Chapter 7

Quantified Reasoning

“Barbara, Darii, Celarent, Ferio

Camestres, Baroco, Cesare, Festino

Darapts, Datisi, Felapton, Ferison, Disamis, Bocardo
Bramantip, Camenes, Dimaris, Fesapo, Fresison”

(in Evans et al., 1993, p.211).4

The first two studies suggest that many of the erroneous heuristics and biases demon-
strated during natural language based studies of reasoning with conditionals, dis-
junctives and conjunctives are also liable to occur in certain formalised contexts.
This chapter reports the third main experiment which uses the framework of the
syllogistic task to explore quantified reasoning in formalised contexts. Cognitive
studies involving categorical syllogisms have shown people without logical training
to exhibit a wide range of errors and biases when reasoning about natural language
statements predicated by the “some” and “all” quantifiers. The main aim of the

present study is to test whether users of formal methods are liable to err in simi-

“The mnemonic comprises nineteen names on four separate lines. Each name contains three
vowels representing the “moods” for determinate syllogisms with “strong” conclusions. The line
on which the name occurs represents the “figure” in which that syllogism is determinate. This
terminology is explained in the following section.
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lar ways when reasoning with logically equivalent Z expressions predicated by the

formal existential (3) and universal (V) quantifiers.

7.1 Principles of Syllogistic Reasoning

The syllogistic task, developed by Aristotle (384-322 BC), is of special interest to
cognitive science because it appears to encompass several core cognitive processes
that pervade many aspects of human reasoning. The interpretation of premisses,
the integration and representation of terms, the hypothetical postulation and eval-
uation of speculative conclusions, and the generation of responses are not cognitive
processes which are specific to syllogistic reasoning (Evans et al., 1993; Dickstein,
1978b). Indeed, if psychology proves unable to account for the cognitive determi-
nants of performance in the syllogistic task then it is difficult to see how it will
ever be able to explain more complex cognitive functions (Johnson-Laird and Bara,
1984). Studies of syllogistic reasoning therefore provide important pointers to the
cognitive processes involved in human reasoning generally and, in particular, the
ways in which people reason with quantified statements.

A categorical syllogism is an argument consisting of three statements: a
major premiss, a minor premiss and a conclusion. Each of these statements describe
relations between the various “terms” of the argument. The major premiss describes
the relation that holds between the predicate of the conclusion (P) and a middle
term (M). The minor premiss describes the relation that holds between the subject
of the conclusion (S) and the middle term. Convention states that the major premiss
must always precede the minor premiss. The aim of the syllogistic task is to use
the two premisses as the basis for deducing a conclusion which describes a relation
between S and P, or, where the premisses cannot lead to such a deduction, to

state that no determinate conclusion follows. Four types of quantifier may range
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over the assertions made in a syllogism. These comprise the universal quantifiers
“All” and “None”, and the particular quantifiers, “Some” and “Some ... not”. The
quantifier which ranges over a syllogistic predicate reflects that predicate’s “mood”,
conventionally abbreviated as shown in Figure 7.1. The determinate conclusion of a
syllogism is said to be “strong” if it is quantified by one of the universal quantifiers, or
“weak” if it is quantified by one of the particular quantifiers and a strong conclusion

is also permissible.

Universal affirmative All M are P (A)
Universal negative No M are P (E)
Particular affirmative Some M are P (1)
Particular negative Some M are not P (0)

Figure 7.1: The four moods of syllogistic predicate
The order of terms in a syllogism’s premisses is significant. As there are two
possible orders for each of the major and minor premisses, this gives rise to four
possible arrangements, or “figures”, as shown in Figure 7.2. Although the order in
which terms are presented within the two premisses might vary, the order of terms

in the conclusion always proceeds from S to P.

Figure 1 Figure 2 Figure 3 Figure 4

M-P P-M M-P P-M
S-M S-M M-S M-S
S-P S-P S-P S-P

Figure 7.2: The four figures of a syllogism
Figure 7.3 shows a syllogism with the form AA1l. Aristotle would consider
this to be a “perfect” syllogism, that is, one whose necessity can be seen by novice
reasoners without logical expertise (Adams, 1984), and “one that needs nothing
other than the premisses to make the conclusion evident” (Aristotle, in Ross, 1949,
p.287). Figure 7.4 shows a syllogism of the form EO1. The conclusion drawn here is

fallacious because one cannot say for certain whether its relations follow necessarily
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from the information specified in the given premisses. No logically valid determinate

conclusion follows by necessity in this case.

All humans are mortal No Greeks are immortal

All Greeks are humans Some men are not Greeks

All Greeks are mortal Some men are not immortal
Figure 7.3: A “perfect” syllogism Figure 7.4: An invalid syllogism

7.2 Error and Bias in Syllogistic Reasoning

There is general agreement in the cognitive community that syllogistic reasoning
involves at least three stages, all of which are prone to error and bias: premiss
interpretation, premiss combination and response generation (Erickson, 1974; Evans
et al., 1993). It is also argued that a fourth stage exists during which reasoners
test speculative conclusions (Johnson-Laird and Steedman, 1978). In order that
correct conclusions may be drawn it is imperative that reasoners adhere to deductive
principles. Syllogistic studies suggest that reasoners are frequently prone to depart
from such principles, however, and that there are dominant causes for their erroneous
responses. The cognitive literature has been keen to speculate possible explanations

for these trends.
Atmosphere Effects

According to “atmosphere theory” (Woodworth and Sells, 1935), syllogistic
premisses create a global impression, or “atmosphere”, depending upon how they
are quantified and qualified. The quantity of a premiss can be universal (“all”) or
particular (“some”). The quality of a premiss can be affirmative (“are”) or nega-
tive (“are not”). Atmosphere theory, as reformulated by Begg and Denny (1969),
malkes two specific predictions. First, whenever the quality of at least one premiss is

negative, the quality of the conclusion drawn will be negative; when both premisses
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are affirmative, the quality of the conclusion drawn will be affirmative. Second,
whenever the quantity of at least one premiss is particular, the quantity of the con-
clusion drawn will be particular; when both premisses are universal, the conclusion
drawn will be universal. In short, contemporary atmosphere theory predicts that,
where the relationship between S and P is less than obvious, a reasoner will draw
a conclusion which shares the same qualifiers and quantifiers as those contained in
the given premisses, with little or no regard for the logic of the syllogism. It would
appear that the atmosphere effect is not restricted to syllogistic reasoning. Sells
(1936, p.7) argues that, in those situations where the range of possible solutions is
limited, atmosphere bias leads reasoners to endorse the solution “most similar to

the general trend or tone of the situation set up”.
Implicit Conversion Theory

“Implicit conversion theory” argues that reasoners attempt to simplify com-
plex premisses to forms that are more amenable to mental representation or process-
ing (Revlin and Leirer, 1980). The construction of transitive relations, for example,
between a conclusion’s end terms, S and P, can clarify the form of conclusion to be
drawn. Illicitly converted forms, however, can form a basis from which erroneous
conclusions are drawn. Conversion is logically permissible for the I and E premiss
forms because “Some S are M” can be replaced by “Some M are S”, and “No S
are M” can be replaced by “No M are S”. Conversion of the A and O forms in this
manner, however, is not logically permissible; “All S are M” does not necessarily
imply “All M are S”, and “Some S are not M” does not necessarily imply “Some M
are not S”. Studies suggest that reasoners often fail to recognise the conditions un-
der which conversion is acceptable (Chapman and Chapman, 1959; Dickstein, 1981;
Newstead and Griggs, 1983b; Politzer, 1990; Wilkins, 1928). It is claimed not only

that reasoners have a tendency to convert syllogistic premisses, but that conversion
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is actually the preferred method of interpreting premisses not given in transitive
form (Revlis, 1975a; 1975b; Revlin and Leirer, 1980). If Revlis’ claim were true
then, with the exception of first figure syllogisms, reasoners would never attempt to
reason from the same premisses that were presented to them! Strong evidence exists
to suggest that Revlis’ claim is too strong and does not reflect the way in which peo-
ple normally approach the syllogistic task (Johnson-Laird and Bara, 1984; Newstead
and Griggs, 1983b; Traub, 1977). Illicit conversion would, nevertheless, appear to

account for many of the errors committed.
Figural Effects

Despite having no logical bearing on the syllogistic task, the possible psy-
chological repercussions of manipulating term and premiss order has been a focus
of concern. Although there is general agreement that changing premiss order alone
does not influence reasoning performance significantly (Dickstein, 1975; Wether-
ick and Gilhooly, 1990), it is claimed that the order of terms within premisses is
significant (Begg and Harris, 1982). Johnson-Laird and Steedman (1978), for exam-
ple, report strong correlations between syllogistic figure and the types of conclusion
drawn. “Figural bias” theory claims that syllogistic figure determines the order in
which people relate end terms during premiss integration, and that a directional
bias in our mental processes makes it easier to scan the represented information in

certain directions (Johnson-Laird and Bara, 1984).
Determinacy Bias

It is argued that “determinacy bias” misleads reasoners into interpreting or
combining premisses in ways that can only lead to determinate conclusions, or causes
them to discount hypothetical possibilities that lead to indeterminate conclusions

(Dickstein, 1975; 1978b; Revlis, 1975a). In other words, reasoners would generally
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prefer to draw a valid conclusion rather than say that nothing follows from a given
premiss pair. Some experimenters attribute this response bias to the dispropor-
tionate number of determinate and indeterminate arguments that tend to occur in
the syllogistic task. Assuming 64 possible premiss combinations, as in Dickstein’s
studies, less than one third lead to determinate conclusions. Errors therefore be-
come attributable to reasoners’ expectations that a greater proportion of the given

premiss pairs will lead to determinate conclusions.
Set-theoretic Representations

It is argued that people reason about syllogisms in ways analogous to those
in which set-theoretic tools, such as Venn diagrams or Euler circles, are used in .
mathematics (Adams, 1984; Ceraso and Provitera, 1971; Erickson, 1978; Traub,
1977). A central tenet of this argument is that the interpretation of premisses
involves creating a combined mental representation showing the set relations that
may exist between terms. In order that the correct conclusion may be deduced,
every possible combination of set relation that follows from a given premiss pair
must be explored. Non-logical errors then become explainable as a consequence
of reasoners’ use of inappropriate representations or their failure to consider all
hypothetical combinations. The possible Euler representations that are consistent
with individual syllogistic premisses are shown in Figure 7.5 (adapted from Erickson,
1974, p.310; Evans et al., 1993, p.220). It should be noted that the combination
of premisses gives rise to many more representations than those shown here. That
reasoners seem inclined to consider only a few of these is perhaps understandable
given the mental effort that it would require to consider the entire set and the

demanding nature of the syllogistic task.

