain. It is
sometimes even speckled. Selecting the CRI associated with PSD may be difficult.

As expected from the absolute retrieval error of the imaginary part of the CRI, which5

is larger for strong absorbing particles, the single scattering albedo shows more or
less the same behavior for 355 and 532 nm. For the single scattering albedo, 100 %
of all examples achieve relative retrieval errors below 12 %. In more detail, 87 % of all
examples for 355 nm and 88 % of all examples for 532 nm are well below 6 %. With
respect to the absolute error for nearly all non- and weak-absorbing particles with real10

parts 1.5 and 1.6 in all modes (fine, intermediate, coarse) the accuracy limit ±0.03 is
achieved which is a basic requirement for climate change studies. In summary, 70 %
(65 %) of all examples stay below ±0.03 for SSA 532 nm (355 nm).

5 Outlook

Future development work of the TROPOS/UH algorithm will focus on deriving fine15

mode and coarse mode particle parameters separately. We want to investigate in how
far a wavelength-dependent complex refractive index of aerosol particles influences the
quality of the retrieval results. Reason for this study is that we assume a wavelength-
independent refractive index in our retrievals. We want to investigate if we can derive
the single-scattering albedo with less uncertainty if the true value of SSA is above 0.9.20

In future the Potsdam group will improve the presented software in using the two
regularization methods namely TSVD and iterative Pade method in parallel to utilize
advantages of both methods simultaneously.

Currently the Potsdam group is investigating in a microphysical retrieval procedure
via regularization for non-spherical particles, in particular, spheroidal particles, i.e.,25

oblate and prolate particles. In future a user-friendly software tool for non-spherical
could be developed.
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Table 1. Input parameters of the particle size distributions used in the simulation studies. We
used monomodal PSDs with mean radius 100 nm. We used PSDs normalized to one particle
per cm3. gsd (σ) denotes the geometric standard deviation (mode width). er is the effective
radius, sc is the surface-area concentration, and vc the volume concentration.

gsd er sc vc
(µm) (µm2 µm−3) (µm2 µm−3)

1.5 0.15 0.18 0.0088
1.7 0.2 0.22 0.015
1.9 0.28 0.29 0.027
2.1 0.4 0.38 0.05
2.3 0.57 0.5 0.095

real part: 1.4, 1.5, 1.6
imaginary part: 0, 0.005, 0.01, 0.03, 0.05
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Table 2. Input parameters of the size distributions used in the simulation studies. We used
monomodal PSDs with mean radius 100 nm. We used PSDs normalized to one particle per
cm3. ext-A(355/532) denotes the extinction-related Ångström exponent for the wavelength pair
355/532 nm. bsc-A(355/532) and bsc-A(532/1064) denotee the backscatter-related Ångström
exponents for the wavelength pairs 355/532 nm and 532/1064 nm, respectively. LR(355) and
LR(532) denote the lidar ratios at 355 and 532 nm, respectively. LR(532)/LR(355) denotes the
color-ratio of the lidar ratios at 355 to 532 nm.

er optical real part
(µm) parameter 1.4 1.5 1.6

0.15 ext-A(355/532) 1.45–1.78 1.29–1.49 1.09–1.23
bsc-A(355/532) 0.36–1.38 0.53–1.79 1.06–2.37
bsc-A(532/1064) 0.59–1.11 0.6–1.23 0.63–1.4

LR(355) 81, 89, 99, 142, 191 55, 63, 11, 107, 153 34, 39, 44, 70, 106
LR(532) 69, 73, 79, 101, 122 62, 67, 8, 92, 113 54, 59, 64, 84, 105

LR(532)/LR(355) 0.64–0.85 0.74–1.13 0.99–1.59

0.2 ext-A(355/532) 0.94–1.11 0.73–0.85 0.54–0.59
bsc-A(355/532) 0.19–1.19 0.61–1.76 1.16–2.12
bsc-A(532/1064) 0.46–1.23 0.59–1.59 0.89–2.03

LR(355) 72, 84, 96, 155, 229 34, 40, 47, 85, 138 16, 19, 23, 42, 72
LR(532) 75, 82, 91, 129, 168 49, 55, 62, 95, 132 30, 34, 39, 62, 93

LR(532)/LR(355) 0.73–1.03 0.96–1.45 1.29–1.86

0.28 ext-A(355/532) 0.55–0.62 0.37–0.4 0.23–0.24
bsc-A(355/532) 0.03–1.08 0.48–1.31 0.75–1.47
bsc-A(532/1064) 0.31–1.19 0.6–1.62 0.99–1.95

LR(355) 56, 72, 87, 161, 257 23, 28, 34, 69, 124 10, 12, 15, 32, 59
LR(532) 68, 79, 92, 146, 208 32, 39, 46, 81, 130 16, 19, 23, 43, 73

