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We are looking for ‘the right stuff’, i.e. appropriate mathematical and computational
tools/models for describing, studying, building or understanding fundamental aspects of nat-
ural living systems or living systems as-they-could-be (whether carbon-based, digital or other-
wise) as opposed to inanimate systems.

Classical mathematical methods of population genetics tend to set out a fixed space of
possibilities for the evolution of gene frequencies within a population. Unfortunately, by
circumscribing the state-space at the outset, such an approach excludes the possibly of ex-
pressing change in developmental mechanisms or new evolutionary innovations such as body
plans. While differential equation descriptions have proved crucial for understanding physics
and chemistry and aspects of evolution, they seem to have largely failed as an appropriate
language for some key aspects of biological systems. Living systems present special difficulties
for such a mathematical treatment to particular problems of

(1) death, damage, and development,

(2) replication, inheritance and maintenance,

(3) the relationship between genetic information and its realization via expression, and

(4) the origin and evolution of biological complexity in populations of developing individuals.
The search for the right stuff strives to identify aspects special to living systems outside the

scope of classical formal and conceptual tools, that can be treated formally with mathematical
tools or computational models appropriate for natural (and artificial) biology.




Candidate areas where new, appropriate mathematical and computational approaches are
needed include:

e Origins of Life

e Constructive Dynamical Systems

e Genetic Systems

e Algebraic Aspects of Evolutionary Change

e Self-Replicating / Self-Maintaining Systems

e Developmental Models and Evolutionary Change
e Evolution of Individuality

e Units of Evolution

e Body Plans

e Symbiogenesis

e Epigenetic Inheritance

e Modularity in Development

o Evolution and Maintenance of Sex

e Irreversibility in Biosystems and Development
e Algebraic Structure of Landscapes

e Symmetry and Decomposability

e Scaling Laws

o Community Construction
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The terminology concerning sequences (words) is that of [4]. Given an
alphabet B, the free monoid (resp. free semigroup) over B is denoted by B*
(resp. BT). An element of B is a letter (nucleotide or base).We use a four
letter alphabet B = {4,C,G, T} where A,C,G,T are the bases Adenine,
Cytosine, Guanine, Thymine, respectively. An element of B* is a sequence
(word); a sequence of length 3 is a trinucleotide. The empty sequence is
denoted by 1. A subset of B* is a language (or a gene population).

Definition [3]. A language X in B* is a code if for x1,---,@n, 21, 2},
in X an equality
ml...xn _—_mll-..m;n
impliesn =m and z; =z}, i =1,2,...,n.
Definition [3]. A language X in B* isa circular codeiffor zy,...,zn,2},...,

z!, in X, p € B* and s € Bt, the equalities
S0p+ Tap = -2l @1 =ps
implyn=m, p=1land z; =2}, i =1,2---,n.

The theoretical biology team of Didier Arqués of University of Marne-la-
Vallée has recently discovered an interesting partition of the 64 trinucleotides
in three classes Ty, 71 and T5:




To = {AAA, AAC, AAT, ACC, ATC, ATT,CAG,CTC,CTG,GAA,
GAC,GAG,GAT,GCC,GGC,GGT,GTA,GTC,GTT, TAC, TTC,TTT},

T, = {AAG,ACA, ACG, ACT,AGC, AGG, AT A, ATG,CCA,CCC,
CCG,GCG,GTG, TAG, TCA, TCC,TCG, TCT, TGC,TTA, TTG},

Ty = {AGA,AGT,CAA,CAC,CAT,CCT,CGA,CGC,CGG,CGT,
CTA,CTT,GCA,GCT,GGA,GGG, TAA, TAT, TGA, TGG, TGT}.

Let Xy = 1 — {AAA,TTT},Xl =T —{CCC}, Xy =Ty — {GGG}.
Then each of the sets Xy, X1, Xs contains 20 trinucleotides and has the
remarkable properties of complementarity and circularity (see [1, 2]).

Moreover,

Theorem [1, 2]. The sets Xo, X1, X2 are mazimal circular codes.

The purpose of this talk is to provide some information about those
maximal circular codes that can be of interest in the study of the DNA and -
to present the progress that has been made in collaboration with D. Arqués
on the preparation of the program of the automatic research of the genes in
the genome.
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Evolution and development are preeminently multilevel processes, in which various entities
can be recognized at different space as well as time scales. It is conceptually, mathemat-
ically and computationally convenient to treat such multilevel processes as hierarchical
processes, which by separating time scales and/or space scales can be studied one hierar-
chical level at the time. Other levels then define the prerequisites and/or constraints on
the behavior of the level. under consideration, or the interactions (e.g. conflicts) between
various independently defined levels is studied.

In this way ecological and evolutionary dynamics is mostly studied separately, and sepa-
rately from e.g. genetic coding and from development.

We will argue that such approaches may ’miss the right stuff’. Instead we need to view
these processes as 'tangled hierarchies’ with overlapping and mutually defining space-time
dynamics at several scales. Failing to do so may result in pseudo problems and/or pseudo
solutions.

Two lines of research will be reviewed which demonstrate this position.

The first line is concerned with eco-evolutionary processes. Even in the most simple case
of Predator-Prey interactions, we have shown that ecological and evolutionary time-scales
interlock (van der Laan and Hogeweg 1995). In fact the ecological time-scale would be an
order of magnitude larger when the evolutionary processes would be ignored (parameters
held constant). Moreover, such an interlocked eco-evolutionary process throws new light on
long studied ecological as well as evolutionary problems. With respect to ecology we show
that stability of a relatively diverse ecosystem ismaintained by the evolutionary process.
With respect to evolution we show that the much debated issue of sympatric speciation
occurs easily in such an eco-evolutionary system. Further entanglements occur when such
eco-evolutionary processes are studied in space. Savill and Hogeweg (1997) showed that
the dynamics of spatial patterns and patterns in phenotype space mutually determine each
other.

In these studies genetic coding was fixed, and genotype phenotype mapping were left out
of consideration. If we do take genetic coding into consideration, and allow the system
to ’choose’ its coding scheme (as is e.g. the case in Genetic programming) - the choice of
coding scheme (i.e. the definition of genotype space) depends strongly on ecological and
spatial processes (Pagie and Hogeweg 1998). Evolvability in locally interacting systems is
improved and an interesting trade-off is found between generalisability (i.e. robustness to
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environmental changes) and mutational stability (i.e. phenotypic robustness to genotypic
change): local interactions lead robustness to environmental change, but sensitivity of
genotypic change, while for global interactions it is the other way around. (see also Huynen
and Hogeweg 1994) Moreover,we have demonstrated long term information integration in
this system. This renders many 'what is this good for’ questions examined on a single time
scale meaningless.

The second line of research tries to exploit the entangled hierarchies as a research tool.
We show that instead of being a nuisance, it can in fact help is to focus on interesting
systems. In particular we propose to use evolutionary processes and the type of ’solution’
it chooses when confronted with a very general problems for which many solutions exist,
to map entanglements between levels. (see also Hogeweg 1998, for further discussion of
this approach and some examples). Here we examine work in progress on development as
an entangled multilevel process involving intra-cellular processes (gene-regulation leading
to differential expression patterns) inter-cellular processes (cell sorting and morphogenesis
through differential adhesion and/or chemotaxis) and the evolution thereof. We show an
amazing morphogenetic versatility in such systems when as an fitness criterion simply
'number of cell types’ is used.

Figure 1 gives an example of the development of an evolved creature. Striking is the pseudo
isomorphic outgrowth of the creature. Cell differentiation is initiated by one 'maternal’
signal at the first cell division, and remains fully reversable. This reversability appears to
stabilise the morphogenesis. The shape changes are triggered by cell death which occurs
due to differential adhesion (cells are squeezed to death). The first 7 cell divisions are
preprogrammed and occur simultaneously for all cells. Later cell divisions are triggered
by stretching due to differential adhesion and cell death. Both cell division and cell death
occur throughout the development (see upper curve of number of cells plot; the lower
curve shows the number of cells of the same creature when later cell divisions are blocked:
in that case mophogeneisis is reversed due to cell loss, see lowest figure). Only through
evolution, the feasability of such an orchestrated development based on the simple process
of differential adhesion can be demonstrated.

