TECHNICAL REPORT

COMPUTER SCIENCE

A COMPARISON OF TIMED CSP AND TIME BASIC NETS FOR THE
SPECIFICATION OF TIME CONSTRAINTS

Maria Kutar

Report No 311

May 1998

ABSTRACT

A level crossing case study was specified in timed CSP. The same case study was then
specified using Time Basic Nets. To provide an element of control a second case
study, the secure room, was specified first using Time Basic Nets and then timed CSP.
Neither Timed CSP nor Time Basic Nets were adequate for the specification of the
time constraints contained within the level crossing case study, although both
techniques proved suitable for the specification of the secure room. The report
concludes with a critique of the two techniques, both as ‘ordinary’ specification

languages and in relation to their suitability for the specification of time constraints.

A COMPARISON OF TIMED CSP AND TIME BASIC NETS FOR
THE SPECIFICATION OF TIME CONSTRAINTS

INTRODUCTION

The report is set out as follows:

1 The case studies used. (p2)

2 The timed CSP specifications.(p6)

3 The Time Basic Nets specifications.(p/7)

4 Comparisons and conclusions.(p24)

It is assumed that readers of this report have a basic knowledge of both
Communicating Sequential Processes (CSP) and Petri Nets. This report includes
introductions to the timed extension to CSP(p5) and to Time Basic Nets(pl5),
although it should be noted that the introduction to timed CSP covers only the part of

timed CSP used in this report and is therefore not a comprehensive guide.

1 CASE STUDIES

Two case studies were used in this study of timed CSP and Time Basic Nets (TBN).
Firstly, a level crossing case study [BAI91], originally taken from [GOR87] was
adapted to incorporate several response time constraints. This was specified using
CSP and timed CSP, (a full account of which is available at [KUT97]) and then using
TBN. When the TBN specification was produced it was felt that the previous use of
the case study had distorted the re-analysis. It became difficult to consider the level
crossing case study in terms of the system itself rather than in terms of the CSP
specification and so a second case study, the secure room [SEL96] was specified to

provide an element of control, with the order reversed so that the secure room was

specified first in TBN and then in timed CSP. The basic requirements for each case

study are laid out below.

1.1 THE LEVEL CROSSING

The system described below is a simple level crossing, where a single train or car may
pass through during any one operation of the system. The description and diagram
(Fig. 1) show the system where a train passes from right to left, and a car from top to
bottom. It may be assumed that trains and cars passing in the opposite direction

behave in an identical manner. Fig. 1 shows the layout of the crossing.

CAR

v D RoadLight

ERS1

Gate TSZ _

TRAIN

(—
TrainLight

RS2

CONTROL

Fig. 1

- The driver will approach the TrainLight which should be showing red. As he does so
the train will necessarily pass over the sensor TS1, alerting control that a train is

approaching.

- Control will ensure that the RoadLight is turned to red, the road gates are closed and
the TrainLight turned to green within 4 minutes of the train passing over the sensor
TS1, allowing time for Control to clear the crossing of cars which are counted in and
out of the crossing using the road sensor. The road sensor is the combination of

sensors rs1 and rs2.

- Once the TrainLight has turned to green the driver will proceed through the crossing
and in doing so, the train will pass over the sensors TS2 and TS3. Control will ensure
that, within 5 seconds of the train passing over TS2 the TrainLight will be turned to
red, and that within 1 minute of the train passing over the sensor TS3, the gates are
opened and the RoadLight turned to green.

(N.B. this assumes that the train is assumed to have passed over a sensor when the

whole train has passed over.)

1.2 THE SECURE ROOM

The secure room is a room to which a user may only gain access after he has entered a
valid user id and personal password on the keypad situated next to each entrance to
the room. For valid access codes the door is unlocked for 3 seconds during which time

the user may enter the room. A sample usage scenario would be as follows:

B user enters id on keypad

B user enters personal password on keypad

B system validates user id and password against central database

B for valid access codes, door is unlocked for 3 seconds during which user can enter

B after 3 seconds expire, door is locked again

Other basic scenarios which the system is required to deal with are:

unsuccessful access

abandoned access

break-in detection

(For the purposes of this report database functions of the system such as adding and

removing users are ignored.)