145




Identity Subset Superset Overlap Fxclusion

All A are B
No A are B @
Some A are not B @

Figure 7.5: Possible Euler representations of syllogistic predicates

The quantifiers “some” and “some ... not”, as they appear in natural lan-
guage based syllogistic studies, are ambiguous because the individual is not told
whether to adopt an everyday (partitive) interpretation or a logical (partitive, but
possibly universal) interpretation. Support for this hypothesis is gained from the
results of Chapman and Chapman (1959), who propose that the qualifier “are” in
syllogistic predicates encourages reasoners to assume an identity relation, “is equal
to”, between terms when an inclusion relation, “is included in”, would be more
appropriate from a set-theoretic perspective, and that this encourages unwarranted
assumptions of symmetry between terms, in a manner similar to that demonstrated
by Tsal (1977). The experimenters ascribe assumptions of this form to reasoners’
prior experience of elementary mathematical algebra or geometry where identity
relations are commonplace. One might expect that the substitution of formal oper-
ators, with precise mathematical meanings, for the supposedly ambiguous qualifiers,
“are” and “are not”, would dispel any such ambiguities from the task and cue rea-
soners into interpretations which conform with the dictates of logic rather than

conventions of everyday language.
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Analogical Representations

It is argued that people reason about syllogisms as if constructing symbolic
analogical representations of premiss information (Johnson-Laird and Steedman,
1978). According to this theory, the “classes” in syllogistic premisses are represented
by imagining arbitrary instances of their exemplars. Although no explicit claims
regarding the symbols or their interrelations are given, the four possible premiss
relations might be represented as shown in Figure 7.6, where “|” indicates a link,

“1” indicates a negative link, and parentheses indicate a possible exemplar.

All A are B Some A are B
a a a (a)
I !

b b (b) b (b)
Some A are not B No A are B
a (a) a a
1 11
b b b b

Figure 7.6: Analogical representations of syllogistic predicates

Syllogistic reasoning by analogy involves four stages: semantic representation
of the given premisses, heuristic combination of each premiss’ represenfation, formu-
lation of a conclusion from the premiss combination, and testing of the conclusion
(which can lead to modified representations). Like set-theoretic models, analogical
theories are informal in the sense that they make no specific claims for the order in

which representations are constructed or the tests performed.
Content Effects and Belief Bias

The view that formal logic abstracts away all extraneous details and allows
reasoners to concentrate solely on the underlying logical form of arguments derives

from Kantian philosophy (Kant, in Smith, 1993). Based on this assumption, one
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might expect people to reason more logically when a task is expressed in abstract,
as opposed to thematic, content. Studies of conditional reasoning, however, suggest
that performance improves as logical tasks become less abstract (Dominowski, 1995;
Gilhooly and Falconer, 1974; Van Duyne, 1974; Wason and Shapiro, 1971). It is
claimed that the apparent facilitatory effects of thematic content can, in some cases,
be explained by the possibility that reasoners simply read off responses from memory
without performing the kind of logical analysis appropriate to the task (Griggs and
Cox, 1982). These findings suggest that, despite the strictly logical requirements of
laboratory based tasks, the semantic associations of thematic content can encourage
reasoners to favour non-logical heuristics based on guesswork.

Studies of the syllogistic task report that thematic premiss content which
elicits close associations with information stored in reasoners’ semantic memories
is more likely to elicit responses that accord with prior belief, albeit sometimes at
the expense of logical necessity (Begg and Harris, 1982; Janis and Frick, 1943).
The theory of “belief bias” claims that reasoners accept believable conclusions un-
critically and only resort to logical analysis when premisses suggest unbelievable
conclusions (Barston, 1986; Evans et al., 1993; Revlis, 1975a). Belief bias effects
tend to become more evident as task content becomes more closely related to the
personal beliefs of reasoners, because firmly held convictions are likely to be held
in spite of evidence against them (Morgan and Morton, 1944). Specifically, it is ar-
gued that reasoning performance deteriorates when logic and pragmatic beliefs point
towards different conclusions, but improves when they concur (Revlin and Leirer,
1980; Wilkins, 1928). The claims for belief bias are not, however, upheld universally.
Other studies report no discernible differences in correctness for syllogisms phrased
in abstract material and logically equivalent forms in thematic material leading to

believable conclusions (Henle and Michael, 1956; Newstead, 1995).
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Influence of Pragmatic Knowledge

Pragmatic laws and conventions guide our interpretation of written and spo-
ken language, enabling us to look beyond what is said explicitly in order to gain an
appreciation of a speaker’s intentions (Levinson, 1983). It is argued that syllogistic
errors are often attributable to reasoners’ attempts to “treat logical statements as if
they are obscure attempts at communication, and interpret them by the same con-
ventions they would use in normal discourse” (Begg and Harris, 1982, p.596). Many
recent findings from syllogistic studies have been discussed in relation to Grice’s
(1975) seminal work on conversational implicature.

Grice’s “Cooperative Principle” aims to explicate some of the universally
accepted rules and conventions which govern everyday spoken and written commu-
nication. Under this principle there are four maxims. First, the maxim of quantity
states that speakers should make their contribution as informative as is required for
its purpose and to not withold information they know to be true. Second, the maxim
of quality states that speakers should only say that which they believe to be true and
supported by adequate evidence. Third, the maxim of relation states that speakers
should keep the content of their contribution as relevant as possible. Fourth, the
maxim of manner states that the contribution made by spéakers should be clear and
unambiguous. There is much evidence to suggest that reasoners’ predisposition to
apply Gricean conventions contributes to their downfall in the syllogistic task (Begg
and Harris, 1982; Newstead, 1989; 1995; Politzer, 1986).

The theory of the “Same M” fallacy claims that, whenever the subject and
predicate of a speculative conclusion are related by a seemingly common middle
term (the same M), reasoners will accept this conclusion at face value according to
the maxim of relation, irrespective of its logical necessity (Chapman and Chapman,

1959; Dickstein, 1975; 1976). If in everyday conversation one were to say “Some
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politicians are lazy, and some lazy people are wealthy”, then the listener is clearly
being invited to conclude “Some politicians are wealthy”. The speaker could other-
wise be accused of violating the maxim of relation and being deliberately deceitful.
Although this form of probablistic inference often leads to correct conclusions in
everyday experience, it does not follow logically because the middle term in each
premiss might not necessarily refer to the same class members. A similar phe-
nomenon to the “Same M” fallacy is reported by Dickstein (1978b), who argues
that, in premisses where no relations are specified between S and M, and between P
and M, a reasoner might still draw a conclusion from S to P because both premisses
seemingly share the common property of not being related to M. The maxim of
relation can therefore explain the tendency to give determinate conclusions where
none are warranted, especially from IT and OO premisses, because it is assumed that
experimenters would not intentionally make two unrelated statements in sequence.

In ordinary speech it is normally taken for granted that speakers abide by
the Gricean maxim of quantity and divulge as much useful information as necessary;
they will not say “some” when “all” is applicable, and they will not say “some ...
not” when “no” is applicable. In ordinary speech, therefore, the particular quantifier
“some” is given the partitive interpretation “at least one, but not all”, and “some
... not” is given the partitive interpretation “at least one is not, but not none”. The
syllogistic task, however, sometimes requires reasoners to entertain counter intuitive
notions such as “Some apples are fruits”, even when they know that in fact “All
apples are fruits”. A failure to comply with this requirement is evident in the results
of Woodworth and Sells (1935), who report a non-logical “caution bias”, that is, a
tendency to accept “Some. .. are” more readily than “All ... are”, and “Some ... are
not” more readily than “None ... are”. This inclination to accept weak conclusions,
when a stronger version might exist, suggests that reasoners often fail to consider

hypothetical possibilities and that they are generally conservative estimators.
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7.3 Aims and Methodology

In summary, it appears that many of the errors observed during the syllogistic task
are attributable to participants’ application of similar rules and conventions to those
which govern their communication of quantified statements in everyday language.
The present study aims to test whether the trained users of formal methods are liable
to commit the same kinds of error when reasoning about the formal quantifiers, “3”
and “V”, as those observed for their English counterparts, “some” and “all”. It
aims also to identify those particular syllogistic forms which give rise to systematic
reasoning errors. Since formal notations are not governed by the same linguistic
principles which govern everyday communication in natural language, one would
not expect the same non-logical tendencies to transfer over into the formal domain,
especially when the tasks are presented explicitly in formal logic and all participants
have the relevant logical training.