Finally, we will note that only in the light of entangled hierarchies, which arise automat-

ically when no priori separations are imposed, we can pose the interesting evolutionary
question if and how disentangling can take place in evolution.
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Figure 1: Morphogenesis of an evolved creature.
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Biological systems certainly belong to the most successful complex systems known in na-
ture. While each of their parts has a finite life duration and functions under quite restrictive
constraints, the whole system exhibits an outstanding stability concerning a large amount of
qualitatively as well as quantitatively different and disperse environmental conditions. This
stability has at most two interrelated aspects. One is that, obviously, during their development
the conditions have been maintained being necessary for the survival of the system. The second
one concerns stability in terms of functional reliability: Biological systems appear to have the
capability to systematically construct sufficiently good solutions not to only a single, but to a
set of problems under a wide range of constraints. Today the question about the functional
structures providing this kind of stability remains unanswered within a mathematical as well
as in a technical framework.

Thus, being concerned with the structural features of biological systems and their related
functional capabilities, the question arises about an appropiate mathematical framework. Ob-
viously, biological systems are finite sets of interacting elements. Thereby, the elaboration of
the structure and the function of a biological system are closely linked by the various modes of
interactions between its components: While a particular structure determines the functional
capabilities of a system, it evolves due to the embedding in its environment. Thus, interac-
tion between its various subsystems plays a fundamental role concerning the structural and
functional development of a biological system interrelating its structural organization with its
functional capabilities. Accordingly, finiteness, discreteness, and interaction constitute very
fundamental and general features of biological systems. These features provide the basis for
the approach to be proposed in the following.

Biological systems as structured sets

The aim of the following is to show that the algebraic approach to be proposed is very
natural as a fundamental concept and allows for investigating the interdependence of structural
features and functional capabilities of biological systems.

Concerning mathematical formalization, it is convinient to start by considering a most
simple but non-trivial setting of the problem which may provide a clear basis for further
investigation. Thus, for simplicity, let us consider a (biological) system M and regard it as a
finite set M = {my,...,mn}, N < 00, of identical elements m;, which may be molecules, cells,
organismic parts, or individuals. The structure of the system then is represented by the set of




all permutations that leave this set invariant. Together with the usual composition law, this
set constitutes a group which synonymously is called the symmetry group of M or the structure
of this set. Thus, we represent a biological system as the structured set (M, G) with G acting
on M in a natural way by g(mi,...,my) := (mg-1(1),- -, Mg-1(xy). G can be thought of
representing the morphology of the system. In fact, G can be represented as the adjacency
matrix of a graph displaying the various mechanistical realizations of the interactions within
the system. The spirit of this approach can be regarded as refering back to the work of H.
Weyl [10]

In order to represent the functional properties of the system, consider the set of all the
local states X; of m;, thereby specifying this element in terms of all of its possible states, and
let X = Hf\;l X; be the set of state of the entire system M. Accordingly, interaction within M
is viewed as a mapping ¢ : X — X where X; := ¢;(X) is the state of the element m; subject
to the systemic interactions within M. We may therefore identify ¢ with the set of systemic
interactions in the system. Since we restricted ourselves to identical elements only, we have
¢; = ¢; for all ¢,j. We may further divide ¢; into two parts, i.e. ¢; = f; + C; where f; is
the restriction of ¢; to X;, i.e. f; : X; — X; thus representing the autonomous behaviour
of the system m;, while C; : X — X; describes the effect of the whole system to the state
of m;. Often, C; displays a pairwise coupling of elements in the system. In this particular
case, Ci(x) := X7 cij(wi, ), where the term c;j(x;, ;) means the influence of m; to m,.
Consequently, a biological system can be represented as a tupel (X, ¢) where ¢ is an operation
on the global state space X representing the interaction within the system. If we consider
pairwise interaction only, ¢ has to undestood as the set of binary operations {C;}. This case
often is met in a system of pairwisely interacting chemical elements and seems to be natural
when regarding interaction concerning population dynamics, for example.

Note, that until now, we have obtained two different aspects: One is to regard the system
as a tupel (M, G), where M is the set of its elements and G is its global symmetry group
acting by gm = (mg-1(1),...,Mg-1(y)). The other one is to represent the biological system
by its state set X on which the function ¢ operates displaying the interaction between the
elements m;. A very natural way for joining these two aspects together is to consider a bi-
ological system as a tupel (X, G) consisting of state set X with the group G acting on it by
92 = (Tg-1(1), - - -, Tg-1(N)), thus regarding X as a G—space. The interaction represented by
the mapping ¢ must be due to the global structure of the system, thus fulfilling gé(z) = ¢(gz)
for all z € X and g € G. Such a mapping is called G-equivariant or a G—morphism. Ac-
cordingly, we describe a biological system an element of the category of G— sets (X, G) and
G—morphisms ¢ : X = X on it. This approach can be extended to additionally include sym-
metries of the sets of local states X; by considering the wreath product of the local and the
global symmetries of the system involved in the interaction of the system. For details see [3]
and for further group theoretical material, for example, [6].

Decomposition and factorization
Considering a biological systems as a structured set (X, G), we can easily define a (semi-
)dynamical system ¢ on X by defining ¢***(z) = ¢® o p*(2), t,s € N, Z, or R, subject to the

initial condition ¢%(z) = z for all z € X [2]. The resulting structure of the system depends
on the properties of ¢, of course. In particular, if ¢ is equivariant only according to a proper
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subgroup H of G, hy(z) = p(hz) for all h € H, the effect of the mapping is due to break the
symmetry G of the system down ¢. This can be regarded as one aspect of the decomposition
of a given system into various functionally distinguishable subsystems. A large amount of
phenomena concerning pattern formation, in the temporal as well as in the spatial domain,
seem to be due to such kind of symmetry breaking. Analysis of continuous dynamical systems
was carried out by M. Golubitski, D. Schaeffer, I. Stewart, and others, for example [4], and has
been related to dynamical phenomena in biological systems, including the coupling of cells,
pattern formation, and the gaits of animals [1].

In the following, we consider a different aspect of decompostion, whose spitit is substantially
algebraic and appears to be natural within the framework sketched above. Suppose that we
consider a system (X, @) with an interaction given by ¢ : X — X transforming a set of signals
Z C X into a set Z' C X, Z and Z’' both having the symmetry group H < G. According to
above, the system must be equivariant with respect to H fulfilling h¢(z) = ¢(hz) forall z € Z
and all A € H. Thus, we regard the system as the G—set (X, G) with ¢, restricted to Z, being
an H—morphism with range Z'. [8]. The question is: Can we find a decomposition of the
system M into two parts, M; and Ma, such that the composition of these two parts realize the
same operation as the whole ensemble? One suggests that it may be possible to find smaller
ensembles M; and Ms such that the whole problem is reduced according to the symmetry of
the set Z. It will turn out that one can, in fact, find a finite number of equivalent solutions of
this problem. The argument is standard within universal algebra [7]. According to our setting,
we know that the system operates as a H—morphism ¢ on the set Z. We further identify all
signals z that are identical with respect to the functioning of the system, i.e. z = 2/(mod () if
and only if ¢(2) = @(2). This defines a congruence relation on Z which may be denoted by p,,.
It is known that the image of the set Z under the action of ¢ is an H—invariant subspace of
X' that is H—isomorphic to the set of these congruence classes, Z/p,. Accordingly, ¢ may be
factorized into a projection ¢y : Z —+ Z/p, and an injective mapping @3 : Z/p, — Z', defined
by p, — ¢(2) such that ¢(z) = g 0 ¢1(2z) for all signals z € Z. Thus we can regard (M, p1)
and (Ma, o) as a decomposition of the system M. Note that this decomposition is unique only
up to an isomorphism. For a related treatment of artificial networks and the question about
the minimal size of the partial ensembles concerning the auto-associator problem see [9].