2 TIMED CSP

Timed CSP was selected as a suitable specification technique as it is designed
expressly for use in real-time systems, and therefore should be an ideal language in
which to specify the timed sections of the system. It is a direct extension of the
original CSP [SCH96]. For the level crossing specification the only timed CSP
construct which was used was the timeout, the operation of which is described below.
Readers requiring a more comprehensive introduction to timed CSP are directed to

[DAVY4]

TIMEOUT

The timeout construct, P >’ Q initially behaves as process P. If an event from the
alphabet of P is carried out before time ¢ has elapsed, then the choice is resolved in
favour of P, which will continue to operate whilst Q is discarded. If no event has been
carried out before ¢ has elapsed, then the choice is resolved in favour of Q as the

timeout has occurred. This may be illustrated by the process:

MAKE_CALL =
(call_answered — SPEAK_TO_CALLER) [>30 ABANDON_CALL

where someone making a telephone call is prepared to wait for 30 seconds for the call
to be answered. If the call is answered within this time period the choice is resolved in
favour of the process SPEAK_TO_CALLER. If, however there is no response then

after 30 seconds the timeout will occur and the person will abandon the call.

Timeouts are most commonly used in error detection - if some expected action
does not occur within the given time frame then an exception will occur. Less
commonly, it may be used where the expectation is that the timeout will occur, as is

shown in this fragment from a wedding service:

(speak_now — DISRUPTION) [> | FOREVER_HOLD_PEACE

Here, it is expected that the timeout will occur, but the opportunity to prevent it is
provided. (Example taken from [SCH96])

2.1 SPECIFYING THE LEVEL CROSSING TIME CONSTRAINTS IN TIMED
CSp

The level-crossing case study contains three time constraints which are as follows:

1. The RoadLight must be turned to red, the road gates closed and the
TrainLight turned to green within 4 minutes of sensor ts1 being triggered.
For obvious reasons the events must be carried out in this order.

2. The TrainLight must be turned to red within 5 seconds of sensor ts2 being
triggered.
3. The road gates must be opened and the RoadLight turned to green within 1

minute of the sensor ts3 being triggered.

An initial specification of the level crossing in the ‘untimed’, original form of CSP

was produced. Part of this specification was the process TRAIN, shown below.

TRAIN:
o TRAIN = { trainapproach, trainin, trainout, flipred, ﬂipgreén, wait, ts1, ts2, ts3,

open, close, go_red, gogreen}

TRAIN = (trainapproach — ts1 — go_red — close — flipgreen — trainin

— ts2 — flipred — ts3 — trainout — open — gogreen —TRAIN)

All of the time constraints in the case study can be incorporated into this particular
process but a number of difficulties were encountered. The first time constraint in the
case study indicates that the following events need to occur within four minutes of

sensor ts1 being triggered:

-RoadLight turned tored (go_red)

-road gate closed (close)

-TrainLight turned to green (flipgreen)

This is rather problematic in relation to the timeout operator as the construct may only
be based on a single event being carried out within the given time and our requirement
is that three events take place within this time. There are at least two possible
solutions to this problem. The first solution would be to base the timeout on the
operation of the last of these events. It is a workable solution in that we may assume
that if the TrainLight is turned to green, then the preceding events, namely go_red and
close must have taken place. If they had not the process would not have reached the

point where the TrainLight turns green.

In order to construct the specification around this solution the TRAIN process
must first be split into two processes. This is so that in order for the timeout to be
properly constructed, it is reliant on the first event of the process taking place, in this

case the flipgreen event. The two processes are:

oTRAIN1 = { trainapproach, ts1, go_red, close, v }
oTRAIN2 = { flipgreen, flipred, trainin, trainout, ts2, ts3, open, gogreen }

TRAIN1 = (trainapproach — ts1 — go_red — close — v)
TRAIN2 = (flipgreen — trainin — ts2 — flipred — ts3 — trainout — open

— gogreen — TRAIN1)

TRAIN = TRAIN1 ; TRAIN2

The timeout would then be used to ensure that the flipgreen process occurs within the
specified time, reporting an error if it does not.
(The time units used throughout the timed CSP specifications are such that (num.)s

represents (num.) seconds and (num.)m represents (num.) minutes)

TRAIN2 >4, GO_RED_ERROR

However, this does not specify the problem with a great deal of accuracy. The first
problem is that this actually states that the event flipgreen will occur within 4 minutes
of the final event of TRAIN1 occurring, namely the close event. In addition this will
only report an error if the flipgreen event does not occur. Whilst it is unrealistic to
expect that the failure of any single specified event will be reported as an error it is
reasonable to expect that a number of key events, in this case any of those integral to
the time constraint, will be detected and reported. Using the above solution, if for
example the RoadLight was to turn to red but the gate did not close, then the process
would simply become ‘stuck’ - not proceeding any further. After some consideration
it was decided that this solution was unworkable if the specification was to provide

the basis of a functional system and therefore a different path had to be taken.