In order to help explicate any differences between reasoners’ treatment of the
quantifiers from natural language and formal logic, the well established framework of
the syllogistic task is employed. The variables investigated are the type of syllogism
(comprising mood, figure, strength and determinacy) and the degree of thematic
content used. Having noted that participants were particularly susceptible to error
when reasoning with counter intuitive material during the initial study, a third

experimental variable is included; the believability of the conclusion to be inferred.

7.3.1 Participants

A total of forty computing scientists volunteered to take part in the experiment.
These comprised staff and students from academic institutions and computing pro-
fessionals from industrial software companies, all of whom were recruited by per-

sonal invitation. All participants were native English language speakers and were
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randomly selected. Participants were divided equally into two linguistic groups:
Abstract Formal Logic (AFL) and Thematic Formal Logic (TFL). The groups were
loosely matched, first, according to participants’ personal ratings of Z expertise and,
second, according to their lengths of Z experience. The AFL group comprised 15
staff, 3 students and 2 professionals. Their mean age was 34.65 years (s = 8.79)
and all had studied a system of formal logic beforehand. Their mean level of Z ex-
perience was 5.84 years (s = 4.55). According to their personal ratings of expertise,
the group comprised 8 expert, 11 proficient and 1 novice users of the Z notation.
The TFL group comprised 13 staff, 1 student and 6 professionals. Their mean age
was 33.25 years (s = 9.79) and all had studied a system of formal logic beforehand.
Their mean level of Z experience was 4.43 years (s = 3.89), and the group comprised

b expert, 10 proficient and 5 novice users.

7.3.2 Design

The study had a three factor mixed design. The first, between groups, factor was
the degree of realistic material, abstract or thematic, corresponding to the two lin-
guistic groups, AFL and TFL. The second, repeated measures, factor was the type
of syllogism and comprised 30 levels. Various mood, figure and strength combina-
tions were tested within this factor. The third, repeated measures, factor was the
believability of the conclusion to be inferred and had two levels which applied only
to the TFL group: intuitive, and counter intuitive.

A systematic variation of 16 moods, 4 figures and 2 levels of believability
would normally yield 128 possible thematic tasks. For the practical purposes of
this study, however, the tasks included only a representative sample from this range
of possible syllogism types. The abstract tasks comprised 30 syllogisms (15 with
determinate and 15 with indeterminate conclusions). The thematic tasks comprised

40 syllogisms (15 with determinate believable conclusions, 15 with indeterminate
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believable conclusions, 5 with determinate unbelievable conclusions, and 5 with
indeterminate unbelievable conclusions). Table 7.1 shows the forms of syllogism

presented during the present study.

TABLE 7.1
Logical forms of the quantified inference tasks

Prem. Cone. Prem. Conc. Prem. Conc. Prem. Conc. Prem. Conec.

AAl AT AA2 N AA3 N AA4 N Al I
AI3* I A02 O AO4* N AE2 E(O) AE4 E(O)
A3 I 1A I I3 N 14 N IE* N
IE2* N IE4 N OAI* N OA3* O 003 N
004 N EAl E(O) EA2 E(O) EA3 N EA4 N
El O E2 O EB3 O EM4 O EE4 N

Note: Two versions of those syllogisms marked with an asterisk were presented
to the TFL group; one with a believable conclusion, one with an unbelievable
conclusion. Weak conclusions are given in parentheses.
In Dickstein’s (1978a) study, where a systematic variation of sixteen moods
and four figures yields 64 premiss combinations, this gives rise to 19 possible deter-
minate conclusions. Owing to strong typing imposed by the Z notation, however,

four of the premiss pairs which normally lead to determinate conclusions led to inde-

terminate conclusions in the present study.>  Although it would have been possible

*The four tasks AA3, AA4, EA3 and EA4 lead to determinate conclusions in natural language
studies, yet lead to indeterminate conclusions in the present study. This is because the terms of a
formalised syllogism must be assigned Z types, or mathematical sets, and that any two universal
premisses cannot give rise to a particular conclusion when the premiss terms might be assigned to
empty sets. The following example contrasts natural language and Z versions of an EA3 syllogism.
The conclusion in the Z version is indeterminate because the possibility that Food = & acts as a
counter example to any possible determinate conclusion.

No oranges are apples —3f : Food e orange(f) A apple(f)
All apples are fruits Vf : Food e apple(f) = fruit(f)
Some fruits are not oranges No determinate conclusion
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to overcome these restrictions and achieve a design that would allow for the same
number of determinate conclusions to be drawn as in Dickstein’s study, this would
not have been possible without compromising the complexity or the consistency of
the manner in which the tasks were presented, either of which would have jeopar-
dised the practicality of the study. The design therefore gives rise to a lower ratio of
determinate to indeterminate syllogisms; approximately 2:1. This is worthy of note
because it is argued that a bias towards determinate responses may be introduced
as a consequence of the extreme imbalance between determinate and indeterminate
tasks (Chapman and Chapman, 1959; Dickstein, 1975; 1976; Revlis, 1975a; Traub,
1977). A more balanced design in this respect, therefore, has favourable implications

for achieving unbiased responses.

7.3.3 Materials

To simplify the formalisation of the syllogistic task, a methodical approach was used
to translate natural language based categorical syllogisms into logically equivalent
forms in Z. Two obstacles had to be overcome in this respect. First, it was necessary
to find formal operators which corresponded to the natural language quantifiers and
qualifiers without altering the logical structure of the original task. Second, it was
necessary to assign appropriate types to the variables, or “terms”, of the formalised
syllogism so as to avoid violating Z’s strong type checking rules. Figure 7.7 shows
the method used to translate the four possible forms of natural language premiss

into equivalent forms in Z. All task sheets were computer generated.

All A are B Vz : Type o A(z) = B(z)
Some A are B Jz: Type ¢ A(z)AB(z) 3z :
Some A are not B Type o A(z) A —~B(z) -3z :
No A are B Type o A(z) A B(z)

Figure 7.7: Z translations of the four syllogistic predicates
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So as to minimise the possibility of interference from prior knowledge for the
abstract tasks, arbitrary single letter identifiers were used in place of meaningful
function names. In order to facilitate the recall of relevant information from memory,
meaningful identifiers were used for function names in the thematic versions of the
tasks. These names were chosen to refer to concepts with which participants would
be familiar including: social groups, occupations, animals, foods and materials. The
experiment’s materials are exemplified by the abstract and thematic versions of the

A A1 syllogistic task shown in Figures 7.8 and 7.9 respectively.

Vz:X eB(z)= C(z) Y p : Person e human(p) = mortal(p)
Vz:X e A(z) = B(z) Vp : Person e Greek(p) = human(p)
() Jz:X o A(z) A C(x) (a) dp: Person e Greek(p) A mortal(p)
(b) Vz:X e A(z) = C(z) (b) Vp: Person e Greek(p) = mortal(p)
(¢c) =3z:X e A(z) A C(z) (c) =3 p: Person e Greek(p) A mortal(p)
(d) No valid conclusion (d) No valid conclusion

Figure 7.8: Abstract AA1 task Figure 7.9: Thematic AA1 task

In order to test for possible effects of participants’ personal beliefs on their
reasoning performances, five thematic tasks were designed to lead to believable
conclusions and five logically equivalent tasks were designed to lead to unbelievable
conclusions. The nature of these tasks are exemplified by Figure 7.10, in which
the reasoner is required to draw a believable conclusion corresponding to “No rich
people are poor”, and Figure 7.11, in which the reasoner is required to draw an
unbelievable conclusion corresponding to “Some communists are capitalists”.

=3 p : Person e millionaire(p) A poor(p) I p: Person e capitalist(p) A Russian(p)
Y p : Person e rich(p) = millionaire(p) ¥ p : Person e Russian(p) = communist(p)

—3p : Person e rich(p) A poor(p) dp : Person e communist(p) A capitalist(p)
Figure 7.10: Believable EA1 task Figure 7.11: Unbelievable IA4 task
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7.3.4 Procedure

Before starting the experiment, participants were asked to provide the following
biographical information: occupation, age, organisation, course, number of years’
Z experience, a list of other formal notations known, a personal rating of their Z
expertise (novice, proficient or expert), and a description of any systems of formal
logic studied beforehand.

Before completing the main tasks, participants were asked to show their
understandings of the four possible forms of quantified formal expression by com-
pleting four corresponding “background tasks”. Each task prompted the participant
to select the closest natural English translation of a given formal Z expression corre-
sponding to one of the four possible forms of syllogistic expression: A, E, I or O. It
was hoped that the background tasks would help to explain some of the erroneous
trends that might arise in participants’ responses during the main syllogistic tasks.

Participants were then shown the following instructions.

“In each of the tasks that follow, you will be shown two Z predicate expressions taken
from an operational schema. You may assume that all of the named functions have
been defined. You will be asked to determine which one of four given statements follow
from the information given. Please circle the letter of yourAchoice. You will then be
asked to give a confidence rating, which should indicate how far you believe your
answer to be correct. Please complete all tasks to the best of your ability, without

reference to textbooks. The experiment should take around one hour to complete.”