In summary:

Due to its inherent discreteness (and finiteness), we started by regarding each biological
system as a finite set M of elements m;. Moreover, due to the systemic interactions in M we
proceeded to regard a biological system as an algebraic object (X, G) where X is the set of its
global states and G is its symmetry group together with a G— equivariant mapping ¢ represent-
ing the interaction in M according to the global symmetry of the system G. Thus, the category
of G— sets and G—morphisms naturally arises from basic features of biological systems. The
time-evolution of a biological system is represented as the its trajectory of a dynamical system
(X, ) defined on the (discrete) structered set (X, @) and to study its dynamics with respect to
this algebraic structure. Thereby, the trajectory of the system will have a symmetry reflecting
the properties of the ¢ corresponding to the global symmetry of the system G. The symmetry
breaking effect of ¢ thus leads to a decomposition of the whole system into parts which are
defined according to the resulting symmetry of the system. An other aspect of decomposition




concerns the question of whether one can find subsystems of an ensemble such that their com-
position preserves the function of the entire system. Within the algebraic framework proposed,
the answer to this question is closely related to the factorization of the mapping representing
the functioning of the entire systems into two mappings each representing the functioning of
its subsystems. Factorization is a common tool within universal algebra and provides a large
amount of deep insights into the structure of the algebraic situation considered. Thus, roughly
speaking, an algebraic approach seems to be natural with respect to very fundamental features
of biological system as considered above and, in particular, serves as a powerfull mathematical
conception for describing and discussing the structure of biological systems. Additionally, even
from a conceptual point of view, algebra seems to provide a very natural tool for investigating
biological systems in that algebra is constructive in nature in that it studies the formation of
larger structures (groups, rings, ..., vectorspaces) and their corresponding properties as being
established by composition rules from more elementary objects. Thus, by being locally vage
but globally rigid [5], algebra may provide a conceptual and methodological frame to investi-
gate the properties of large systems constituted by a number of elementary interaction modes
of its components.
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Abstract

Evolutionary systems may often be accurately modelled by
Markov processes. However the state space invariably
turns out to be vast and multi-dimensional, thus limiting
the application of Markov theory to broad abstraction rather
than specific problems. One notable exception is the
analysis of error thresholds in finite populations by (Nowak
& Schuster 1989), where a (seemingly unjustifiable)
approximation is made to “collapse” the state space,
reducing the problem to an analytically tractable form. In
this paper we outline Nowak and Schuster’s analysis and
discuss the methodology of their approach.

Error thresholds for Finite Populations

(Nowak & Schuster 1989) investigated the extension of
established results from “quasispecies” theory (Eigen et.
al. 1989) on error thresholds for infinite populations to
finite populations. The basic problem is as follows: we are
given a “single spike” fitness landscape of binary
genotypes of sequence length v. All genotypes have fitness
1 except for the genotype conmsisting of all zero’s (the
master genotype or optimum), which has fitness ¢ > 1.
Genotypes Hamming distance o from the optimum are
said to belong to the error class I, - the I'j for o > 1

constitute the error tail.

Consider a fixed-size population of N genotypes
evolving via fitness-proportional selection! and mutation
at a per-locus rate of @ (0 < pu < Y%). There is no
recombination. The observed long-term behaviour of such
a system is as follows: at low mutation rates the population
clusters around the optimum (Fig 1a). At higher mutation
rates more genotypes are to be found at a small
(Hamming) distance from the optimum (Fig 1b). Beyond a
critical mutation rate, the error threshold, the population
“loses” the optimum altogether and drifts randomly

1 The exact selection algorithm in effect does not alter the qualitative
phenomena; thus selection may be roulette-wheel, tournament, etc. as long as
the expected number of offspring of a genotype is proportional to its fitness,
The algorithm may, in addition, be discrete or continuous time.

|5

around the landscape2 (Fig 1c). In the infinite population
limit the error threshold may be calculated from
quasispecies theory using perturbation methods (Eigen et
al. 1989). For finite populations the error threshold is less
easy to define, let alone calculate. Nevertheless, there is
still a sharp transition between long-term behaviours in
the sense that the transition (for reasonably long sequence
length v) occurs within a very small range of mutation
rates.

To analyse the transition we must examine the
distribution (over time) of the number of optimum

genotypes, T, = P()A( =1i), where the random variable X

represents the number of optimum genotypes in the long
term. (Nowak & Schuster 1989) found that at low
mutation rates the distribution peaks at some characteristic
value of i (Fig 2a). At high mutation rates the distribution
decreases monotonically from i = 0 (Fig 2c¢). At
intermediate mutation rates the distribution develops a
second peak at i = 0 (Fig 2b). The authors then define the
error threshold to be that value of w at which the
distribution changes from monotone decreasing to one
with a peak ati > 0.

Now it is apparent that we could calculate the
distribution 7, if it were true that the random variables

X(t) representing the number of optimum genotypes at
(discrete or continuous) time t constituted a Markov
process. The distribution w; would then be simply the

stationary distribution of the process (Karlin & Taylor
1975). However it is clear that the Markov property does
not hold, for the following reason: while the probability
that a genotype be selected for replication depends only on
whether it is of the optimum type or in the error tail, the
probability that a genotype in the error tail “back-mutates”
to the optimum type depends, in

2 This implies that the distribution of number of genotypes among the error
—v(V
classes is binomial, as the a'th error class occupies a fraction 2 v (Ot) of

the landscape; cf. Fig 1c.
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addition, on how many 1’s it has; i.e. its error class.
Nowak and Schuster address this issue by making what
on the face of it is an unjustifiable assumption: that the
distribution of genotypes is uniform in the error tail.
Under this assumption both selection and mutation
probabilities depend only on the number of optimum
genotypes and the Markov property holds. The authors
then carry through the Markov analysis for a particular
evolutionary algorithm [a continuous birth-death model
from population genetics - see (Moran 1958)] for which
the stationary distribution is explicitly solvable, thus
arriving at what turns out to be a very accurate estimate
for the error threshold.

So why should this scheme work at all? It is clear from
Figs. la and 1b that the assumption of a uniform
distribution of genotypes in the error tail is manifestly
false. A point apparently missed by the authors, though,
is that at high mutation rates, when the optimum is
“lost”, the uniform distribution assumption is actually
quite sound, as is evidenced by Fig. 1c. This may explain
the accuracy of their result to some degree; as long as the
error threshold is approached “from above” the
assumption holds good. Another point worth noting is
that for reasonably long sequence length v the probability
of back-mutation from the error tail to the optimum
becomes small (of the order of 27"), even for genotypes
a small Hamming distance from the optimum. Then
ignoring back mutation entirely is a reasonable
approximation and the Markov property holds without
any further assumptions.

Another possible approach might be as follows: it is
possible to calculate (numerically at least) the
distribution of genotypes in the infinite population limit
(van Nimwegen et. al. 1997). This limiting distribution
is quite a good approximation to the finite population
case for reasonably large populations, although it is not
clear what “reasonably” large might mean. Thus, rather
than assuming a uniform distribution of genotypes in the
error tail we could assume instead the infinite population
limit. Preliminary tests by this author suggest that this
can give a significantly more accurate approximation to
the stationary distribution of the optimum than the cruder
uniform distribution assumption, particularly near the
error threshold .