A second solution to this problem is to treat this time constraint as three
separate constraints, with the allocated time divided between the three. Again, the
train process needs to be divided into separate processes, and as the remaining time
constraints also require division of the same process, they are incorporated into the
model at this stage. The remaining time constraints are that the TrainLight is turned to
red within five seconds of the sensor ts2 being triggered, and that the gate must be
opened and the RoadLight turned to green within one minute of the sensor ts3 being
triggered. The final time constraint is similar to the first in that it is made up of two
events, and as in the first case, it would be a more useful system if a failure could be
reported for the specific event. For this reason the final time constraint is modelled as

two constraints, with the time divided between the two.

The time constraints were divided thus:

First constraint - that the RoadLight is turned to red, the road gate closed and the

TrainLight turned to green within 4 minutes of ts1 being triggered.

- The RoadLight will be turned to red within two minutes of sensor ts1 being
triggered.

- The road gate will be closed within one minute of the RoadLight being turned to red.

- The TrainLight will be turned to green within one minute of the road gate being

closed.

Final constraint - that the road gate will be opened and the RoadLight turned to green
within one minute of the sensor ts3 being triggered.

- The road gate will be opened within 50 seconds of sensor ts2 being triggered.

- The RoadLight will be turned to green within 10 seconds of the road gate opening.
(As the second time constraint was dependent on only one event it did not need to be

adapted.)

The key events which need to occur within the specified time, to avoid the timeout
from occurring are :

First time constraint : go_red, close, flipgreen

Second time constraint: flipred

Third time constraint : open, gogreen

The train process was divided into these processes:
TRAIN1 = (trainapproach — ts1 — v")

TRAIN2 = (go_red > V')

TRAIN3 = (close — V)

TRAIN4 = (flipgreen — trainin — ts2 — v")
TRAINS = (flipred — ts3 — trainout — v")
TRAING = (open — v)

TRAIN7 = (gogreen — TRAIN1)

The corresponding alphabets for these processes :
oTRAINT1 = { trainapproach, ts1, v' }

oTRAIN2 = { go_red , v'}

oTRAIN3 = { close, v }

oTRAIN4 = { flipgreen, trainin, ts2, v }
oTRAINS = { flipred, ts3, trainout , v}
oTRAING6 = { open, v }

oTRAIN7 = { gogreen }

These processes may then be combined using the sequential composition operator. At
the same time the timeout operator is introduced, showing where the timeouts occur,

and indicating an error should the constraints not be met.

TRAIN = (TRAINI ; TRAIN2 [>,, GO_RED_ERROR ; TRAIN3 [,
CLOSE_ERROR ; TRAIN4 [>, FLIPGREEN_ERROR ; TRAIN5 [>s

FLIPRED_ERROR ; TRAIN6 [>5,, OPEN_ERROR ; TRAIN7 [>
GOGREEN_ERROR)

Obviously the newly included processes which occur when the timeout operator is
triggered must be defined. This is shown in full in [KUT97] but all new ‘error’
processes allow for the system to attempt a single retry of the failed event, and should
this also be unsuccessful an ‘alert’ process is triggered to notify the system operator of
the failure. Control at this stage then passes from the system to the operator and
therefore remains undefined in the specification. An example of the error process is

the GO_RED_ERROR:

GO_RED_ERROR = RETRY_GO_RED [>,,, GO_RED_ALERT .
oRETRY_GO_RED = { go_red } '
RETRY_GO_RED = (go_red — TRAIN3)

Thus if the retry is successful, the relevant TRAIN process is picked up and operation

of the system may continue as normal.

Modelling the time constraints contained in the level crossing system initially
seemed rather cumbersome. Although one of the operators appeared to closely match
the requirements, it was only through adaptation of the case study that a specification
could be produced. Therefore it must be noted that none of the timed operators

allowed specification of the system outlined in the description of the case study.