For each main task participants were shown two Z predicates representing
the premisses of a categorical syllogism, three Z predicates representing possible
determinate conclusions, labelled “(a)” to “(c)”, and a fourth predicate representing
a possible indeterminate conclusion, labelled “(d)”. Participants were asked to select
the one conclusion that followed from the given premisses by circling the appropriate

letter, then to give a rating of the extent to which they believed their response
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was correct by ticking one of the corresponding boxes shown below. These boxes

were coded 1, 2 and 3 respectively for the purposes of analysis. Task sheets were

distributed to participants and completed anonymously then mailed back to the

experimenter (these are shown in Appendix A). All participants were tested on an

individual basis.

Confidence rating: [J Not confident [J Guess O Confident

7.4 Results

Background Tasks

Table 7.2 contains the four background tasks presented prior to the main

tasks. For each task, four possible natural language translations are shown along

with the response rates for each option.

TABLE 7.2

Frequencies of selections during the background tasks (N = 40)

Vi: T e A(t) = B(t)

“All As are Bs 38
At least one (possibly all) As are Bs 0
Possibly all As are Bs 2
Some As are Bs 0

Jt: T e A(t) A B(2)

At least one A is a B 29
*At least one (possibly all) As are Bs 9
Exactly one A is a B 0
Some As are Bs 2

3t: T o A(t) A—B(t)

At least one A is not a B - . 29
*At least one (possibly all) As are not Bs 9
Exactly one A is not a B 0
Some As are not Bs 2

~3¢t: T e A(t) A B(t)

*None of the As are Bs 40
At least one (possibly none) of the As are Bs 0
Possibly none of the As are Bs 0
Exactly one A is not a B 0

Note: Unambiguous set-theoretic translations are marked with an asterisk.

A series of one way chi-square tests revealed that participants’ selections

significantly differed from chance in all cases: “All” (X%3) = 104.80,p < 0.01),
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“Some” (ng) = 52.60,p < 0.01), “Some ... not” (X%?,) = 52.60,p < 0.01), and

“None” (ng) = 120.00,p < 0.01). The table suggests that nearly all participants
succeeded in selecting natural language translations corresponding to unambiguous

set-theoretic interpretations of the two universal expressions, quantified by “v” (All)

and “~3” (None), but nearly three quarters of participants failed to select unam-
biguous set-theoretic translations of the two particular expressions, quantified by

“3” (Some) and “J...~” (Some ... not).

Group Correctness

A one way between factors analysis of variance revealed no significant dif-
ferences in overall group correctness for the TFL group (Z = 90%) and AFL group
(z = 93%). Inspection of Figure 7.12, however, shows that there were 12 individual
syllogisms with perfect scores for the AFL group, but only 4 perfect scores for the
TFL group. A two way chi-square analysis revealed that this result significantly
differed from chance (Xfl) =5.45,p = 0.02).

Quantified Inferences

AA1
AA2
AA3 +
AA4
Al 4
AI3 +
A02 L X
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2 3 =z g 2 =
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10 et |
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Syllogism Type
Figure 7.12: Frequencies of quantified syllogisms solved correctly (n = 20)
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A one way repeated measures analysis of variance revealed a significant effect
of the 30 syllogism types on participants’ correctness (F(i 9y = 2.78,p < 0.01).
Hence, several planned comparisons were performed within this factor concerning:

mood, figure, determinacy, believability, and strength of conclusion.

Mood and Figure

A planned comparison contrasting correctness for syllogisms with matching
moods (Z = 91%) and unmatching moods (z = 95%) was significant (Fy q9) =
9.17,p < 0.01). A planned comparison contrasting correctness for syllogisms with
two affirmatives (z = 95%) and the other mood combinations was significant (F; 59y =
10.70,p < 0.01). A planned comparison contrasting correctness for syllogisms with
just one negative mood (Z = 89%) and the other mood combinations was signifi-
cant (Fy 29y = 18.26,p < 0.01). A planned comparison contrasting correctness for
syllogisms with two negative moods (Z = 96%) and the other mood combinations
approached significance (F(y 29y = 3.68,p = 0.06).

A series of planned comparisons contrasting correctness for syllogisms in the
first (Z = 93%), second (Z = 91%), third (z = 91%) an& fourth figure (z = 91%)

revealed no significant effects.

Determinacy, Believability and Strength of Conclusion

A planned comparison contrasting correctness for syllogisms with determi-
nate conclusions (Z = 92%) and indeterminate conclusions (Z = 91%) was not
significant. A total of 61 erroneous determinate conclusions were given in response
to 35 indeterminate tasks, and 45 indeterminate conclusions were given in response

to 35 determinate tasks.
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A series of planned comparisons contrasting correctness for those ten syllo-
gisms with believable conclusions (Z = 92%), unbelievable conclusions (z = 92%),
and abstract conclusions (Z = 94%) revealed no significant effects. The frequencies
of thematic syllogisms with believable and unbelievable conclusions solved correctly
are shown in Figure 7.13.

A planned comparison contrasting the rates of selection for strong and weak
conclusions, in those tasks where both options were possible, was significant (F(Lg) =

1560.53, p < 0.01). A comparison of the rates of strong and weak conclusions drawn

is shown in Figure 7.14.

Believability of Conclusions Strength of Conclusions
| —o—Belevable 4 Unbelievable | —6—AFLstrong -~ AFL weak

20 « - : —&—TFL strong ¥~ TFL weak
o - Q. \ A 20 T
4w 18 7 ™ o iR "
o o
% 16 4 §15
©14 § 10 +
o [
12 S
2 S5t
10 + } } f f f t t t f
< < o < = W W < <
. o O AA1 AE2 AE4 EA1 EA2
< Syllogism Type Syllogism Type

Figure 7.13: Believable and unbelievable (n = 20) Figure 7.14: Strong and weak (n = 20)
Experience and Expertise

A linear regression analysis revealed no significant correlations between par-
ticipants’ levels of correctness and their ratings of expertise, their levels of experience
or their ages. This suggests that participants’ increased levels of experience or ex-

pertise with the Z notation was not related to their levels of performance.

Confidence Ratings

A one way between factors analysis of variance revealed no significant ef-

fects of linguistic group type on participants’ confidence. The mean confidence
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ratings for group type were as follows: AFL (2.79), TFL unbelievable (2.93), TFL
believable (2.94). A series of planned comparisons for syllogisms with matching
moods, two affirmatives and two negatives revealed no significant effects. A series
of planned comparisons contrasting confidence for syllogisms in the first, second
and third figure revealed no significant effects. But a planned comparison contrast-
ing syllogisms in the fourth figure with those in the other figures was significant
(F1,209) = 8.50,p < 0.01). A planned comparison contrasting confidence for syllo-
gisms with determinate conclusions and indeterminate conclusions was significant
(F(1,20) = 22.05,p < 0.01). A planned comparison contrasting confidence for syl-
logisms with believable and unbelievable conclusions revealed no significant effects.
That participants were highly confident in the correctness of their responses is evi-

dent from the mean confidence ratings shown in Figure 7.15.

Quantified Confidence Ratings
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Figure 7.15: Confidence ratings for quantified inferences (1 < CR < 3)
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7.5 Discussion

Influence of Pragmatic Knowledge

The results for the background tasks suggest that nearly all participants drew the
most precise, set-theoretic interpretations of the universal statements corresponding
to A and E premisses. This suggests that participants adhered to the Gricean maxim
of quantity because they preferred to say “all” where “possibly all” and “some”
were also possible, and “none” where “exactly one is not” and “possibly none” were
possible. High rates of precise set-theoretic interpretations of universally quantified
statements are also reported by Neimark and Chapman (1975).

The Gricean maxim of quantity appeared to lead participants away from
the strongest possible set-theoretic translation for the particular T and O formal
statements. A particular affirmative statement, “3¢ : T e A(t) A B(t)”, does
unquestionably entail the assertion “At least one A is a B”, as endorsed by nearly
three quarters of participants. But it also entails the possibility that “All of the
As might be Bs”, which, providing participants had abided by the Gricean maxim
of manner and made their interpretations as informative and unambiguous as was
necessary for the purposes of the study, would have led them to the .strongest set-
theoretic interpretation, “At least one (possibly all) As are Bs”, as endorsed by only
22.5% of participants. Similarly, the meaning of a particular negative, “I¢ : T e
A(t) A =B(t)”, does entail the assertion “At least one A is not a B”. But it also
entails the possibility that “All of the As might not be Bs”, as endorsed by only
22.5% of participants.

Participants’ seemingly ambiguous interpretations of the formal statements
with particular moods may be attributable to two possible causes. First, it may be
ascribed to people’s strong inclination to draw partitive interpretations of the “some”

and “some ... not” quantifiers in everyday communication, where, according to
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Gricean convention, the truth of one should imply the truth of the other (Newstead,
1989). Second, it may be ascribed to the way in which the existential quantifier
is introduced in textbooks teaching the Z notation. Several popular undergraduate
texts (for example: Diller, 1994; Potter et al., 1996) state that the “3F” quantifier
can be paraphrased as the English expression “there is” or “there exists”, and is
easily memorisable from its “reverse E” symbology. But these texts fail to mention
that, unless explicitly predicated not to do so, the existentially quantified element of
a set might refer to the entirety of the set that it represents. So when an individual
perceives the “3” quantifier, he or she is inclined to assume a singular, rather than
multiple referent, “there exists one or several, but not all”, which contrasts with
the “V” quantifier, where “all”, or “for every”, is definitively asserted. But when
an individual perceives a statement beginning with “~3”, he or she is inclined to
assume the equally definitive “there does not exist”, or “none”.