Methodological Issues

It is worth examining how the procedure outlined above
tackles the issue of state space size and dimension. The
full state space for the problem of a fixed-size population
of size N evolving on a fitness landscape is the set of all
possible populations. A population is naturally identified
with an integer vector n=(n,) indexed by all possible

genotypes g, where n, represents the number of copies of

genotype g in the population. The n, must satisfy

g

n, 20 Vgand an =N. The state space is thus vast
g

and multi-dimensional; if sequence length is v then the

vV+N
cardinality of the state space is ( N )which is of the

order of NV for N >>v. The crucial point is that if all
we are interested in is the error threshold, the only
quantity we need to know is the stationary probability
distribution of the frequency of optimum genotypes. Now
since the single-spike landscape is “isotropic” with
respect to the optimum genotype we can immediately
“collapse” the state space into the frequencies of
genotypes in the error classes without losing either the
Markov property or the quantity we wish to measure.
This is possible because mutation and selection
probabilities (and hence the transition probabilities of the
Markov process) depend only on error class. Thus our
state space may be immediately reduced to the set of
vectors n=(n,) indexed now by the error classes o. [If

recombination were present this would no longer be true
- see below.] Note that thus lose all information as to the
distribution of genotypes within error classes - but we do
not need this information for the problem at hand! The
state space is then reduced still further by (cautious)
approximation to an analytically tractable 1-dimensional
space. :

Another point that may be overlooked in the quest for
quantitative results is that even if various approximations
introduce quantitative inaccuracies (as they do to some
degree in Nowak and Schuster’s analysis), the qualitative
picture may still hold up. Thus valuable insights may be
gained into the dynamical behaviour of an evolutionary
system by the introduction of simplifying assumptions;
this is certainly the case for Nowak and Schuster’s
analysis of error thresholds.

As a further case in point this author [in preparation]
has extended Nowak and Schuster’s analysis to include
recombination, revealing a rich and often surprising
range of dynamics. This necessitated the introduction of
further (quantitatively unjustifiable) assumptions,
specifically because the Markov property does not hold
even for recombination within error classes. Comparing
analytical results with simulations, however, reveals that
the approximation retains almost all qualitative features
of interest.

Finally, it would seem to be feasible to extend these
principles to the analysis of evolution on more complex
landscapes, particularly if they feature analogues of the
error classes. A comparable approach (although not for




the purposes of Markov analysis) can be found in (van
Nimwegen et. al. 1997).

Thus we might define a partition {I',loeA}of a

fitness landscape with fitness function f(g) and
(stochastic) mutation operator M, to be a Markov
Partition if it satisfies:

VoaeA, Vg, g'el',V, BeAand Vu (0<pu<0.5):
MP1 f(g') =1(g)
MP2  P(M,(g)eT})=P(M,(g)eT})

The quantities:

f,=1f(g) forsome geT,
and:
MW =PM (g)el’, | gel}p)

are then well-defined. An evolutionary process may then
be considered as a Markov process on the state space of
all integer vectors mn=(n,)withny, 20 Voo (and

Zna =N for fixed population size N), the transition
o
probabilities being determined (for the particular
evolutionary algorithm employed) by the f, and Mgg(W).
The coarsest such partition yields the smallest and
most manageable state space. If possible, depending on
specific features of the fitness landscape, a coarser
partition might be found by relaxing conditions MP1
and/or MP2 to hold approximately. A further condition
to cover recombination could also be defined, although it
seems doubtful that useful partitions could be found
which would respect such a condition exactly.
MP1 corresponds to the statement that the I, are

neutral subsets (Barnett 1998) of the fitness landscape. A
particular case of interest is where they constitute the
neutral networks (Forst et. al. 1995, Huynen et. al. 1996,
Barnett 1989) of the landscape i.e. maximal connected
neutral subsets. In particular, when the neutral networks
“percolate” the landscape (Forst er. al. 1995) it seems
reasonable that MP2 might be expected to hold to some
approximation.
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Introduction

One of the attractions of Artificial Neural Networks (ANNs) has been the possibility of designing
intelligent systems capable of optimising their functionality according to application requirements.

Adapting the architecture of an ANN (number of neurons, neuron function and connectivity pattern) to
a given application can be viewed as a combinatorial optimisation problem. For sophisticated
applications, the problem tends to be high-dimensional and highly nonlinear. Direct applications of
current combinatorial optimisation methods to such problems tend to be unacceptably inefficient.

To date, research in self-adapting ANNs has been limited to the design of unsupervised learning
algorithms, and the use of algorithmic (generative) techniques to “grow’ or “prune' neurons and their
connections. Unsupervised learning, and generative algorithms both make strong assumptions about the
ANN architecture and the characteristics of the target application domain.

To alleviate these restrictions, a number of researchers have exploited evolutionary methods to design
adaptive generative algorithms. The generative algorithm is encoded in a genome. Its execution (the
mapping from genotype to phenotype) mimics embryonic development. Current implementations of
this approach limit the architectural search space through apriori assumptions and algorithmic
restrictions. However, restricting the range of genotype-phenotype mappings can hinder rather than
help the optimisation process: non optimal mappings result in more nonlinear search spaces which are
more difficult to search. We argue that it is possible to evolve unconstrained optimal mappings through
the use of two strategies:

1) Cellular (neuron) characteristics should be defined in terms of interacting molecular processes.
These molecular interactions result in nonlinear genotype-phenotype mappings. Their evolutionary
optimisation reduces the degree of nonlinearity in the genotype search space and simplifies the
optimisation process.

2) Evolution should be staged, mimicking the process of speciation. Specifically, evolution should
start with the simplest set of generative rules, search for the best achievable, then add new (more
sophisticated) rules (mimicking the emergence of a new species), and search again; repeating this
procedure until satisfactory phenotypes emerge.

We are currently investigating ways of exploiting these strategies to robustly evolve large scale ANNS,
and present simulation results demonstrating molecular, staged evolution of a simple edge detecting
retina.

Methodology

Our strategy is based on a molecular model of the evolution of embryonic development (see figures 1
& 2 for a schematic overview) with the following characteristics:

1) Neurons are modelled as cells. Each distinct cell type is defined by the interactions of a specific
subset of genes within the genome.

2) The genome, and the evolutionary operators mutation and cross-over, are defined at the molecular
level (i.e. a much finer level of detail than cell characteristics such as receptive field size).
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3)

4)

5)

6)

7

8)

9)

The translation from genetic encoding to neural network (genotype to phenotype mapping) is
performed using sequences of operations defined by individual genes. These operations mimic
gene regulation (the sequential activation and interaction of genes) and embryonic development in
biological systems.

Although cells of the same type (ensembles of neurons) share the same genetic description,
individual neurons within an ensemble may differ from each other if differences in cell-cell or cell-
environment interactions lead to different developmental histories.

Hierarchic network structures can be defined with nested loops of gene interactions. Thus, similar
cells in different parts of a network may utilise common segments of the genome to define the
parts they have in common.

A gene (more accurately a gene product) has two functional aspects: the definition of what it will
interact with, and the definition of the nature of its interactions' (affinity and type respectively).

The genome is defined as a (variable) number of distinct chromosomes each comprising a set of
genes which may, in principle, interact with each other. During cross-over only alike chromosomes
can exchange parts.

The neural system is evolved gradually and in stages corresponding to evolution within species
and the emergence of new species.

Speciation is achieved by allowing the size of the genome to vary through gene duplications and
deletions.

10) Evolution starts by using only the simplest of developmental programs. For instance, neuron

connectivity is specified using only intrinsic growth rules. When this type of genome is deemed to
have been adequately optimised, additional genes describing potentially more powerful
developmental processes are added to the genome and a new cycle of evolutionary optimisation
starts.

11) No information other than the performance of the evolved networks is used to guide the

evolutionary process.