10

The adaptation of the case study gives a system where the initial time
constraints may still be met, but it has to some extent distorted the system. The first
time constraint was that within four minutes of the depression of sensor ts1, the road
light would be turned to red, the road gates closed and the TrainLight turned to green.
The adaptation ensures that the road light is turned to green within two minutes of the
sensor ts1 being triggered. The road gates will be closed within one minute of the road
light being turned to red and the TrainLight will be turned to green within one minute
of the road gates being closed. Although most operations of the system would
probably execute in accordance with the original requirements, there are a number of
circumstances where operations of the system which would be acceptable under the
requirements would not be accepted by the system specified. This is because we have
had to allocate the time allowed for the three combined events separately for each
event. Under the required system, it is possible, for example, for no events to take
place for the first three minutes and the overall time constraint to still be met. This
would cause at the very least an error to occur in the specified system. The same
problems apply to the final time constraint in the requirements which has had to be

divided into two.

Despite the fact that timed CSP could not be used to specify the original
requirements it is still possible to evaluate the operator that was used. The key role of
the timeout operator is in error detection and this is mirrored in the way that the
specification of the time constraints developed. It is obviously an error if time
constraints integral to the system are not met and the time constraints are critical to the
operation of the system. A level crossing system which might keep cars or trains
waiting for long periods of time is of no use to anyone. A retry is included in order to
make the system more efficient. This in itself showed a shortcoming of CSP.
Although CSP includes a method to restart a process, this restarts the process from its
first event. There is no way of simply retrying a failed event, (without adapting the
processes as we have done above) which would be particularly useful. Thus although
the operator is aimed at use in error detection, the language gives no assistance in
specifying how we might recover from those errors. An operator which provides

assistance in recovery from errors as well as in error detection would be a useful

11

addition. However, it must be said that the timeout operator allows clear specification
of a time constraint based on a single event and allows us to specify, albeit in a rather

roundabout way, what the system should do if an error occurs.

One of the key difficulties encountered when specifying the time constraints
was the problem of incomplete requirements. Whilst the requirements lay out the
required behaviour of the system they do not extend to the requirements of system
behaviour when an error occurs. Because the boundaries of the system are unclear it
was difficult to assess what is required of the system in terms of responding to errors.
It seems clear that the system should not be required to prevent further trains from
approaching the crossing, but it would not be unacceptable to require that it
communicates either with signalling personnel or even with the signalling system. The
‘alert’ processes remained unspecified in this study mainly as a result of incomplete

information about the boundaries of the system.

It would have been possible, by allocating a time to each event, representing
the time it takes to be performed, and running traces on the specification, to prove that
the system meets the time constraints as laid out in the requirements. This route was
not chosen, largely because if it had been there would have been no way of specifying
how the system should act if the constraints are not met. In addition this approach is
rather like working backwards - we may design a system and then prove that it meets
the requirements but this is rather different to constructing a system fo those
requirements. Using this method does not actually model the time constraint in the
same way that the timeout operator does, it merely gives us a system that we can show
works under the conditions imposed. An additional problem with this approach is that
we could only arbitrarily allocate times that each event takes to occur, and these times
would have to include estimated time between the execution of events. This conflicts
with the fundamental assumption in CSP that every event occurs instantaneously - this
approach would then in fact be an estimation of time spent between events and cannot

be considered to be a model of the time constraints.

12

2.2 SPECIFYING THE SECURE ROOM IN TIMED CSP

The specification of the single timing requirement of the secure room in CSP is a
straightforward task. If the room were to be specified as a single CSP process we

would have the following:
oSECURE_ROOM = {enter_id, enter_password, validate, unlock_door, lock_door}

SECURE_ROOM =

(enter_id — enter_password — validate — unlock_door — lock_door —

SECURE_ROOM)

The timing requirement could be added using the timeout. This would require the

process to be separated at the time constraint to give:

SECURE_ROOM1 = (enter_id — enter_password — validate — unlock_door — v")
SECURE_ROOM2 - (lock_door — SECURE_ROOM]1)

An additional process would be required to form the second'part of the timeout, let us

call it simply ALERT and leave it undefined. These processes would then be put
together thus:

SECURE_ROOM = (SECURE_ROOM]1 ; SECURE_ROOM?2 [>3; ALERT)

Timed CSP is a particularly suitable notation for the specification of the secure
room - the timeout operator is perfectly adequate for specification of the timing
requirement. The nature of CSP itself means that it is possible to model the secure
room very concisely, without ambiguity. A simple choice operator would allow

unsuccessful access to be modelled. The nondeterministic nature of the internal choice

13

operator means that external choice would need to be used (external choice is choice
made externally to the system, by the environment). It is debatable whether this would
be an entirely accurate depiction of the reality, although it could be argued that the

choice is essentially made by the user in entering the id and password.