The Gricean maxim of relation can explain reasoners’ tendency to give de-
terminate responses to indeterminate syllogisms because it is assumed that exper-
imenters would not intentionally make two consecutive statements without there
existing some relation between them. Similarly, the theory of determinacy bias
claims that reasoners expect a greater proportion of detérminate tasks than there
actually are, and that this expectation contributes to their downfall on indetermi-
nate syllogisms (Revlis, 1975a). Numerous studies confirm that reasoning improves
for tasks with determinate rather than indeterminate conclusions (Dickstein, 1976;
1978b; Evans et al., 1983). Roberge (1970) reports 51.2% correctness for determinate
syllogisms versus 35.8% correctness for indeterminate syllogisms, whilst Dickstein
(1975) reports 72.6% and 58.2% respectively. The higher rates of correctness in the
present study might be ascribed to the explicitly logical nature of the tasks and
participants’ experience of mathematical logic, where it appears to be part of the

accepted norm that any two consecutive statements may be unrelated.
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The responses to the abstract syllogisms AA4, EA3, EA4 and OAl, and
thematic syllogisms AA4, IE2, IE4, EA3 and EA4, show that up to one quarter of
participants mistakenly endorsed determinate responses when indeterminate ones
were appropriate. This apparent tendency to perceive logical relations between
logically unrelated premisses is consistent with predictions which stem from the
maxim of relation and determinacy bias, but only in the case of these few tasks. The
fact that no significant effects of determinacy were found overall might be attributed
to the greater proportion of determinate tasks in the present study, which may have
curbed participants’ predisposition to give determinate responses. It is interesting to
note that participants’ application of the maxim of relation did not cause systematic:
errors on those tasks where this was particularly expected. It was hypothesised that
the effects of the “Same M” fallacy would become most evident in responses to 1T
syllogisms, where the middle terms seemingly share the common property of being
related to both end terms, and OO syllogisms, where the middle terms seemingly
share the common property of being unrelated to both end terms (Chapman and
Chapman, 1959; Dickstein, 1975; 1976). However, only three people gave responses
consistent with these trends for the I1I3, 114, OO3 and 004 tasks, and most others
gave indeterminate responses.

People’s shared pragmatic knowledge of the Gricean maxim of quantity en-
courages them to divulge as much useful information as necessary in ordinary con-
versation. They will not say “some” when “all” is applicable, and they will not
say “some ... not” when “no” is applicable. Participants’ willingness to apply the
maxim of quantity, even in formalised contexts, is evident in their responses to the
main experimental tasks. Figure 7.14 shows that a total of only six weak conclusions
were endorsed where one hundred stronger versions were possible. This significant
preference for universal conclusions also counts against Woodworth and Sells’ (1935)

theory of “caution bias”. It may be worthy of note that five of these weak conclusions
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were chosen by the thematic group, which suggests that the degree of meaningful

content can influence the strength of conclusion endorsed by reasoners.
Content Effects and Belief Bias

Evidence that the abstract group outperformed the thematic group is re-
flected in the fact that the latter achieved three times as many perfect scores for
individual syllogisms. Wilkins (1928, p.77) ascribes improved performance under
abstract conditions to the “bad habits of everyday reasoning which are much in
force in the familiar situation, but are not so influential when the material is sym-
bolic or unfamiliar”. The fact that similarly high mean rates were observed for the
two groups is also supported throughout the cognitive literature (Henle and Michael,
1956; Newstead, 1995). It is suggested that, when reasoners’ beliefs are not held
with a sufficient degree of conviction, or are indifferent to the real world referents
of the task, they are unlikely to distort logical reasoning. Performance is likely to
be similar for abstract and thematic content under such conditions.

The more sporadic rates of correctness observed within the thematic group
suggests that the presence of meaningful content affected performance in some tasks
but not in others. This is supported by findings which suggest that any facilitatory
or inhibitory effects caused by changed material are entirely specific to the task and
the extent to which its content relates to the reasoner’s prior beliefs (Barston, 1986;
Traub, 1977). Evans et al. (1983) report rates of correct inference as high as 97%
when logic accords with belief and as low as 27% when logic conflicts with belief,
Revlin et al. (1980) report respective rates of 83% and 67%. The fact that the mean
scores for those ten syllogisms with abstract, believable and unbelievable conclusions
were much higher and more evenly balanced in the present study suggests that the
beliefs elicited by the chosen thematic materials were not sufficiently strong to lead

reasoners away from logical rules.
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Mood and Figure Effects

Inspection of Figure 7.12 shows that the lowest scores in both linguistic
groups were for syllogisms with just one negative premiss mood. At least one fifth
of participants gave erroneous responses to the abstract syllogisms EA4, OA1 and
OA3, and the thematic syllogisms AO2, IE2, EA1, EA4, EI3, EA3, and EI4 (un-
believable). Participants achieved higher rates of correctness on syllogisms with
matching premiss moods, even when both were negative. These findings are consis-
tent with results from our study of disjunctive reasoning, which supports the claim
that premisses containing one negative term are more difficult than those containing
two (Evans and Newstead, 1980; Roberge, 1976b; 1978).

Atmosphere bias theory makes several specific predictions: AA premisses
yield A conclusions, AE, EA or EE premisses yield E conclusions, II, AI or TA pre-
misses yield I conclusions, and OO, AO, OA, EI or IE premisses yield O conclusions
(Sells, 1936; Simpson and Johnson, 1966; Woodworth and Sells, 1935). The results
offer mixed support for these predictions. The perfect scores observed for the follow-
ing syllogisms suggest that performance was facilitated where logic and atmosphere
theory pointed to the same conclusion: abstract tasks AA1, EAT, A1, TA3, and the-
matic tasks AA1l, AIl, TA4 (unbelievable), OA3 (unbeliévable). There were cases
where many participants failed to draw the correct conclusion, however, even where
this was dictated both by logic and atmosphere theory: abstract tasks AE4, AO2,
EI3 and EI4, and thematic tasks EA1, AO2, EI3 and EI4 (unbelievable). For those
cases where logic and atmosphere theory pointed to different conclusions, the high
rates of correctness suggest that logic exerted a dominating influence on reasoning.
Only the responses to the abstract EA3, OAl and OA3 tasks and thematic EA3
task, are consistent with the predictions of atmosphere bias. These findings do not

concur with those of Sells and Koob (1937), for example, who report cases in which
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atmosphere bias seemingly led to error rates exceeding 90%. Such errors might
be attributed to the severe time pressures imposed by the experimenters, however,
which could have dissuaded participants from conducting full logical analyses of the
tasks. The fact that there was no strict time limit imposed during the present study
might therefore be partly responsible for participants’ increased logicality.
Cognitive studies report significant differences in reasoning performance un-
der each of the four syllogistic figures (see for example: Erickson, 1974; Johnson-
Laird and Steedman, 1978). The fact that the rates of correctness were generally
higher and much more evenly balanced across the four figures in the present study
suggests that figure did not account for the same degree of variation in participants’
responses. We must be careful not to generalise from this between studies compari-
son, however, because the subset of syllogistic tasks varied in each study. Although
the performance differential under the four figures was not significant, possibly ow-
ing to a ceiling effect, the higher mean rate of first figure syllogisms supports the
hypothesis that performance may be facilitated by first figure syllogisms (Dickstein,
1978a; Johnson-Laird and Bara, 1984), where the correct conclusion can be exposed

simply by scanning the given premisses in a forwards direction.
Implicit Conversion

Implicit conversion theory proposes that errors can arise as a result of reason-
ers’ attempts to simplify given premisses into forms more amenable to representation
or reasoning (Revlin and Leirer, 1980). Natural language based studies suggest that
illicit conversion of universal affirmatives, in particular, is responsible for many er-
rors (Newstead, 1989; Newstead and Griggs, 1983b). Illicit conversion of the A
premiss in the indeterminate thematic EA3 task might explain why one quarter of
participants endorsed determinate non-logical E responses. This is supported by

the theory of “conversion by addition” which claims that reasoners are inclined to
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convert “All A are B” to “All A are B and all B are A” (Dickstein, 1981) or to “All
B are A” (Politzer, 1990). Conversion in this case may have been facilitated by par-
ticipants’ social knowledge pertaining to the task materials, which appears almost
to invite an illicit conversion of the indeterminate EA3 task into a determinate EA1
task. The corresponding natural language forms of these tasks are illustrated in
Figures 7.16 and 7.17 respectively. The slightly lower rate of E conclusions given in
response to the abstract version of the same task might therefore be attributed to
the fact that conversion of the A premiss was not invited by the intuitive plausibility

of the relation between terms in the resulting conclusion.

No churchgoers are atheists No churchgoers are atheists

All churchgoers are devout people All devout people are churchgoers

Nothing No devout people are atheists
Figure 7.16: Original EA3 task Figure 7.17: Converted EA1 task

It is postulated here that illicit conversion of a universal affirmative was also
responsible for the four incorrect A responses to the abstract OA1 task. The fact that
high rates of correctness were observed for both thematic versions of the same task
suggests that the thematic relations created by conversion of the A premiss in these
cases may have ran contrary to participants’ prior beliefs and blocked any attempts
to draw determinate conclusions. That conversion for these tasks would have led to
the counter intuitive assertions “All birds are owls” and “All mammals are dogs”
supports this hypothesis. Evidence of illicit conversion blocked by counter intuitive
real world associations is reported throughout the cognitive literature (Ceraso and
Provitera, 1971; Evans et al., 1983; Newstead, 1990; Revlis, 1975a; Revlin et al.,
1980; Tsal, 1977). When premisses are couched in abstract material, a reasoner is
unlikely to have strong dispositions towards the terms and is liable to regard them

as being interchangeable with alternative forms. Figures 7.18 and 7.19 show how
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illicit conversion appeared to evoke erroneous responses to the abstract OA1 task,

where thematic connotations were not sufficiently strong to block conversion.