! In biological systems, a single gene product (a polypeptide) also has two aspects. Firstly, it will only -
interact with specific other gene products. Affinity is defined by molecular characteristics such as
geometric shape, distribution and type of electrostatic and covalent bonds, and the presence of
particular metallic ions such as copper or zinc at particular locations. Secondly, these charactersitics
also combine to determine how a polypeptide interacts with other molecules. For instance, a gene
product may act exclusively as a catalyst (an enzyme), or it may form a chemical product with
another molecule (e.g. in signal transduction), or it may be involved in a physical/mechanical
interaction with other molecules and form a structural part of a cell (e.g. an ion channel, or part of a
lipid bilayer).
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PATTERN FORMATION BY LATERAL INHIBITION
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Abstract

In many developing tissues, adjacent cells diverge in character so as
to create a fine-grained pattern of cells in contrasting states of differ-
entiation. It has been proposed that such patterns can be generated
through lateral inhibition - a type of cell-cell interaction whereby a cell
that adopts-a particular fate inhibits its immediate neighbours from
doing likewise. Lateral inhibition is well documented in flies, worms
and vertebrates. In all of these organisms, the transmembrane pro-
teins Notch and Delta (or their homologues) have been identified as
mediators of the interaction - Notch as receptor, Delta as its ligand on
adjacent cells. However, it is not clear under precisely what conditions
the Delta-Notch mechanism of lateral inhibition can generate the ob-
served types of pattern, or indeed whether this mechanism is capable
of generating such patterns by itself. Here we construct and analyse a
simple and general mathematical model of such contact-mediated lat-
eral inhibition. In accordance with experimental data, the model pos-
tulates that receipt of inhibition (i.e. activation of Notch) diminishes
the ability to deliver inhibition (i.e. to produce active Delta). This
gives rise to a feedback loop that can amplify differences between adja-
cent cells. We investigate the pattern-forming potential and temporal
behaviour of this model both analytically and through numerical sim-
ulation. Inhomogeneities are self-amplifying and develop without need
of any other machinery, provided the feedback is sufficiently strong. For
a wide range of initial and boundary conditions, the model generates
fine-grained patterns similar to those observed in living systems.
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1 Introduction

Perhaps one of the few features shared by most artificial life approaches is that a phenomenon
observed in biological life is studied by constructing a bottom-up model, in which a number
of low-level components and interactions are explicitly encoded, and one or more higher-level
phenomena are expected to emerge. While this is a perfectly valid approach, one has to be
careful about how the model is constructed if it is to bring any scientific insight to bear on the
phenomenon in question. Too many (but not all) studies of artificial life (my own included)
have adopted a sloppy approach in the past, and this has meant that the field of artificial life
has not contributed as much as it might have done to broader areas of scientific knowledge.

This paper highlights some areas of general methodology which should be carefully considered
when designing a bottom-up simulation for scientific experimentation, and also suggests some
considerations that are specifically relevant to A-life models designed to investigate the evolution
of life. This is not, of course, the first time that concerns have been raised about the methodology
of A-life, and very little is said here that has not been said before (see, for example, [4], [1], [5]).
However, I believe that much current A-life work still suffers from poor methodology, and that
it is therefore important to stress such issues at every available opportunity.

2 General Considerations

2.1 Explicit Assumptions and Predictions

The bottom-up approach to studying high-level phenomena is of scientific value only to the
extent that the investigator has (a) made explicit exactly what high-level phenomenon he/she
is trying to explain or investigate, and (b) explicitly enumerated a list of low-level phenomena,
(components and interactions) that he/she believes are necessary and sufficient to explain the
high-level phenomenon.

If the assumptions and predictions have not been made explicit, then the output of the model
will be able to tell us little of scientific value, no matter how surprising, interesting, or ‘life-like’
it may be. Although this point is fairly fundamental to scientific methodology in general and
may seem so obvious that it is unnecessary to point it out, a quick skim through any A-life
conference proceedings should be enough to demonstrate that these basic considerations are
(very) often overlooked.

The number of assumptions (the low-level phenomena) that go into the model does not have
to be large (e.g. they may be, say, (1) inert entities capable of (2) reproduction and (3) heritable
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variation), and the high-level phenomenon under investigation does not have to be small (e.g. it
could be, say, the evolution of life [but see Section 3]). However, the more explicit assumptions
there are, and the more restricted the phenomenon to be explained, the more likely the model
is to produce the desired results.

2.2 Minimal Models

Having devised an explicit list of low-level phenomena as a tentative reductive explanation for a
specific high-level phenomenon, a model should be constructed that encapsulates these low-level
phenomena and nothing else. In other words, it should be a minimal model. The model can
then be run to see if it produces the expected results.

In practice, one generally has a choice of representations and algorithms that could be used to
capture the low-level phenomena, and it may prove hard to be sure that no extra assumptions
have crept into the model in the course of implementing it as a computer program (or as
any other physical realization). However, as the list of low-level phenomena is explicit, the
final implementation is open to testing, criticism and possible revision by others. David Marr
essentially made the same point in his discussion of the three levels at which information-
processing systems should be understood; he suggested that fields such as Artificial Intelligence
were for too long hampered by a failure to recognize the theoretical distinction between what
a system does (the ‘computational theory’ level), and how it does it (the ‘representation and
algorithm’ and ‘hardware implementation’ levels) [3] (pp.19-29).

With the above in mind, once the model has been implemented, then if the expected results
are observed, the model has demonstrated that the given assumptions are sufficient to explain
the high-level phenomenon. To test whether all of the assumptions are necessary, further tests
may be carried out in which assumptions are removed or relaxed one by one.

On the other hand, if the expected results are not observed, then the model has demonstrated
that the assumptions are not sufficient. The model can then be revised by changing existing
assumptions, or adding new ones.

Both cases can tell us something about the subject we are investigating, as we are always
clear exactly what it is that we are trying to explain, and how we are trying to explain it. (It
is much harder to conclude that assumptions are necessary to explain a given behaviour than
it is to prove they are sufficient—indeed, we can never know that the behaviour may not also
be achievable by completely different means. However, this problem is not specific to A-life,
but is true of all science. All we can do is put forward our explanation as a possible model of
the real world, and choose to accept the model that performs better (by some metric) than its
competitors as our current ‘best guess’ on the matter [5].)

3 Specific Considerations for Models of the Evolution Of Life
3.1 The Low-Level Phenomena That Must Be Made Explicit

Darwinian (or, indeed, Lamarkian) evolution is a process of change. It tells us something about
the trajectory of reproducing entities through their space of possible forms, and explains how
reproducing entities become adapted to their environment. However, it assumes the existence
of reproducing entities to begin with, and does not specify what sort of entities they should be,
other than that they must be able to reproduce. Similarly, it does not specify that any particular
sort of environment is necessary—evolution is a very general phenomenon.
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A model in which a population of integers reproduce with occasional mutation, and differen-
tial survival based, perhaps, upon how large the integer is, will exhibit evolution, but it will never
produce anything more than just integers. To take a more familiar example, genetic algorithms
(see, e.g., [2]) satisfy the basic requirements for the evolution of the individual ‘chromosomes’,
but all that is generally evolving is the encoded solution to some predetermined problem. Thus
it is clear that if we are interested in modelling the evolution of life, we must (a) have a clear
idea of what sorts of functions or roles a reproducing entity must fulfil if we are to consider
it alive, i.e. a definition of life (this does not, of course, have to be universally agreed upon,
but it does have to be explicitly stated), and (b) include in our model explicit components and
interactions not only to allow for an (open-ended) evolutionary process to emerge, but also to
allow for the existence of entities that fulfil any other functions or roles that we have specified
as necessary for life.

In other words, evolution is not sufficient to explain life; we also require a theory of living
organisation, and of the sorts of worlds which are able to support the emergence and evolution of
such organisations. We must incorporate all of these into any A-life model designed to investigate
the emergence and evolution of life.

3.2 A Definition of Life

If we are to build models to investigate or explain the emergence and evolution of life, we
therefore need an explicit definition of life. That is, we need to be clear about exactly what we
are trying to explain (as pointed out in Section 2). A number of definitions may be found in the
literature, e.g. Maturana and Varela’s notion of autopoiesis (see, e.g., [6]). It is emphasised that
any definition adopted does not have to be universally agreed upon (although it would obviously
be desirable if it were widely accepted), but it does have to be explicitly stated if we are hoping
that the model will be able to tell us anything of scientific value about the evolution of life
(rather than just evolution in general). Many existing A-life models that claim to have been
designed to investigate the evolution of life are accompanied with no explicit statement of exactly
what they are trying to demonstrate (and often also have no explicit list of the assumptions and
theory involved in the construction of the model), so it is impossible to judge whether they have
succeeded or failed and they can therefore tell us little of any interest.