Addition of the requirement that the system may deal with abandoned access
may be achieved through the use of further timeouts, although this will require the
process to be split so that each event requiring action from the user forms the first
event of a process. Break-in detection could be incorporated through the use of a
conditional [HOAS87] which would allow, for example, only three unsuccessful access

attempts before raising the alarm.

Much of this ease of use must be attributed to the fact that the secure room
case study is a particularly straightforward case study. The only time constraints
included are of a single type, namely response time, and this holds true even when

further time constraints are included to incorporate abandoned access.

14

3 TIME BASIC NETS

Time Basic Nets (TBN) is a temporal extension to general Petri Net theory and

involves the following:

B Associating certain relative time values, referred to as fime offsets, with each
transition as its time parameters.

B Time-stamping of tokens for determining the enabling times of transitions.

B Associating an interval of clock times with each transition, giving the permitted, or
the mandatory firing times of transitions. This interval is defined as a function of
time stamps on tokens at input places and time offsets mentioned above.

[NIS97]
3.1 INTRODUCTION TO TIME BASIC NETS

For a full description of TBN readers should see [NIS97]. This introduction
will however give the reader sufficient knowledge to follow the rest of the report. In
TBN tokens are ‘time-stamped’. A time stamp is a record carried by each token of the
firing time of the transition which created it. The allowable firing times of transitions
form the time condition, which is a set of clock times or absolute time values. The
time condition is formed in terms of the time stamps of ifs input places and certain
temporal parameters associated with the transition. The temporal parameters form the
time offsets of the transition and are usually specified as lengths of time, i.e. relative
times. The time offsets are fixed parameters of the transitions and therefore do not

change with time.

A transition is said to be enabled if, and only if, the following hold:

- each input place contains the necessary number of tokens. (This condition is the
same as that in untimed Petri nets)

-there are time values in the time condition which are greater than or equal to the

largest time stamp on the input tokens.

15

The firing period of a transition is defined as the clock time interval whose values are

drawn from the time condition of the transition, but are greater than or equal to its

enabling time.

The execution of transitions follows these rules:

B only enabled transitions may fire. The firing of a given transition must take place
within its firing period.

B As a transition fires, the enabling tuple is removed from the input places. (This is
the same in untimed Petri Nets.)

B Firing of a transition delivers to its outputs the appropriate number of tokens, each
time-stamped with its firing time and according to the arc weight following the
rules of untimed Petri Nets.

M The remaining rules of untimed Petri Nets apply.

EXAMPLE:

If we take the following Petri net fragment:

Out

t1 t2

and put it together with the table below, showing the TBN timing aspects required of

the system we have what is considered to be a timed model of the system.

Transition Time Offsets Input Places Time Condition
t1 tx pl (time(pl), time(pl) + ty)
t2 tx pl (time(pl) + ty)

The table should be read in conjunction with the Petri Net as follows:
Transition t1, whose input place is pl, (and whose token will therefore be time

stamped time (pl)), may fire between the times, time(pl), and time(p1) + t, (this is,

16

therefore, the firing period of transition p1). If this time is exceeded then transition t1

may not fire but transition t2 may, as the condition for t2 to fire is that time is greater

than time(p1) + ty - i.e. satisfies the time condition (time(p1) + ty,).

3.2 TBN AND THE LEVEL CROSSING CASE STUDY

The level crossing case study was not fully specified in TBN as on beginning the
specification it became apparent that the previous analysis of the case study had
influenced the approach taken. However, it is possible to see how TBN could have
been used from parts of the specification. The ‘train’ part of the specification which is
roughly equivalent to the TRAIN process in the CSP specification is shown overleaf.

The level crossing diagram is reproduced below.

CAR

D RoadLight

ERS1

Gate

TRAIN

—
TrainLight

B RS2

CONTROL

Fig. 1

17

TrainLight red ()

/

O ts] ready

/’

train approaches,
triggering ts1

O train waiting to enter crossing

RoadLight red , gate closed &
TrainLight turns to green

ts2 ready O

v

O train is on crossing

ts2 triggered

v train on crossing

O

v

ts3 ready O

TrainLight turns red

l

O train continues over crossing

l

ts3 triggered

l

O train leaves crossing

|

road gate open RoadLight
green

18

This fragment may be read in conjunction with the TBN timing table to give a model

of the timed parts of the system.