Some B are not C Some B are not C
All A are B All B are A
Nothing Some A are not C

Figure 7.18: Original OA1 task  Figure 7.19: Converted OA3 task

The results suggest that the likelihood of an illicit conversion being accepted
in formalised contexts depends upon two factors. First, it may depend upon the de-
gree of perceivable symmetry that exists between the end terms of a syllogism. This
was evident in the EA3 task where participants seemingly converted the given pre-
misses into the first syllogistic figure before generating putative conclusions. Partici-
pants who believe that a premiss pair is not presented in an ordered and symmetrical
manner will try to convert it to another syllogistic figure, where relations between
the end terms in the conclusion are more readily apparent. This is supported by re-
sults from natural Janguage based studies (Begg and Harris, 1982; Dickstein, 1978a).
Second, the likelihood of a conversion being accepted appears to depend not only
on the degree of thematic material used, but on whether this material establishes
believable relations in converted premisses or putative conclusions, according to par-
ticipants’ conceptions of the real world. This was evident in the thematic EA3 task,
where conversion led to thematic relations which conformed with popular social be-
liefs, and in the OA1 task, where conversion was seemingly blocked when it led to
forms which contradicted popular zoological knowledge. Given that participants’
errors are only ascribable to illicit conversion in several isolated cases, however, the
results do not support Revlin and Leirer’s (1980) hypothesis that conversion is a
routine part of the syllogistic task. It seems worthy of note that the syllogisms in
which conversion appears to have caused most errors lead to logically indeterminate

conclusions. It is therefore possible that many non-logical conversions were endorsed
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as the consequence of a general bias towards determinate conclusions.
Set-theoretic Representations

The results are now interpreted in light of Erickson’s (1974; 1978) theory
that people represent and process premiss information in ways analogous to those
in which Euler circles or Venn diagrams are used in mathematics. Inspection of those
tasks for which three or more participants gave the same non-logical response sug-
gests two marked trends which could account for many errors. Where the syllogism
is indeterminate, errors may be attributed to participants’ failure to find counter
examples to putative conclusions. The systematic process of constructing represen-
tations and searching for counter examples, however, can require more mental effort
than a reasoner is willing to expend (Barston, 1986; Johnson-Laird and Bara, 1984).
This trend appears evident in participants’ responses to the abstract OA1 task and
thematic IE2 and IE4 tasks. Figure 7.20 suggests how failure to consider a counter
example may have led one quarter of participants to the erroneous conclusion, “No

drunkards are scientists.”

Some scientists are methodical Chosen representation ~Counter example
No drunkards are methodical @ @@ . @
Nothing

Figure 7.20: Set-theoretic representations of the IE2 syllogism

Where a syllogism is determinate, errors may be attributed to participants’
failure to adopt the appropriate A, E, I or O interpretation of correctly represented
premiss combinations. This trend is evident in the results for the thematic syllo-
gisms AO2, EA1, EI3 and EI4 (unbelievable). One might expect participants not to
recognise all five of the valid set-theoretic representations that follow from combined
EI3 premisses, but to respond based on only a subset of these possible representa-

tions, given the effort that a full analysis would require (as shown in Figure 7.21).
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This hypothesis may account for the five participants who failed to derive the cor-
rect interpretation, “Some conductors are not woods”, which is consistent with all
five possible representations. This finding supports the view that the difficulty of
a syllogism increases along with the number of ways in which its premisses can be
represented (Ceraso and Provitera, 1971; Erickson, 1974; Johnson-Laird and Steed-
man, 1975). It also suggests that participants experienced particular difficulty in

drawing particular negative interpretations of represented premisses.

No metals are woods Combination 1 Combination 2

Some metals are conductors CI\B@ @ @ @

Some metals are not woods

Combination 3 Combination 4 Combination 5

© () CODNCICO)

Figure 7.21: Possible set-theoretic representations of the EI3 premisses

Analogical Representations

A Spearman rank order comparison between the rates of correctness obtained
by the present study and those by Johnson-Laird and Steedmdn (1978) revealed a
significant correlation for the 30 tasks common to both studies (r = 0.37,p = 0.05).
According to Johnson-Laird and Steedman, the form of conclusion generated from
analogical representations depend upon a heuristic relating to the polarity of links in
represented paths: one negative link yields an O conclusion, two negative links yields
an B conclusion, one positive link yields an I conclusion, two positive links yields an
A conclusion, otherwise the conclusion will be indeterminate. This heuristic is now

discussed in relation to several tasks which elicited systematic errors.
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Figures 7.22 and 7.23 show combined premiss representations for the the-
matic EI3 task and thematic AO2 task, where “—” indicates a negative path, “+”
indicates a positive path, and “?” indicates an indeterminate path. Application
of the heuristic predicts, in both cases, an O conclusion for the first path and an
indeterminate conclusion for the second. This prediction is born out in the results:
80.0% O conclusions and 17.5% indeterminate responses for the EI3 task, and 77.5%

O conclusions and 17.5% indeterminate responses for the AO2 task.

- 7 - 7
Some metals are conductors: ¢ (¢)  All honest people are hard workers: hp hp
T Lol
m (m) hw hw (hw)
1L L T
No metals are woods: w w  Some politicians are not hard workers: p (p)
- 7 -7
Figure 7.22: Thematic EI3 Figure 7.23: Thematic AO2

Figures 7.24 and 7.25 show symbolic analogical representations for the ab-
stract and thematic EI4 tasks. Again, the 83.3% O conclusions and 16.7% inde-
terminate responses to the abstract EI4 task, and the 83.3% O conclusions and
16.7% indeterminate responses to the thematic EI4 task, suggest that participants
applied the heuristic to one represented path only and subsequently failed to con-
duct exhaustive logical testing - the fourth stage in Johnson-Laird and Steedman’s
theory. It is interesting to note that participants appeared to experience particu-
lar difficulties with representations from which particular negative or indeterminate
conclusions could be drawn from the represented paths. It is also interesting to
note that the abstract and thematic EI4 tasks give rise to analogical representations
with the same basic structure. This may account for the similar types and rates of

response elicited by these tasks.
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a No disloyal people are married: dp dp

No A are B: a
L L 1 L
b (b) m (m)
! !
Some Bare C: ¢ (c) Some married people are traitors: ¢ (t)
~ 7 — 7
Figure 7.24: Abstract EI4 Figure 7.25: Thematic EI4

Confidence Ratings

Participants’ susceptibility to error, in spite of their high confidence rat-
ings, suggests that many were overconfident in the correctness of their responses,
particularly in the thematic group. A noteworthy link between correctness and con-
fidence appears evident. Although the abstract group outperformed the thematic
group overall, the mean confidence rating for every thematic task is higher than
the corresponding rating for its abstract counterpart, with only one exception. One
might expect a reasoner’s confidence to increase along with their correctness. Given
that the abstract group were consistently more correct but less confident than the
thematic group, the results run contrary to this expectation. This trend may be
attributable to the recognition of familiar everyday terms which led the thematic
group to believe that non-logical everyday heuristics were sufficient for the tasks at
hand, and the recognition of purely symbolic terms which led the abstract group
to believe that a logical approach was more appropriate. As the use of non-logical
heuristics is perceived to involve a less mentally intensive analysis as that required

by a purely logical approach, this may explain the differences in group confidence.
Possible Explanations for Errors

A list of the possible causes for participants’ non-logical responses is given in
p g g

Table 7.3. It seems worthy of note that many of these heuristics and biases are hy-
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pothesised in the cognitive literature to exert a central and dominating influence on
human reasoning processes under experimental conditions or in everyday experience,

and that the predictions of some are more specific than others.

| TABLE 7.3
' Possible causes of error in the study of quantified reasoning

Atmosphere bias

Figural bias

7 formalisation of the syllogistic task
Belief bias

Gricean maxims of quantity or relation
Determinacy bias

The “Same M” fallacy

Caution bias

© 00 N O Ut B W N

Tllicit premiss conversion

—
=]

Inaccurate set-theoretic or analogical interpretations

—
—

Incomplete testing of represented premisses

Table 7.4 contains English translations of those abstract syllogisms in which
three or more participants endorsed the same non-logical conclusion and gives a spec-
ulative list of possible causes for these errors, according to parficipants’ responses.

Inspection of the table suggests that most erroneous responses to the abstract tasks

are explainable in terms of participants’ misapplication of Gricean conventions, de-

terminacy bias and inaccurate representations of the given premisses.
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TABLE 7.4
Abstract syllogisms which elicited 3 or more non-logical responses

Logical Response

Task Premisses Possible Causes
[Erroneous Response]

AA4 All A are B, Nothing 3,5,6
All B are C [Some C are A]

EA3 No B are C, Nothing 1,3,5,6,9, 10
All B are A [No A are C]

EA4 No A are B, Nothing 3,5,6, 10
All B are C [Some C are not A]

El4 No A are B, Some A are not C 10, 11
Some B are C [Nothing]

OA1 Some B are not C, Nothing 1,5,6,9,10
All A are B [Some A are not C]

0A3 Some B are not A, Some C are not A 9,10, 11
All B are C [Nothing]

Note: Numbers of possible causes relate to the list presented in Table 7.3.