3.3 Ecological Considerations

An aspect of biological life that seems to be particularly overlooked in many A-life models is
that biological organisms are dissipative organisations that participate in exchanges of energy
and matter with their biotic and abiotic environment. Perhaps more accurately, most A-life
models tend to focus upon either evolutionary or ecological aspects of life, but few consider
both equally. Any acceptable definition of living organisation is likely to concentrate on an
organism’s capability of self-maintenance in the face of environmental perturbations (caused by
biotic or abiotic factors). It therefore seems probable that any A-life model of the sort we are
considering will have to make explicit assumptions about the sorts of ecological interactions that
are necessary and sufficient, as well as what sorts of organisations should be classified as living,
and by what mechanisms they may evolve. A model that contains all of these things, and is
capable of supporting a large population of organisms, may turn out to be prohibitively large for
most computers at present (but maybe not). However, these are the design criteria we should
move towards if models of this sort are to make significant contributions to the more general
study of living systems.




4 Summary

It has been suggested in this paper that too much of the current research being done in A-life still
suffers from a poor methodological approach. Specific recommendations are given to improve
the situation; these basically boil down to having an explicit high-level natural phenomenon
to be explained, and proposing an explicit list of low-level phenomena as a tentative reductive
explanation. In Section 3 specific weaknesses are identified in the particular area of current
A-life research into the evolution of life. It is suggested that such studies require a definition of
living organisation, together with consideration for the sorts of environment which can support
such organisation, as well as a mechanism for open-ended evolution.
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1 Overview

The intention of this contribution is to stimulate discussion concerning the following question:
Are artificial chemistries a useful tool to study pre-biotic or chemical evolution ? Or more gen-
eral: Are artificial chemistries a useful tool to study the evolution of organizations ? The latter
question implies that the insights gained from the investigation of chemical-like systems can
be transfered to other systems which are also forming organizations through local interactions
of many components.

The first part gives an introduction to artificial chemistries. In the second part an example
for “real evolution” in an artificial chemistry is shown. The term “real evolution” refers to
the phenomena of self-evolution, where every variation and implicit selection is performed
by the individuals (molecules) themselves and not by explicit external selection, mutation or
recombination operators.

2 Introduction to Artificial Chemistries

An artificial chemistry is an artificial system, which is similar to a chemical system. Usually,
an artificial chemistry consists of: ‘

1. a set of objects S : These objects may be abstract symbols [16], character sequences
[1, 12, 14], lambda-expressions [8], binary strings [3, 6, 15], numbers [4], or proofs [10].

2. a set of rules R, describing the interaction among objects: The rules can be
defined explicitly [16, 7] or implicitly by using string matching/string concatenation [2,
13, 14], lambda-calculus [8, 9], Turing machines [15], finite state machines or machine code
language [6], proof theory [9], matrix multiplication [3], or simple arithmetic operations

[4].

3. an algorithm A driving the system: The algorithm describes how the rules are
applied to a collection of objects (soup/population). The algorithm may simulate a well-
stirred reaction vessel with no topology [1, 6, 8], an Euclidean discrete CA-like (fixed)
topology [13, 16], a continuous 3-D space [17], or a self-organizing topology [5].

Both, the set of object and the interaction rules, can be defined explicitly or implicitly (e.g.
by an algorithm or mathematical expression). An example for an implicit definition is the
number-devision chemistry [4]: In the number-division chemistry the set of objects are
natural numbers s S = {2,3,4,...}. Two objects can interact, if one object can be divided
by the other. The result of the interaction is the divisor and the division of the two objects.
Thus, R = {s1 + sy = s3|sy mod s; = 0 A s3 = s1/52}.
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A typical algorithm simulates a well-stirred tank reactor which contains a population P of
molecules out of S. Here, the population is implemented as an array of fixed size M:

while not terminate() do
s1 := P[randomInteger(1l, M)]
s2 := P[randomInteger(1l, M)]
if a rule (sl + s2 => 53) exists in R
P[randomInteger(1l, M)] := s3
fi
od

This simple algorithm instantiates a mass-action kinetics equivalent to second order catalytic
reactions of the form s; + 89 + X —> s1 + s3 + s3, where the concentration of the substrate
X is kept constant. The population P can be initialized by randomly selecting elements out
of S.

An important aspect of this framework is, that it allows to setup constructive dynamical
systems. i.e., the collision of molecules can generate new molecules [8, 9]. A constructive
dynamical system can be treated as a dynamical system where dimension and components are
changing through interactions of the components [1].

A second important aspect is, that the dynamics is not abstracted from the structure, as it is
the case for example in the works by Eigen and Schuster on hypercycles [7]. The definition
of the reaction mechanism relies on the structure of the interacting substances. The mapping
from structure to function plays a key role in the process of self-organization. It allows a
structure (or an organization) to operate on itself.

Finally, the inherent parallelism should be noted which allows very efficient implementation
on massively parallel hardware [14].

3 Example for Self-Evolution in an Artificial Chemistry

In Fig. 1 an example for evolution without any explicit mutation, recombination, or fitness
operator is shown. Every variation and implicit selection are only performed by the interacting
species.

In the example, molecules are represented by binary strings with constant length of 32 bits,
S ={0,1}%2. An interaction among two strings s1, sz € S is performed in two steps: (1) sy is
mapped to a finite state automaton A, by interpreting s; as 4-bit machine code !. (2) The
automaton A;, is applied to s; to generate the output s3. In addition elastic collisions are
introduced by not allowing exact replications [8]. Thus, R = {s1+s3 => s3|s3 = A;, (s2) Asy #
53 A 83 # s3}. The population is initialized with M = 10° strings out of S and the algorithm
mentioned above applied.

During the run displayed in Fig. 1 a lot of completely new strings are produced. Some strings
are generated with rapidly increasing concentrations. A few generations later they are replaced
by "better” ones. It is also interesting to note that the structure of the strings is evolving (a
string is similar to its “predecessor”).

'The automaton is described in more detail in [6] and available as C++ source from
ftp:/ /lumpi.informatik.uni-dortmund.de/pub/biocomp /src/ '
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Figure 1: Fzample for self-evolution in an artificial chemistry. Concentration of some repre-
sentative strings are shown. Parameters: population size M = 10%, automata reaction with
table 2, no ezact replication, population seeded with M random strings out of {0, 1}32.

4 Questions for Discussion

(1) Is an artificial chemistry suitable to study molecular/prebiotic evolution ? (1a) What is
missing ? (2) What level of abstraction is reasonable ? (2a) Do we have to incorporate detailed
physical/chemical knowledge 7 (3) How many meta-levels of evolution are there 7 (4) How
can "evolution” be measured ? (5) Does ”information processing” emerges in the context of
evolution 7 And how ? (6) How can an artificial chemistry be investigated and analyzed ? (7)
Is an artificial chemistry able to create information ?

It is interesting to note that the same models used to describe chemical systems can also
be found in other domains, such as population dynamics, immune system, social dynamics,
economy, memetics etc. [11]. Therefore we may suspect that artificial chemistries can also
serve as a tool for understanding the formation and decay of organizations in other domains.
Here, a key question is: When an artificial chemistry should be used as a social dynamics
model, what can be kept and what should be added ?
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Abstract

We give a natural axiomatization for the notion of hierarchical complex-
ity measures for biological systems modelled by finite-state automata.
The algebraic theory of automata is applied to show the existence of
a unique maximal complexity measure satisfying these axioms, and
relates hierarchical complexity to global semigroup theory. We then
study the rate at which hierarchical complexity can evolve in biological
systems ssuming evolution is “as slow as possible” from the perspective
of computational power of organisms. :

Explicit bounds on the evolution of complexity are derived show-
ing that, while the evolutionary changes in hierarchical complexity are
bounded, in some circumstances complexity may more than double
in certain ‘genius jumps’ of evolution. In fact, examples show that
our bounds are sharp. We sketch the structure where such complex-
ity jumps are known to occur and note some similarities to previously
identified mechanisms in biological evolutionary transitions.

