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Abstract

This paper presents a CSP specification of a case study for an environmental control
system for a building. The modification of CSP process definitions to incorporate reuse via
inheritance is the main issue presented in this work, Incremental and behaviour modification
are two techniques that are presented in order to model object-oriented inheritance.

In its current form CSP does not provide many facilities for reusing existing components
of a specification. This paper presents an addition to the language of CSP by parameterising
initial actions and subsequent behaviour in the signature of a proceés which then permits

behaviour to be modified in situ as well as by the extension of action choice.

Keywords CSP, Reuse, Inheritance, Object-oriented specification.

Introduction

This paper presents an addition to the language of CSP that permits both strict and casual
inheritance to be implemented. These two forms of inheritance can be categorised in the following

way.

Strict Inheritance : The reuse of existing behaviour with possible extension to the choice

of behaviour initially offered by a process. Behavioural compatibility with the parent is

guaranteed.




Casual Inheritance : The reuse of existing behaviour with the modification to the sequence
of actions initially offered by a process. Behavioural compatibility with the parent is not

guaranteed.

Strict inheritance is the simple form of reuse as it simply requires the ‘bolting on’ of new branches
of behaviour to an existing framework.

Casual inheritance alters the behaviour of the inherited process as it splices new actions into
the existing action sequences to yield a new sequence of behaviour given the same initial actions.

A process definition that both extends initial choice and modifies existing action sequences is
said to inherit in both a strict and casual sense.

The vehicle for discussion in this paper is a case study of an environmental control system
(ECS) that provides many opportunities for the reuse of behaviour within its components.

Elements of the ECS that exhibit common behaviour are identified as targets of reuse and this
behaviour is placed in common shared templates that form classes for the inheriting processes.
A shared process is a template class (parent) process, where many individual (child) processes
all reuse its behaviour; these child processes can in turn be template classes which may then be
inherited from (forming a transitive inheritance hierarchy from the original parent to the latest
generation of child process).

Object-oriented design, with its techniques for classifying objects, aids in the identification of
generic reusable class descriptions which are encoded in CSP as processes.

Three template classes are identified within the ECS. Specialisationé of these template classes
form the next level of child class templates from which the ECS is eventually built. Instantiations

of the child class templates are the actual physical objects within the ECS.

1 The Environmental Control System (ECS) Case Study

This section contains both an informal and formal description of the environmental control system
(ECS). The ECS is itself a prime example of a concurrent communicating system and consequently
is well suited to being formally specified in a process algebra notation, such as CSP.

In this paper we use standard CSP notation [1], plus a few enhancements of our own, to enable
us to formalise the behaviour of the ECS monitored components. Our enhancements provide more
flexibility in specification than are originally afforded by the standard CSP notation (namely in

the areas of both behavioural reuse and modification).




1.1 ECS Informal Description

The ECS maintains safety, security, air quality and heating in a building. A hygrometer controls
water saturation and a thermostat controls temperature. A fan and air conditioner control the air
circulation in the building. An alarm sounds should a problem arise in specific ECS components.
Smoke detectors can also signal an alarm, activate window controls and fire doors and warning
lights are also activated in the event of an alarm being triggered. Finally, movement sensors
control the efficiency of lights in public corridors and act as intruder sensors out-of-hours.
Three class templates (containing common shared behaviour) are identified from which the in-

dividual ECS components (i.e: members of the template class) are derived. These class templates

are SWITCH, VALVE and SENSOR and their children are described as follows:

Templates LightSwitch, WarningLight, Alarm and Fan behave like SWITCH and can
be turned on or off. WarningLight also sends a signal to a control room, external to the
system. Alarm and Fan can also timeout and turn themselves off automatically. Also, Fan

can be turned on or off externally via the environment as well as internally by the system.

Templates AirConditioner, Heater, DoorControl and WindowControl behave like the
template VALVE which can be set to a specific level within a range. VALVE can be opened
or closed within that range. Any attempts to set VALVE out-of-range result in an error
signal being sent from VALVE which activates Alarm. The template AirConditioner has
a gauge denoting internal temperature. Heater displays its current setting and internal
temperature. DoorControl can also be opened and closed via the environment, together

with WindowControl.

Templates SmokeAlarm, Hygrometer and Thermostat behave like SENSOR, reading data
from the environment. Boundary values for high and low readings can be set. A warning
signal occurs on the high or low channels should an appropriate boundary value be broken.
SmokeAlarm can also trigger Alarm, WarningLight, WindowControl (to close) and Door-
Control (to close), as well as incorporating a test button. Hygrometer includes a water

saturation reading and Thermostat registers the air temperature reading.