LR(532)/LR(355) 0.81–1.21 1.05–1.44 1.24–1.64

0.4 ext-A(355/532) 0.3–0.32 0.16–0.17 0.07–0.08
bsc-A(355/532) −0.09–0.99 0.23–0.85 0.32–0.94
bsc-A(532/1064) 0.17–1.1 0.5–1.31 0.78–1.48

LR(355) 41, 60, 77, 163, 280 18, 24, 30, 64, 121 7, 10, 13, 29, 57
LR(532) 54, 70, 85, 155, 239 23, 30, 36, 71, 124 10, 13, 17, 34, 63

LR(532)/LR(355) 0.86–1.31 1.03–1.31 1.1–1.42

0.57 ext-A(355/532) 0.14 0.04–0.05 −0.01–−0.02
bsc-A(355/532) −0.2–0.84 −0.03–0.51 −0.02–0.56
bsc-A(532/1064) 0.04–1 0.31–0.94 0.46–1.04

LR(355) 31, 52, 72, 169, 305 16, 22, 29, 65, 128 6, 9, 12, 30, 60
LR(532) 41, 60, 78, 160, 265 19, 25, 32, 67, 123 8, 11, 14, 31, 60

LR(532)/LR(355) 0.87–1.33 0.97–1.21 1–1.27
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Figure 1. Screen shot of the developed software and explanation of the post-processing pro-
cedure: Selection of suitable grid points of CRI clustering along the diagonal domain (left),
corresponding PSD and initial PDS (right), and tables with retrieved microphysical parameters
for each selected CRI and mean values with standard deviation (bottom). The residual errors
on the right hand side of the grid appear in ascending order from top to bottom on a logarithmic
scale.
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Figure 2. Examples of retrieved particle size distributions for the case of the geometric standard
deviation of 2.1, real part of 1.5, imaginary part of 0.01i and for mean radius of (a, d, g, j)
60 nm, (b, e, h, k) 140 nm, and (c, f, i, l) 300 nm. The true PSD is shown as red curve. The
retrieved mean PSDs are shown as solid, light-blue lines and error bars (grey) in terms of
1-sigma standard deviation. The error bars are plotted on a dense grid and follow from the
averaging of several hundred individual inversion solutions for each of the mean PSDs. The
vertical lines are positioned at 500 nm particle radius. We define 500 nm particle radius as
separation between fine-mode and coarse mode particles. The four rows represent the two
different constraints on the real part and error free data, i.e. 0.05 (a–c) and 0.1 (d–f), rows (g–i)
and (j–l) correspond to 15 % extreme optical data error.
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Figure 3. Examples of color-coded refractive index grids and PSDs for noiseless input data.
The rows correspond to different imaginary parts of the CRI: 0, 0.005, 0.01 and 0.05. The
first two columns contain fine-mode particles with gsd σ = 1.5 and real part of CRI 1.5 using
equidistant B-spline nodes. The third and fourth columns correspond to intermediate-mode
particles with gsd σ = 2.1 and real part of CRI 1.5 using non-equidistant B-spline nodes. The
last two columns display results with gsd σ = 2.1 and real part of CRI 1.4 using equidistant
B-spline nodes. The mean PSD (the solution) is drawn as red single line.
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Figure 4. Examples of PSDs for input data with 15% noise: the rows correspond to different
imaginary parts of the CRI: 0, 0.005, 0.01 and 0.05. The columns correspond to gsd: 1.5, 1.7,
1.9, 2.3, 1.5, 2.3. The first four columns hold for real part 1.5. The last two columns describe
the results for real part 1.6. The mean PSD, i.e., the solution, is shown as red single line.
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Figure 5. (left panel) TROPOS/UH algorithm: retrieval results for (a–c) effective radius, (d–f)
surface-area concentration, (g–i) volume concentration, (j–l) real part and (m–o) imaginary
part of the complex refractive index, and single-scattering albedo at (p–r) 355 nm and (s–u)
532 nm. The left segment shows the results for real part 1.4., the center segment shows the
results for real part 1.5, and the right segment shows the results for real part 1.6. Our inversion
results are obtained with an upper threshold of the real part of 0.1 (boxes) and a threshold of
0.05 accuracy (circles). The error bars denote one-standard deviation. (right panel) Results of
our extreme error analysis for the case of 15 % measurement error. Upward-pointing triangles
refer to results for which the real part was constrained to 0.05. Down-ward pointing triangles
refer to inversion results for which the real part was constrained to 0.1. Meaning of the other
symbols is the same as in the left panel.
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Figure 6. TROPOS/UH algorithm: (left panel) (a, b) effective radius, (c, d) surface-area con-
centration, (e, f) volume concentration, (g, h) real part and (i, j) imaginary part of the complex
refractive index, and single-scattering albedo at (k, l) 355 nm and (m, n) 532 nm. (right panel)
Retrieval results for the case of 15 % data uncertainty. The left (right) column in each of the
two panels shows the results if the real part is known to an accuracy of 0.05 (0.1). The error