Table 7.5 contains English translations of those thematic syllogisms in which
three or more participants endorsed the same non-logical conclusion and gives a spec-
ulative list of possible causes for these errors, according to participants’ responses.

The table suggests that many errors are explainable in terms of the predictions of

set-theoretic or analogical models, and participants’ adherence to Gricean maxims.
The errors are consistent in this respect with those observed for the abstract tasks.
Table 7.5 also suggests, however, that belief bias were more prevalent during the
thematic tasks. These findings are consistent with the view that meaningful syl-

logistic terms, when combined with prior beliefs relating to these terms and the

tendency to use conventions of everyday linguistic usage, may have distorted the

logical demands of some thematic tasks.
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TABLE 7.5

Thematic syllogisms which elicited 3 or more non-logical responses

Task Premisses Logical Response Possible
[Erroneous Response] Causes

AA4  All bank managers are responsible, Nothing [Some trustworthy 3, 4, 5, 6
All responsible people are trustworthy people are bank managers]

AQO2 All honest people are hard workers, Some politicians are not 10, 11
Some politicians are not hard workers honest [Nothing]

TE2 Some scientists are methodical, Nothing [No drunkards are 1, 5, 6, 9,
No drunkards are methodical scientists] 10, 11

IE4  Some edible foods are vegetables, Nothing [No minerals are 1, 4, 5, 6,
No vegetables are minerals edible] 9, 10

EA1 No millionaires are poor, No rich people are poor 10,11
All rich people are millionaires [Nothing]

EA3 No churchgoers are atheists, Nothing [No devout people 1, 3, 4, 5,
All churchgoers are devout people are atheists] 6, 10, 11

EA4 No oranges are apples, Nothing [Some fruits are 3, 4, 5, 6,
All apples are fruits not oranges] 9,10, 1

EI3 No metals are woods, Some conductors are not 10, 11
Some metals are conductors woods [Nothing]

EI4* No disloyal people are married, Some traitors are mnot 4,10, 11
Some married people are traitors disloyal [Nothing]

Note: Numbers of possible causes relate to the list presented in Table 7.3. Premisses

leading to unbelievable conclusions are marked with an asterisk.

It seems worthy of note that tasks AA4, EA3, EA4, EI4 appear in both

Tables 7.4 and 7.5. This suggests that participants from both linguistic groups

experienced difficulties with these tasks, and that the causes for these errors were

not directly related to the level of thematic content used.
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7.6 Conclusions

Given that the response trends observed in the present 7 based study are consis-
tent with cognitive theories designed to explain human reasoning in natural lan-
guage based syllogistic studies, it would appear that participants employed reason-
ing strategies common to both language domains. The fact that the trends are
consistent with a wide range of such theories suggests that participants’ errors were
due to combinations of non-logical reasoning heuristics or biases, as suggested by
Tables 7.4 and 7.5. Given that the responses appeared, in many cases, to depend
on participants’ beliefs towards the seemingly real world referents of the task mate-
rials, it also seems probable that those factors which elicited errors differed between
participants. The errors are clearly consistent with many cognitive theories, but the
question of which particular biases or heuristics caused these errors is not so clear.

It is argued that a failure to distinguish between the laws of everyday rea-
soning and the laws of logic causes many syllogistic errors (Politzer, 1986; 1990).
It was perhaps because of this failure that participants seemed so strongly inclined
to employ everyday linguistic conventions. This trend was particularly noticeable
under the thematic condition, where the presence of realistic terms seemed almost
to cue Gricean conventions and lead reasoners away from the logic of the tasks.
Specifically, many errors seem attributable to participants’ failure to recognise that
the Gricean maxims of quantity and relation are not universally applicable. It was
participants’ adherence to the maxim of relevance, for instance, which seemed to
elicit large numbers of determinate responses to indeterminate tasks. Although the
predisposition to conform with Gricean convention apparently led participants away
from the logic of some tasks, it appeared to encourage the correct conclusion in oth-
ers. Adherence to the maxim of quantity during the background tasks, for example,

seemingly led most participants to unambiguous set-theoretic interpretations of the
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formal A and E expressions. During the main tasks, this maxim also appeared to

lead participants to endorse strong conclusions where weaker ones were also possible.

“Aristotle, after all, invented the syllogisms as a means of enabling people to
extract the logically necessary information from discourse and thus to loose
themselves from the interpretive aquiescence that language invites. To the ex-
tent that people nevertheless perceive and treat the syllogisms as discourse, the
system cannot serve its purpose. How could this problem be remedied? One
possibility might be to make the system less seductively language-like. One
might recast it on terms of, say, propositional logic. The major drawback to
this solution is that the logic would remain relatively inaccessible except to

reasoners with special training” (Adams, 1984, p.303-304).

Given their logical training and the explicitly logical nature of the tasks, one
might have expected computing scientists to have been cued into using the laws of
logic throughout. The fact that their levels of correctness were generally higher than
those observed in logically equivalent natural language guises suggests that the laws
of logic exerted a dominating influence on their reasoning. The non-negligible rates
of observed errors, however, suggest that the users of formal methods are liable
to disregard logic in favour of non-logical biases and heuristics, including those
based on pragmatic convention that occur regularly in everyday communication. -
With regard to Adams’ (1984) hypothesis, therefore, formalisation in terms of a
notation with strong foundations in propositional logic appears to provide only
a partial remedy for people’s errors in the syllogistic task; it does not seem to
prevent reasoners from applying inappropriate language conventions from ordinary

discourse, including those reasoners with “special training”.
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7.7 Summary

This chapter began with a discussion of how the categorical syllogism provides a
means for explicating some of the core processes underlying quantified reasoning and,
moreover, those underlying human reasoning in general. This led onto a review of
the various forms of systematic error and bias exhibited during natural language
based studies of syllogistic reasoning. This review formed a basis for design of the
formalised study. The chapter concludes with a discussion of the results, which again
suggest that many of the non-logical heuristics that people exhibit when reasoning
about logically equivalent statements in everyday language are liable to transfer over
into the formal domain. The next chapter explores a method for reformulating the
results of the three main empirical studies in terms of a single probablistic model

for predicting human reasoning performance in formalised contexts.
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Chapter 8

Theories to Models to Measures

“When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely, in your thoughts,

advanced to the stage of science” (Thomson, 1891, p.80).

Our empirical studies have enabled us to identify a range of factors, including gram-
matical constructs and linguistic conditions, which are liable to affect human rea-
soning performance in formalised contexts. This chapter recasts the results of these
studies into a descriptive statistical model for measuring the levels of psychological
complexity likely to be experienced by users when reasoning about formal expres-
sions in Z specifications. It demonstrates how such a model might be applied in
software engineering contexts so that corrective actions can be taken to reduce the
likelihood of inaccurate development decisions being made. It is important to recog-
nise that the model is demonstrated in order to illustrate the concepts involved
in assessing the psychological complexity of formal specifications, rather than to

present a “tool” which is ready for general application. The chapter concludes with
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a description of how far the methods used during the model’s construction satisfy

generally accepted software measurement validation criteria.

8.1 A Model of Conditional Reasoning

A logistic regression analysis was used to model the data generated during the
formalised study of conditional reasoning (see Chapter Five). Table 8.1 shows that
the greatest variance in participants’ levels of correctness was accounted for, first,
by the reasoner’s level of expertise, second, by the type of inference drawn and,
third, by the degree of meaningful content in the task material. The x2 values may
be interpreted as the improvements made to the accuracy of the model’s predictions
each time a significant variable was added as a parameter to the model, in a forward
stepwise manner. DF refers to the degrees of freedom associated with these values.
Although the accuracy of a logistic regression model’s predictions generally increases
along with the number of input parameters that it allows, there comes a point at
which the inclusion of new parameters does not improve the accuracy of the model
significantly. This explains why polarity type has been excluded as a parameter
from the model and a “fit” to the observed data has been achieved using only three

parameters: expertise level, inference type and material type.

TABLE 8.1
Improvements made to the conditional model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added
1 53.635 2 < 0.01 Expertise Level
2 47.396 3 < 0.01 Inference Type
3 12.546 1 < 0.01 Material Type
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A standard measure of how closely a regression based model reflects its un-
derlying data is to classify the proportion of predictions given by the model that
are consistent with the observed data points from which the model was generated
(formula in Norusis, 1996). The “Classification-fit” for our model of conditional
reasoning is 88%. Given that only 12% of our data points are misclassified, this
suggests that the model provides a reasonable fit to the data.