The components (i.e: child instances) of the three main templates SWITCH, VALVE and SEN-
SOR are joined together to complete the ECS. The diagram in figure 1 shows how the components

are connected together. Note that Hygrometer, Thermostat and SmokeAlarm are the key com-
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Fan Hy AC WC Hy = Hygrometer
AC = Air Conditioner
WC = Window Controlier
e Th = Thermostat

Th Alarm SA SA = Smoke Alarm
DC = Door Controller
He = Heater

He WL LSw LSen | WL = Warning Light

LSw = Light Switch
LSen = Light Sensor

Figure 1: Simple View of the Environmental Control System (ECS).

SWITCH(off) Alarm(off) WarningLight(off) Fan(off)
‘on #on on
off signal
of timeout
off

- Figure 2: Transition Graphs of SWITCH-based ECS Templates

ponents in the ECS as they monitor the environment of the building and regulate the remaining
components of the system. User interaction with the ECS is, of course, permitted (via externally

visible channels—prefixed with ‘e’) but not necessary for the system to function.

1.2 The ECS described in CSP

The CSP language is now used to describe the ECS components. Firstly, each class template is
specified, then the inheriting child class templates of each original parent class template. Reuse
is shown as reference to an existing process definition used as part of a new process definition.
Transition graphs can be drawn to illustrate the behaviour of each derivative of SWITCH
for example. Figure 2 represents the transition graphs for the original template SWITCH and
its children. Each circle represents a state reached after the action on the labelled arc occurs.
Recursion is shown as a state followed by an unlabelled arc representing an invisible transition

back to the initial state of the process, forcing execution to repeat indefinitely.




1.2.1 Abstract Process Signatures

An addition to the language of CSP is proposed which permits the signature of a process to be

parameterised. This parameterisation takes two forms:
1. initial actions
2. subsequent behaviour
We can write an expression to show the general form of an abstract process signature (APS).
fla,...,a,(PY=(ay = P...0a, = P)

The first parameter denotes the initial action or actions of the process ¢, followed by any subse-
quent behaviour P. If more than one initial action is offered then external choice connects the
initial actions, followed by behaviour P.

The offering of multiple subsequent behaviour P, is not available in this model as it remains
unclear how the initial actions a, may be related to P,.

Recursion is defined using the standard recursive definition, found in [1, p.28]

X = FP(X)

pX:AF(X) = FP(uX.F(X))

Applying the recursion law to € we get the following result:

dar, ..., a,)(P) = F(day, .., a,](P))

:ue[al, .t .,(ln]<P> : A‘F(e[al’ o "a"]<P>) =
F(Mf[al, vy an]<P>~F(€[aI> T an]<P)))

The previous expression states that a process with an abstract process signature (APS) can unfold
an infinite number of times, providing the necessary recursion.

An example of recursion using the general case ¢ is now shown:

€lar, ..., 0, (Py = a1 = €[ay, ..., a,(P)...0 a, = €[ay, ..., a,](P)




1.3 Applying Abstract Process Signatures to the ECS

The foundations of the APS theory have now been introduced. The ECS SWITCH class template
can now be defined using CSP incorporating APS theory.

SWITCH[a)(P) = (a — P)
An Alarm reuses and extends the behaviour of a SWITCH. Like so:
Alarm[a](P O Q) = SWITCH[a}(P O Q)

The extra choice of behaviour in the Alarm template is passed as external choice in its behaviour
parameter. Note that in CSP if P and @ are processes then so is (P O @), which meets the
signature requirements for the definition of an abstract process signature. Note also that an Alarm
template is simply a specialisation of a SWITCH template; an example of strict inheritance.

A WarningLight class template requires the insertion of an extra signal action into the inher-

ited behaviour of SWITCH.
WarningLight[a](P) = SWITCH[a]({P)

The signature for WarningLight is the same as for an original SWITCH. The renaming of
SWITCH to WarningLight is performed to aid the readability of the final specification. Upon
instantiation the extra action is inserted that separates SWITCH from WarningLight.

A LightSwitch template is a simple renaming of a standard switch therefore its definition as

this abstract level is as simple as the definition for WarningLighf.
LightSwitch[a](P) = SWITCH[a](P)

The class template for Fan is a further specialisation of an Alarm (see above). If offers a new
initial action, followed by modified subsequent behaviour. Both strict and casual inheritance of

the behaviour of Alarm are present in order to construct Fan.
Fan[a, b]((P O Q) O R) = Alarm[a]((P O Q) O R) O Alarm[b]{(P O Q) O R)
By identifying further behaviour within SWITCH-based templates we can simplify Fan.

3 WaySwitch[a, b, ¢|(P) = SWITCH[a, b, c](P)




|
|
1
A

The signature for Fan reverts to a more simple form provided that an instance of 3WaySwitch is

available at the time of a Fan template instantiation.

3ws = 3WaySwitch[off , eOff , timeout](self)
Fanla,b](P) = (a— POb— P)

Instantiation of each SWITCH-based template can be expressed as follows:

sw = SWITCH[on](off — self)
al = Alarm[on](off — self O timeout — self)
wl = SWITCH[on](signal — off — self)
Is = SWITCH[on](off — self)
fan = Fan[on, eOn](3ws)
Note that self is used to denote recursion in a process definition rather than ‘hard-coding’ the
process name at the end of the action sequence (the current method of defining recursive be-
haviour). Therefore, self defers the naming used in the recursion in order to point the recursion

to the calling process rather than the local ‘owner’ process. For more details of self in relation to

process algebra notation the reader is referred to [2] and [3].