bars denote one-standard deviation. The 1–1 lines are shown. The lines for ±20 % deviation
from the true results (dashed lines) and for ±50 % deviation are shown for effective radius, and
surface-area and volume concentration. In the case of the real part the dashed lines indicate
±0.05 deviation (left column in both panels) and ±0.1 deviation (right column in both two pan-
els). In the case of the imaginary part the dashed (dotted) lines indicate a deviation of ±0.005
(±50 %). In the case of single-scattering albedo the dashed lines show a deviation of ±0.05.
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Figure 7. Accumulative distribution of inversion results for TROPOS/UH algorithm (left panel)
and UH algorithm (right panel). TROPOS/UH algorithm: Results are shown for the constraint
that the real part can be extracted to an accuracy of 0.05 (solid thin line) and 0.1 (solid thick
line), according to Chemyakin et al. (2014) and the data error is 0 %. Results for the data error
of 15 % are shown, too (0.05 accuracy as thin-dashed line and 0.1 accuracy as thick-dashed
line). UP algorithm: Results are shown for the data error of 15 % (empty icons) and for the
noiseless case (filled icons) without any constraint of the real part. In the case of (a, b) effective
radius, (c, d) surface-area and (e, f) volume concentration we show the accumulative sum in
dependence of the deviation in percent from the true results. In the case of the (g, h) real part,
(i, j) imaginary part, and single-scattering albedo at (k, l) 355 nm and (m, n) 532 nm we show
absolute deviations. The solid horizontal line shows the 50 %-level (accumulative sum). The
dashed horizontal line shows the 75 %-level, and the dotted horizontal line shows the 90 %-
level.
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Figure 8. Retrieval results for effective radius (1st row), surface-area concentration (2nd row)
and volume concentration (3rd row). First column corresponds to noiseless data. The second
column corresponds to data with 15% noise. The last column shows the relative retrieval error
for increasing noise level of the input data: 0,5,10,15% for gsd 1.7 as an example. Each subfig-
ure (a–f) is compartmentalized into three partition with respect to the horizontal axis (refractive
index). The partitions correspond to different real parts of CRI namely 1.4, 1.5 and 1.6. Each
partition shows the result for different imaginary parts of the CRI: 0,0.005,0.01,0.03,0.05i . The
error bars denote the standard deviation from the mean value of all selected “best” solutions.
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Figure 9. Relative error (deviation) development with respect to all investigated examples (ac-
cumulative distribution of inversion results): (b) CRI and (c) single scattering albedo. Abso-
lute error of the retrieval results: (a) imaginary part of CRI for 15% noisy input data, (d) SSA
355 nm (noiseless), (e) SSA 355 nm (15% noisy input data) and (f) SSA 532 nm (15% noisy
input data). Each subfigure (a), (d–f) is compartmentalized into three partition with respect to
the horizontal axis (refractive index). The partitions correspond to different real parts of CRI
namely 1.4, 1.5 and 1.6. Each partition shows the result for different imaginary parts of the
CRI: 0,0.005,0.01,0.03,0.05i .
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Figure 10. Retrieval results for real part of CRI (1st row) and imaginary part of CRI (2nd row).
First column corresponds to noiseless and second to 15% noisy input data. The last column
shows the relative retrieval error with increasing noise level of the input data: 0,5,10,15% for
gsd 1.7 as an example. Each subfigure (a–f) is compartmentalized into three partition with
respect to the horizontal axis (refractive index). The partitions correspond to different real parts
of CRI namely 1.4, 1.5 and 1.6. Each partition shows the result for different imaginary parts of
the CRI: 0,0.005,0.01,0.03,0.05i . The error bars denote the standard deviation from the mean
value of all selected “best” solutions.
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Figure 11. Relative error of the retrieval results for SSA 355 nm (1st row) and SSA 532 nm (2nd
row). First column corresponds to noiseless and second to 15% noisy input data. The last col-
umn shows the relative retrieval error with increasing noise level of the input data: 0,5,10,15%
for gsd 1.7 as an example. Each subfigure (a–f) is compartmentalized into three partition with
respect to the horizontal axis (refractive index). The partitions correspond to different real parts
of CRI namely 1.4, 1.5 and 1.6. Each partition shows the result for different imaginary parts of
the CRI: 0,0.005,0.01,0.03,0.05i .
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