Furthermore, constructions show that in principle evolution of com-

plexity may proceed at a surprisingly fast rate: doubling every two
generations.
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Genetic Networks as a Model for the Regulatory Domain
applied in Ecological Genetics

D. REPSILBER AND F. ScHOLZ
Federal Research Centre for Forestry and Forest Products,
Institute for Forest Genetics, Department of Ecological Genetics
Sieker Landstr.2, D - 22927 Grosshansdorf, Germany

In population genetics stability of ecosystems is defined via the persistence of certain key
species in time (GREGORIUS 1996). The persistence of a given species is determined by the
adaptability of the populations within the species concerning changing environment in time
and space. Within populations as the units of adaptation the genetic system determines the
adaptive potential and is object to evolution (DARLINGTON 1939, GREGORIUS 1995). Pop-
ulation genetics analyses the genetic structure of populations by assessing allele and genotype
frequencies at certain gene loci. Here, the adaptive potential is estimated in terms of allelic
diversity (HATTEMER et al. 1993). On the other hand the analysis of phenotypes of quan-
titative adaptive traits is governed by genetic and environmental components. In quantitative
genetics it is shown that adaptation includes both levels of variation, the structural level of al-
lele and genotype frequencies and the regulatory level by which phenotypic traits are varied due
to environment influences. The regulatory level is also governed genetically, i.e. by regulatory
genes. These genes can vary, causing varying regulatory effects on the expressed phenotype.
So far, models of population genetics and of quantitative genetics do not include the regu-
latory process as caused by the regulatory background of structural genes. This, however is
necessary if we want to understand adaptation at the structural and at the regulatory level.
Therefore so far there is a lack of explanation while trying to estimate the adaptive potential
in real populations (MITTON 1995). Furthermore traits closely related to fitness tend to have
rather low heritabilities (HARTL and CLARK 1989) and molecular gene markers often are
poor predictors of the population differentiation of quantitative adaptive traits (KARHU et al
1996). In contrast to the allelic adaptive potential which is easily determined in the case of
special assessable loci, e.g. isozyme loci, by counting alleles, the regulative adaptive potential
can be measured for a special trait, mostly in provenance trials, but there is no general model
yet how to integrate the understanding of the dynamics of the genetic system and the role of
the regulatory domain.

The present work tries to close this gap to get a more comprehensive model which includes
a simulation of the regulative domain to enable the estimation of the adaptive potential of
populations on the phenotype level. In a first approach the genetic system of a population
is represented by a genetic algorithm (HOLLAND 1975) where the gene-expression-system is
modelled as a matrix like a neuronal net, similar to the genetic nets used for cell cycle models
(KAUFFMAN 1967). For this general model population dynamics in response to changing
environments are analysed and on the other hand parameters are evaluated using the results
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of a specially designed genetic clone experiment with Picea abies as organism and PEPC as
isozyme-gene-system. Predictions of the dynamics of ecosystems in response to changing envi-
ronment then can take into account the regulatory domain on the population level and predict
the phenotype adaptive potential for natural populations.

Approach:

The aim of a model for the regulatory domain has to be the extention of population genetic
models, e.g. ECO-GENE (DEGEN and SCHOLZ 1995), considering the adaptive potential
taking into account the regulative domain. On the basis of the genetic system such a model has
to explain phenotypic adaptability concerning the information flow within the gene-expression
system. This problem in theoretical biology is known as mapping-problem (WAGNER and
ALTENBERG 1996), in population and quantitative genetics as genotype-environment in-
teraction (FALCONER 1996, KANG 1996) and in physiology as regulation of gene activity
(MITTON 1995). To model the gene-expression system in a first order approach the represen-
tation as neuronal net was chosen: Similar to the so-called genetic net (KAUFFMAN 1967,
1969 and 1974) the phenotype is not necessary a bijectivism of the genotype, but a linear im-
age under a matrix given by the connectivity table and weight factors of the regulating system
(NOLFI and PARISI 1997). Of course non-linear interactions will form an essential part of
the physiological regulating system (LANGTON 1991), but on the other hand neuronal nets
are well known in mathematical aspects so that first steps of analysis are enhanced. Taking
neuronal nets as an image for the regulatory system can possibly explain system properties
related to the phenotype of adaptive traits and contribute to an integrated understanding of
the adaptive potential determined by the genetic system, but formed out to act as phenotype
by the system of trait formation.

The experimental foundation to get the heuristics and to evaluate the models parameters
was a specially designed physiological genetic clone experiment. The experimental design was
chosen to evaluate the genetic determined part of a trait’s variation caused by the regulatory
domain. The type of organism looked on requires an immense extent of adaptability, because
being sessile and long-lived. A gene locus has been chosen, which plays a role in adaptation
and whose modules of the expression-system are object to actual research projects: Picea abies
as organism and PEPC as isozyme-gene-system (ROTHE and BERGMANN 1995, IPSEN et
al. 1996, REPSILBER et al. 1997) meet the requirements for studying the system of trait
formation and its role in determining the adaptive potential. A hierarchy of clones with
different relationships and from different provenances were exposed to different temperature
regimes to evaluate the regulation system in dependence of different genetic backgrounds,
whereas the PEPC-genotype is known for each clone. As physiological trait the temperature
dependence of the specific enzyme-activities and amounts of enzyme were measured.

The results of the experimental part will give an estimation of the natural ” connectivity”
for this enzyme-system. Differences between homozygote and heterozygote individuals could
indicate the system properties leading to the observation of the so-called heterozygous advan-
tage, which was observed in spruce populations adapting to heavy air pollution (BERGMANN
and SCHOLZ 1989). The impact of the regulatory domain on the realisation of the genetic
system can be measured for this example.




Processing status:

The experimental basis has been completed in 1997. First results concerning different
adaptive potentials of PEPC homozygote and heterozygote individuals (publication in prepa-
ration) show that heterozygote organisms make full use of their higher variability in enzyme
composition to regulate their enzyme activity. Variance analysis to exploit the data set is being
carried out to estimate the regulation system’s parameters as there are: ”Connectivity” of the
regulation system’s network, dimension of the regulatory matrix, degree of hierarchical organi-
sation of the regulation net. So far SAS-analyses of experimental data is going on and showing
interesting results concerning variance components in the trait expressing system consisting of
enzyme-genotype genetical background and regulation and the environmental conditions.

The model approach employs a genetic algorithm (HOLLAND 1975) to simulate an evo-
lution of neural networks similar to the approach of Nolfi and Parisi (NOLFI and PARISI
1997). The neural network is identified with the regulating network. Fitness is calculated as
the similarity of the networks output in comparison to the environments input. A rough draft
of the simulation program has been tested for basic new population dynamics compared to the
variant using direct genotype phenotype mapping: Direct mapping populations show faster
adaptation, but are less well adapted to changing environments. This behaviour is nothing
new for the comparison of complex and simple systems (SETH, A.K. 1997). Further analy-
ses in comparison with models that simulate the dynamics of the genetic system will feature
differences in prognosis tendencies due to the integration of the genotype-phenotype-mapping
module. It is planned to investigate if on the population level the adaptive potential is sys-
tematically underestimated if only the allelic diversity is taken into account. At the moment
only phylogenetic adaptation is modelled - the next step is taken in modelling the ontogenetic
part of regulative adaptation.
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Abstract

We describe a computational model for molecular transition systems and discuss its
significance to mutual catalysis scenarios geared towards the study of the origins of life.

1. Introduction

Research indicates that all existing life on earth originated some 3.7 billion years ago
from a single cell type, or progenote. While there is ample résearch explaining how
complicated life forms can arise through evolution once the basic mechanisms of the cell
are in place, the question of how these mechanisms came into being, or even how could
have they come into being, is a profound mystery.