1.4 Further Reuse within the ECS

From the definition of Alarm above the reader can recognise that an instantiation of Alarm is
complex. Alarm can be further simplified by encapsulating its subsequent behaviour into another

shared process template, like 3WaySwitch.
2 WaySwitch[a, b)(P) = SWITCH]|a, b](P)

Now the 3WaySwitch can be redefined, inheriting the behaviour of the 2WaySwitch.
3 WaySwitch[a, b, c](P) = 2 WaySwitch[a, b](P) O SWITCH [c](P)

A transitive link exists from SWITCH to each of its templates with varying degrees of reuse
and complexity. Any component of the ECS that is formed from the behaviour of a SWITCH

template can be built entirely from successive constructions of SWITCH.




{

Alarm and Fan are now redefined using the 2WaySwitch template.

2ws = 2WaySwitch[off , timeout](self)
3ws = 3WaySwitch[off , timeout, eOff](self)
al = Alarm[on](2ws)

fan = Fan[on, eOn](3ws)

With the successive construction of complex components from simple ones the flexibility of the

APS model is apparent.

2 Applying CSP Sequential Composition to the ECS

Using the given notation for CSP, taken from Tony Hoare’s original book [1], we can attempt
similar definition of the ECS. The results however are not flexible enough for casual inheritance
to be attempted elegantly. Further modification of some of the following processes requires more
from the CSP notation than it can originally give, hence the development of the abstract process

signature (APS) notation in the previous sections.

P = (on — Skip)

Q = (off — Skip)
SWITCH, = P; Q
SWITCH

*SWITCH,
Recursion is defined in SWITCH using the following rule, from [1, p.172]:
*P = pX.(PX)=P; P;P; ...,
a(*P) = aP-{v}
To make casual inheritance possible SWITCH is defined as the sequential composition of two
processes. Additions to @ allow new behaviour to be inserted into the centre of SWITCH. If

SWITCH were defined as (on — (off — self)) then no alteration of the events occurring after

the initial on event would be possible, only extra initial events.
Alarm; = P; R
R = (Q O timeout — Skip)

Alarm = *Alarmy




Inheritance in Alarm is the extension to the behaviour offered by the events that occur after the

initial on event.

Fary = S5, T

S = (P O eOn — Skip)

T = (RO eOff — Skip)

Fan = *Fan
1

Transitive inheritance is evident in Fan as the extended behaviour of T uses the already extended

behaviour of R. Therefore, buried within the behaviour of Fan is the behaviour of Alarm and

buried within the behaviour of Alarm is the behaviour of SWITCH.

WarningLight,

WarningLight

P; signal — Skip; @

* WarningLight,

The WarningLight template is created by simply inserting a new action in the sequence of ex-

isting actions for SWITCH. Casual inheritance is identified as being present in WarningLight.

LightSWitch, as defined previously, is a simple copy of a SWITCH template.

3 Alternative Redefinable Process Signatures

The CSP specification of the ECS SWITCH template can also be attempted using different

constructs from the CSP notation and assumptions regarding primed variables. Consider this

second (alternate) strictly CSP specification:
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SWITCH
Q

Alarm

QI

Fan

Q”
WarningLight
QIII

{on, off }

(on = Q)

(off — self)

SWITCH

Q O (timeout — self)
Alarm O (eOn — (Q"))
Q' 0 (eOff — self)
SWITCH

(signal — Q)




LightSwitch = SWITCH

A mathematical treatment of primed variables is assumed. @’ becomes @ immediately after the
expression @' = @). Prime is used to show values before and after an assignment,

Note that the contents of @) are extended to offer more choice of behaviour. The initial event
on must occur first except in the case of Fan where an alternative (external) eOn event is offered,
hence the need to redefine the behaviour of @ as occurs after the initial event. Attempting to
alter () as an internal part of SWITCH would require casual inheritance which is a more complex
procedure and not a formal operation within CSP.

Also note that self is again used to maintain the correct return address after invocation by

an inheriting process.

4 Conclusions

The introduction of abstract process signature theory to CSP has permitted the generalisation of
process specification such that any degree of complexity can be modelled as a set of simplifying
stages. Each stage building upon the work of the former. Inheritance is the key to this reuse.
Casual inheritance begin a more distruptive form of inheritance than strict inheritance due to its
insertion of actions into an existing action sequence which invalidates behavioural compatibility.

Only a subset of the ECS case study was discussed in this paper; namely SWITCH and its
derivatives. However, our restricted look at the behaviour of the ECS gave enough examples of

reuse to highlight the important issues of reuse, inheritance and process definition.
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