Transition Time Offsets Input places Time Condition
RoadLight red, gate t4m train waiting to enter (time(p1), time(p1)+
closed & TrainLight crossing t4m)

turns green (pl)

TrainLight turns red tss train on crossing (p2) (time(p2), time(p2)+
tss)

road gate open & tim train leaves crossing (time(p3), time(p3)+
RoadLight green (p3) tim)

As with timed CSP the time units used are such that (num.)s represents (num.)
seconds and (num.)m represents (num.) minutes. The time offsets used are a simple
representation of the real-time requirement. The input places have been allocated a
symbolic name to allow for easier interpretation of the time condition. The fragment
above does not, however, show the alternative transitions which would need to be
included to allow, for example a retry as in the CSP specification. An example of how

this could be done is shown in this fragment:

O train enters crossing

ts2 triggered

v

O train on crossing

/

retry failed TrainLight TrainLight turns red

19

This may be put in conjunction with the following TBN table:

Transition Time Offsets Input places Time condition
TrainLight turns red tss train on crossing (time (pl), time (p1) +
(D tss)
retry failed TrainLight tss train on crossing
1) (time (p1) + ts; , =)

Therefore if the TrainLight fails to turn red within tss of ts2 being triggered (which is
the input transition to the place ‘train on crossing’, meaning that it is the firing time of
this transition which will be time stamped on the token at ‘train on crossing’), the
transition ‘retry failed TrainLight’ will fire. This could be extended to include a third
potential transition which would alert control to the failure, allocating periods of time

for each retry and the alert.

It would initially appear that the timed sections of the level crossing could be
specified in TBN. However, the ‘train’ fragment above includes transitions which
include more than one single event. Whilst this would appear to be allowed under the
rules of Petri nets [PET81] it does not show the reality of the system in enough detail
to be of any real effect. The level crossing system requires a notation which allows the
specification of the individual events alongside the ability to base a time constraint on

multiple events, and this is not provided for in TBN.

A serious difficulty which was encountered with the use of TBN was the need
to construct the basic Petri Nets with TBN in mind. The level crossing was initially
modelled in ordinary Petri Nets but when it came to introducing the time conditions
much of this had to be remodelled. This was largely due to the fact that the ordinary
Petri Nets had been constructed such that events external to the system, over which
the system has no control, were modelled as places rather than events. For example,
the fragment below required alteration in order to allow a time constraint to be based

on the triggering of sensor ts1.

20

Train approaches

v

RoadLight red O Otsl triggered

& road gate closed

TrainLight turns to green

The nature of the level crossing is such that a train approaching the crossing must
necessarily pass over the sensor tsl and therefore this would appear to be a natural
postcondition of the event ‘train approaches’. However, the time stamp the token
receives is the time of the transition that creates it and therefore this model could not
be used in TBN.

Petri Nets also require the addition of a large degree of artificiality in order
that the places may be modelled as conditions and this does distort the model to a
certain extent. For example, as can be seen from the Petri Net on page 18, the model
now includes places such as ‘ts1 ready’. This is implicit in a model of a system and
the need to explicitly incorporate it results in unnecessary detail being included for no
real purpose. This clutters the Petri Net graph thus reducing .clarity. Whilst the
graphical nature of Petri Nets aids understanding of a straightforward net, there is a
tendency for them to become very cluttered if there is any amount of complexity in the

system modelled and the clarity is lost.

Overall therefore, TBN has not proved to be a particularly useful notation in
the modelling of the level crossing. There was a certain amount of difficulty in
producing a clear and concise model of the system and the time constraints could not
be modelled with any real accuracy. As with CSP it would have been possible to do
this had the constraints been altered to include only a single event each but the

unaltered requirement could not be specified.

21

3.3 TBN AND THE SECURE ROOM

Producing the TBN model of the secure room was a much more straightforward
process than with the level crossing. This must be at least partially attributed to the
fact that the secure room case study is much smaller and more straightforward than the
level crossing, and also to the fact that the initial analysis was made with TBN in
mind. The previous experience of using TBN meant that this Petri Net was
constructed such that the event on which the time constraint was based was included
as a transition rather than a place, thus avoiding the problems encountered with the
level crossing. The Petri Net below shows the secure room without reference to the
requirements regarding abandoned or unsuccessful access and break-in detection.

These are discussed below.