From a computer science perspective, the progenote is an extremely complicated
and sophisticated entity, with multiple components, each of which can function only in
conjunction with some or all of the others. Several proposals were made regarding a
plausible explanation for the emergence of the progenote, but the gap between inanimate
matter and the complexity of the structure and the processes of the progenote remains to
be explained.

The seminal work regarding abstract models of living systems is von Neumann’s
work on self-reproducing automata, dated back to 1949. Several aspects of his work are
fascinating, especially with a 50-years or so hindsight. First, while his work predates
the discovery of the DNA, the basic element of his self-replicating automata, namely a
description of the automaton that is both interpreted during the “life” of the automaton
and replicated into the automaton “progeny” is identical in concept and in function to the
DNA. Second, while his work on self-reproducing automata was done at the same
period in which he developed the stored-program computer, follow-on work to his that
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utilizes developments in computer science that occurred since the first stored-program
computer was built is scarce (notable exceptions include the Chemical Abstract Machine
by Gerrard Berri and the work of Fontana and colleagues).

In parallel to the standard organic chemistry approaches to the origin of life, scientists
from various disciplines have been trying to investigate biogenesis by theoretical modeling.
Prominent examples are Dyson's statistical physics model for homeostatic catalytic networks,
Morowitz's studies on the thermodynamics of protocellular aggregates, Kauffman's graph theory
analysis of catalytic networks, Bagley's kinetic approach to mutual catalysis and Fontana's
lambda-calculus-based algorithmic chemistry. Such models describe complex chemical
interactions among organic molecules and their assemblies, prior to the emergence of DNA, RNA
and proteins. They purport to demonstrate how a transition could occur from early random
mixtures of organic molecules to the first protocell.

In the framework of this approach, two of us (DL and DS) have recently developed the
Graded Autocatalysis Replication Domain (GARD) model (2,3), which provides a thermodynamic
and kinetic analysis of mutually catalytic assemblies combined with statistical tools. It assumes a
finite micellar enclosure, containing the catalytic set members, and utilizing energy-rich chemical
precursors from the external environment. Through the solution of differential equations and by
Monte Carlo simulations, GARD predicts the spontaneous emergence of assemblies with
idiosyncratic molecular compositions, capable of carrying information, as well as of undergoing
rudimentary self-replication and chemical evolution.

The present degree of formalization of GARD allows only a limited category of reaction
topologies (isomerization, dimerization and non-covalent recruitment). A broader scenario, en-
route to a protocell, should involve a much larger variety of more complex chemical species and
reactions, including the potential emergence of templating and primitive genetic codes. We
believe that this may be achieved through the implementation of Theoretical Computer Science
concepts, including molecular transition systems.

2. The GARD model

In the Graded Autocatalysis Replication Domain (GARD), mutual catalysis within a set
of N types of molecules (Aj) derived from a common precursor (Ag), can sustain self-

replication of the entire ensemble (2,3). The components of GARD may be any organic
molecules, endowed with sufficient complexity to allow for structural diversity and
mutual complementarity. The mutual catalytic rate enhancement exerted on the species
Ai by the species Aj is denoted by a matrix element Bjj. For GARD simulations we use a
formalism that allows one to assign likelihood values for any degree of catalysis between
two randomly chosen species Aj and Aj. This is described in the form of a probability
distribution ¢(Bjj) , analogous to our previously developed Receptor Affinity Distribution

(RAD) model (1). We further assume that the system is subjected to a constant dilution
effect, (e.g. due to expansion of its vesicle enclosed volume). The time-dependent
concentrations of the species Aj then obey the differential equations (i=1,N)

dA,
dt

N N
—liAg— K A+ K By AgAj — D KL By A A — LA,
j=1 j=1
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where kj and k_j are the uncatalysed rate constants of the reaction of formation and
degradation of Ai and I describes the system's exponential expansion rate, according to

V()=V(0) - Exp(At).

The main question addressed by the GARD model is whether a chemical system,
connected through random catalytic interactions, and governed by a statistical catalysis
formalism (1-3), can propagate its own chemical composition with no absolute
requirement for autocatalysis for any of its individual components. For this, we define a
graded quantitative measure for GARD's self replication through a critical rate of dilution
(Ac), that is shown to increase with the extent and connectivity of mutual catalysis. We

then envisage an evolutionary process, where the content of GARD is subjected to
random compositional fluctuations, which affect the prevailing network of catalytic
interactions. We analyze this process by stochastic computer simulation, where
compositional "mutants" with an augmented capacity of self replication may
spontaneously appear, which may take over the prevailing GARD.

The GARD model demonstrates quantitatively how self replication may be a property of a
molecular ensemble, without any specific constraints on the structure of the components. No
individual molecule needs to be endowed with the specialized chemical properties currently
associated with replicating macromolecules such as DNA and RNA. In the above, the simplest
form of GARD is described. Higher level simulations, with higher degree of polymers may be
considered, and their analysis is expected to be made possible by the molecular transition system
described below. Our analysis also allows to compute the probability for a primordial spontaneous
emergence of a GARD-like entity based on first chemical principles. GARD may thus be
considered as a feasible paradigm for understanding the early emergence of chemical self-
replication and chemical selection.

3. Requirements from a computational model.

We believe a more “advanced” answer for the problem von Neumann was interested in,
namely a computational model suitable for the study of the origins of life, should satisfy
the following requirements:

1. The model should bear higher structural resemblance to biochemical environments.
As in biochemistry, the building blocks should be (abstractions of) monomers and
polymers, and the basic transition rules should be the rules that govern the
interactions of (abstract) monomers and polymers.

2. The model should be concurrent, to model both parallelism within a cell as well as
interaction among multiple organisms (We believe cellular automata are inadequate

_ modeling both internal parallelism and interaction among organisms).

3. The model should not distinguish between “program” and “data” and, ideally, the
notion of “program” should be emergent, not built-in. Specifically, the “meaning” of
DNA or its abstract equivalent should not be “built in”, but derived through
interpretative mechanisms as in the living cell.
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The purpose of our work is to devise and investigate such models.

4. Molecular Transition Systems

We describe here Molecular Transition Systems, a preliminary step in the direction
outlined above.

Transition systems are one of the standard tools for defining and studying abstract

computational models, and are especially geared towards the study of concurrent

computing. A transition systems consists of the following components:

1. A set of states, and within this set a subset of allowed initial states.

2. A set of transitions S £ S’, where S and S’ are states, defining how one state can
change to another.

A computation of a transition system is a sequence of states S1, S2,... such that S1 is an
initial state and Si f Si+1 is a transition, for every pair Si, Si+1 in the sequence. Infinite
computations typically have to satisfy additional constraints which are beyond the scope
of this discussion.

Molecular Transition Systems are transition systems with the following characteristics:
? States are multisets of polymers, which in turn are orientation-free strings of
monomers (we do not distinguish between a string and its inverse),

? Reactions consist of ligation and cleavage of polymers, possibly with the aid of a
third polymer serving as a catalyst.

Definition: A Molecular Transition System is a transition system with the following:
? A set of monomers M={MI1, M2,..., Mn}.
?  Polymers are orientation-free strings over M.
?  States are multisets of polymers.
?  Reactions among polymers have the form:
? Ligation: A,B,C? AB, C
? Cleavage: AB,C?A,B,C
where A, B, and C are polymers, with C possibly being absent. AB is the string
resulting from the concatenation of the strings A and B.

?  Transitions are pairs of states S 7 S’ where S’ is obtained from S by replacing the
polymers on the left-hand side of a reaction by the polymers on its right-hand side.

We ignore for now what are the initial states and what are the constraints on the
application of a transition.

5. Conclusion

The introduction of a general chemical reaction programming language in the form of a
molecular transition system, will allow to reformulate the GARD model in a more formal
and rigorous fashion. Most importantly, the unlimited number of chemical species and

EX




reactions that could be present in such a generalized system has the potential to analyze
the transition from a compositional information based system (as GARD is), to a
protoliving unit in which a primordial coding mechanism resembling the modern genetic
code could arise.
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