> Q system ready

l

user enters id

O id accepted

user enters password

O password accepted

system validates id & password

O id and password valid

door unlocked

user enters room

door locked

22

The net shows a sample usage scenario for the most straightforward case where an
authorised user gains access to the room. There is only one timing requirement, shown

below.

Transition Time Offsets Input places Time condition

Door locked t3s user enters (time(p1),

room (pl) time(p1)+ts;)

As with the level crossing, additional transitions would be required to show what the
system will do if the time constraint is not met. The inclusion of the additional
requirements similarly requires further transitions. Abandoned access can be catered
for by the inclusion of an additional time constraint at each stage where the system is
dependent on the user, for example where the password is entered. Unsuccessful
access may be included by simply including an extra transition alongside ‘system
validates id & password’ which would allow the system to follow the appropriate

route through the net.

23

4 COMPARISONS & CONCLUSIONS

4.1 AS A GENERAL SPECIFICATION LANGUAGE
4.1.1 CSP

CSP was a straightforward language to learn to use. In addition it appears to force a
thorough analysis of the problem - in order to form the processes each event must be
considered at an early stage and therefore it was harder to forget small details. For
example, the construction of the TRAIN process ensured that events such as the
triggering of the sensors were included. Additionally, any alterations such as the
addition of extra events may be done without too much difficulty as events slot
straight into a process. This is in marked contrast to Petri Nets where the addition of a
single event would entail the inclusion of both extra transitions and extra places, and
quite possibly the adaptation of existing places.

By considering the system as a group of processes the system appears to
naturally fall into a set of subsystems, allowing each component part to be considered
separately. These parts are then quite straightforwardly brought together using the
parallel and sequential operators, giving a model which naturally reflects the system.
There was never the feeling that the system had been distorted in order to fit with the
language, which can happen with other languages. The only initial drawback is that
the non-graphical nature of the language means that a CSP specification is not
accessible to someone with no knowledge of the language. However it would be easy
to translate into a graphical form resembling the Petri Net diagram if necessary.
Although this is not known to be a common approach it would increase the ease of
understanding of a CSP specification for someone with no knowledge of the language.
Tool support is available and the specification is verifiable through the use of traces.

A good specification language not only allows for the intended behaviour of
the system to be clearly laid out, but should encourage a well organised, systematic
software development environment. The specification produced should be precise,
relatively concise, and take the system under development to the stage where
implementation may begin. CSP processes are constructed such that they may be

implemented without alteration (for detail see [HOA85]) and the specification of the

24

level crossing was both unambiguous and concise, containing all the information
needed but nothing more. The experience of CSP when specifying the level crossing
was that it appeared to satisfy all of these criteria. In addition inconsistencies become
apparent at an early stage and changes are easily made where required. Overall CSP is

a very useful language for the production of general specifications.

4.1.2 PETRI NETS

Initially Petri Nets appeared to be a straightforward and logical language to use, being
based on the use of pre- and post-conditions. However, this feature made the language
more difficult to use, and resulted in a certain amount of artificiality having to be
included, as was discussed above (p21). Rather than simply concentrating on the
events in the system a great deal of attention had to be paid to the conditions which
would link them together. Thus even two seemingly straightforward sequential events,
such as the entering of an id followed by the entering of a password in the secure
room, must be separated by a condition. There was a feeling that the Petri Nets
produced did not really reflect the system, which had to a certain extent been distorted
by the need for conditions to be included merely to link the events. This difficulty
extended to the need to include changes - unlike CSP an extra event cannot just be
inserted where necessary - there is the need to both make an extra event fit with
existing conditions and also to introduce new conditions thus increasing the
artificiality of the model. The nature of the language means that it works very well
where the problem can be easily considered in terms of events and pre- and post-
conditions (which parts of the case studies could be) but that it becomes very difficult
to use where the problem is not suited to the language. Obviously this reduces the
range of applications where the language might be considered to be a useful one to use
as most systems are likely to be similar to the level crossing in that whilst parts of the
system may be suited to Petri Nets not the entire system is. Essentially, it would
appear that Petri nets are best used when each event has a visible consequence which
may be modelled as a postcondition which then forms the precondition to the next

event. However where a system is made up of a series of sequential events, where

25

perhaps the only visible consequences occur after several events have occurred then
Petri nets become less suitable.

A second difficulty found with Petri nets was that their graphical nature,
although useful in the reading of a completed specification, had a tendency to quickly
become too complex. This may be overcome to a certain extent through the use of
sub-nets but this in itself makes a specification more difficult to follow. Whilst the
graphical Petri Net may be represented as a four-tuple this further reduces readability

of the specification making the language less accessible.

4.2 SPECIFICATION OF THE TIMED ELEMENTS OF THE SYSTEM
4.2.1 TIMED CSP

As was shown above, timed CSP was not particularly suitable for the specification of
the time constraints in the level crossing system. It was not possible to specify the
constraints in their original form and the result is a system which does not behave
exactly as required. In conclusion, timed CSP cannot be said to have assisted with
specifying the required system. The use of the timeout operator allowed us to model a
similar system to that which was required but there are some additions to the language
which would be particularly useful. These are a timeout operator that can take into
account a group of events and a retry operator that may be applied to a specific
operator.

The use of timed CSP in the secure room case study was much more
successful. The timeout operator allowed the system to be specified without any
alteration to the time constraint and the result is a neat and concise specification. If a
system contains time constraints which are all based on a single event then timed CSP
will allow the system to be specified neatly and, if required, verified through the use

of traces.

26

4.2.2 TBN

The applicability of TBN in the two case studies mirrored that of timed CSP. If a time
constraint is based on a single event or transition then it is a straightforward matter to
include it in the specification. If, however it is based on more than one event as in the
level crossing then it cannot be accurately specified. The Petri Nets shown above have
attempted to get around this by including more than one event in a single transition.
This is not, however a particularly acceptable solution because there is no way to
accurately detect errors if this route is taken and error detection is essential in a real-
time system. One serious difficulty encountered with the use of TBN was that the
initial Petri Net specification needs to be produced with TBN in mind. The initial Petri
Net specification which was produced had to be scrapped and a new one produced
which would allow for inclusion of the time constraints. This is a serious disadvantage
in comparison with timed CSP where the only changes required were the breakdown
of the original CSP processes. Thus whilst an ordinary CSP specification may quite
easily be adapted to incorporate the timed elements of a system, the same is not true

for Petri Nets and TBN.

5.3 COMPARISONS AND FINAL CONCLUSIONS

In terms of their ability to specify time constraints there is little to choose between the
two languages. Both were able to specify the time constraint in the secure room
without any difficulty, but both were unable to deal with the timing requirements of
the level crossing system. This leads to the obvious conclusion that it could be that the
nature of the time constraints contained within the level crossing case study place
unrealistic expectations on the timed elements of a specification language. However,
further research is required to establish whether or not this is the case and the
possibility that the two languages simply contain the same shortcoming cannot be

discounted.

27

As an ‘untimed’ specification language, CSP would appear to be both easier to
use and a superior language in terms of system development and readability. CSP
also confers the advantage that timing requirements may be incorporated into a
specification without difficulty, although this advantage is only beneficial in those
cases where timed CSP is able to handle the timing requirements of the system.
Therefore in final conclusion it seems that if time constraints based on no more than
one event are to be specified CSP would be the better choice of language to use.
Neither language, however, is suitable for the specification of time constraints based

on more than one event.

28

REFERENCES

[BAI91] Baillie, J. A CCS case study: a safety critical system.
Software Engineering Journal 1991 pp159-167

[DAVY4] Davies, J. and Schneider, S. A Brief History of Timed CSP
Programming Research Group Monograph.
Oxford University 1994

[GORB87] Gorski, J. Formal Support for Development of Safety Related Systems
Safety and Reliability Symposium, Altrincham, UK (Elsevier Applied
Sciences)

[HOAS87] Hoare, C.A.R. Communicating Sequential Processes
(Prentice Hall International 1987)

[KUT97] Kutar, M.S. A Study of Communicating Sequential Processes in Relation to
Real-Time Systems MSc Computer Science Project Report
University of Hertfordshire 1997

[NIS97] Nimal, Dr S. Realtime Systems
(Prentice Hall Series in Computer Science 1997)

[PET81] Peterson, J.L. Petri Net Theory and the Modelling of Systems
(Prentice Hall 1981)

[SCH96] Schneider, S. Real-Time Systems - Specification, Verification and Analysis.

(Edited by Mathai Joseph) Prentice Hall International 1996

[SEL96] Selic, B. Real-Time Object-Oriented Modelling

Tutorial 54. Conference on Object-Oriented Programming Systems,

Languages and Applications. (OOPSLA) San Jose, California, October 1996

29