Another measure of how well a regression based model fits its observed data
is called the “Goodness-of-fit”. This statistic compares the observed probabilities
with those predicted by the model. Using this value it is possible to calculate the
“Percentage of variability” in the data accounted for by the model. This is ob-
tained by dividing the sum Qf the parameters’ improvements to the model by the
Goodness-of-fit value for the model with no explanatory parameters. This calcula-
tion tells us that 18% variance in the observed data is predictable by our model.
Dawes’ (1971) model, in comparison, accounts for 16% variance. The mathematical

formulae necessary for these calculations are shown below (adapted from Norusis,

1996, p.10).
P ¢ of variabilit Sum of improvements
ercentage of var y Goodness-of-fit
Sum of improvements > X% where ¢ is each parameter in the model
Residual? where Residual is the difference between
Goodness-of-fit > _}5% .
i i the observed value and the predicted value P;
Calculation for the model of conditional reasoning éig:g;g = 18% variance

A logistic regression analysis generated the results shown in Table 8.2. This
table shows: how our significant experimental variables became encoded as input
parameters to the model, their relative contributions to participants’ correctness

(B), the standard error (SE), the degrees of freedom (DF), and their statistical
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significance. [, is the variable mean, calculated as the summation of the 8 values
for each factor in the variable, divided by the number of factors in the variable. The
regression constant, Const, refers to the overall mean probability of being correct

independent from the influence of other variables.

TABLE 8.2
Parameters in the model of conditional reasoning

Factor Parameter 3 SE DF Significance Ba
Material-Abstract M1 -0.8794  0.25 1 < 0.01 -0.4397
Inference-MP I1 2.9167 0.55 1 < 0.01
Inference-MT 12 0.7010 0.30 1 0.02 1.1197
Inference-DA 13 0.8610 0.31 1 0.01
Expertise-Novice E1 -1.7765 0.40 1 < 0.01 0.5001
Expertise-Proficient E2 -0.0207 045 1 0.96 '

Const  2.4588 0.20 1 < 0.01

The [ estimates yielded by a logistic regression show the extent to which each
of their corresponding factors influence the dependent variable. In the context of our
reasoning studies, as § increases in value so does a participants’ chances of drawing a
logically correct conclusion under the corresponding expeﬁmental condition. These
values represent the parameters for our conditional model of inferential complexity.

According to Kleinbaum (1994), the “odds” of an event occurring are cal-
culated by the probability that it will occur divided by the probability that it will
not. The summation of the § estimates gives the log of the odds, or “logit” value,

as shown in the following general formula.

logit(Material, Inference, Expertise) =

Const + By + Br1 + Bra + Brs + Be1 + B2
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The following examples demonstrate how this formula can be applied to
calculate the logit values under a range of conditions. These examples illustrate
how the calculations are always performed relative to the regression constant and

the [, parameter means.

logit(Abstract, MP, Novice) = (Const + 1+ 11+ Be1) — (Buz + Bz + Bee)
logit(Abstract, DA, Ezpert) = (Const + Byr1 + B13) — (Buz + Bz + OEz)
logit( Thematic, MT, Ezpert) = (Const + fr2) — (Bms + B + BEx)
logit(Thematic, AC, Ezpert) = Const — (Buyy + Bz + BEg)

8.2 A Model of Disjunctive Reasoning

A logistic regression analysis was used to model the data generated during the for-
malised study of disjunctive reasoning (Chapter Six). Table 8.3 shows that the
greatest variance in participants’ correctness was accounted for, first, by the rea-
soner’s level of expertise and, second, by the degree of meaningful content. A fit to
the data (Classification-fit = 91%, Percentage of variability = 6%) was achieved by
excluding the following parameters: the type of inference to be drawn, the polarity

of premisses, and the position of the term denied or affirmed.

TABLE 8.3

Improvements made to the disjunctive model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added
1 33.272 2 < 0.01 Expertise Level
2 4.336 1 0.37 Material Type

The g estimates quantifying the degree of influence exerted by each of these
variables on participants’ correctness during the study of disjunctive reasoning are

shown in Table 8.4.
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TABLE 8.4
Parameters in the model of disjunctive reasoning

|
i
|

Factor Parameter SE DF Significance Bz
Material-Abstract M1 0.5888 0.29 1 0.04 0.2944
Expertise-Novice El -2.4737 0.55 1 < 0.01 L4719
Expertise-Proficient E2  -1.9421 054 1 <001 7

Const  2.5742 0.20 1 < 0.01

The general logit formula for predicting the level of inferential complexity

associated with a Z disjunctive expression is as follows.

logit( Material, Ezpertise) = Const + By1 + fr1 + Br2

8.3 A Model of Conjunctive Reasoning

A logistic regression analysis was used to model the data generated during the
formalised study of conjunctive reasoning (Chapter Six). Table 8.5 shows that the
greatest variance in participants’ correctness was accounted for, first, by the degree
of meaningful content and, second, by the reasoner’s level of vexpertise. A fit to

the data (Classification-fit = 94%, Percentage of variability = 4%) was achieved by

excluding the following parameters: the type of inference to be drawn, the polarity

of premisses, and the position of the term denied or affirmed.

TABLE 8.5

Improvements made to the conjunctive model by stepwise addition of variables

Step x2 Improvement DF Significance Variable Added
,3 8.190 1 < 0.01 Material Type
; 2 11.261 2 < 0.01 Expertise Level
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The 3 estimates quantifying the degree of influence exerted by each of these
variables on participants’ correctness during the study of conjunctive reasoning are

shown in Table 8.6.

TABLE 8.6
Parameters in the model of conjunctive reasoning

Factor Parameter 3 SE DF' Significance Bz
Material-Abstract M1 1.5017 041 1 < 0.01 0.7508
Expertise-Novice E1 -2.4445 1.08 1 0.02 1.6309
Expertise-Proficient E2 24482 1.05 1 0.02 o

Const  3.3331 0.41 1 < 0.01

The general logit formula for predicting the level of inferential complexity

agsociated with a Z conjunctive expression is as follows.

logit(Material, Expertise) = Const + Buy1 + Br1 + Br2

8.4 A Model of Quantified Reasoning

A logistic regression analysis was used to model the data generated during the
formalised study of quantified reasoning (Chapter Seven). Table 8.7 shows that
the greatest variance in participants’ correctness was accounted for, first, by the
reasoner’s level of expertise, second, by the first premiss mood type and, third,
by the degree of meaningful content. A fit to the data (Classification-fit = 92%,

Percentage of variability = 3%) was achieved by excluding the following parameters:

figure type, second premiss mood type, and the believability of logical conclusions.
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TABLE 8.7

Improvements made to the quantified model by stepwise addition of variables

Step x? Improvement DF Significance Variable Added
1 24.476 2 < 0.01 Expertise Level
2 10.305 3 0.02 First Mood Type
3 6.897 1 < 0.01 Material Type

The 3 estimates quantifying the degree of influence exerted by each of these
variables on participants’ correctness during the study of quantified reasoning are
shown in Table 8.8.

TABLE 8.8
Parameters in the model of quantified reasoning

Factor Parameter 3 SE DF Significance B
Material-Abstract M1 0.5363 0.21 1 0.01 0.2682
Expertise-Novice E1 0.6624 0.42 1 0.19
Expertise-Proficient ~ E2  -0.8050 024 1  <0.01 -0.0476
First Mood-A F1 -1.8700 0.34 1 0.58
First Mood-E F2 -0.7561 0.33 1. 0.02 -0.2300
First Mood-I F3 0.0233 0.36 1 0.95

Const  2.8894 0.16 1 < 0.01

The general logit formula for predicting the level of inferential complexity

associated with a Z quantified expression is as follows.

logit(Material, Expertise, First Mood) =
Const + Bm1 + Be1 + Br2 + Bri + Brz2 + Brs
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8.5 Conversion to Absolute Probabilities

The model developed thus far provides a means by which the users of formal methods
can predict the likelihood that a reasoner of given expertise will draw an inference
of a given type about a given type of logical statement under specific linguistic
conditions. At present the model yields logit values which appear to have little
meaning in isolation. What we are lacking is a means for translating these values
into absolute probabilities (0 < p < 1). The following formula, given by Norusis
(1996), performs the necessary translation.
o?
P=Tier

... where z is the logit value, and e is the exponential function

8.6 Demonstrating the Model

So far in this chapter we have reviewed a procedure for formulating a predictive
model based on the results of our empirical experiments. We now turn to explore
how the model might be employed to reduce the potential for human error and

influence development decisions in everyday software engineering contexts.

8.6.1 A Missile Guidance System

We can envisage Will Wise, a senior software developer on a defence based project,
having been presented with the operational specification for a guided missile system,
as shown in Figure 8.1. Suppose that Will is asked by his team leader to determine

the implications of including schema MissileStatus within schema MissileCheck.
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[COORDS]
MESSAGE = Hit | Miss

__ MissileStatus
current, target : COORDS
report : MESSAGE

report’ = Hit

_ MissileCheck
= MissileStatus

current # target = report = Miss

Figure 8.1: Thematic Z specification for a missile system

Given that the specification is expressed in realistic material, whose variable
identifiers refer to fast moving animate objects, we can safely classify its material as
being thematic in nature. Supposing Will had acquired a fair amount of Z experience
by formally verifying part of a previous project, had studied several systems of logic
at university and had even gone on expensive Z training courses run by the company,
we might be inclined to regard Will as an expert Z user. If we analyse the logic of
the terms involved we would see that the consequent of a conditional rule is being
denied, which suggests that Will is being invited to draw a modus tollens inference.
We now have the three parameters that we need to apply our model of conditional
reasoning: the material type (Thematic), the Z expertise of the reasoner (Expert),
and the type of inference to be drawn (MT). The question that we must ask is: How
likely is Will to infer the logically correct conclusion, current = target, under these
conditions? Application of the model predicts that Will is 95.6% likely to draw this

conclusion, which is calculated as follows.
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To calculate logit( Thematic, MT, Expert):

z = (Const + fr2) — (Buz + Bz + Prw)

2 = (2.4588 + 0.7010) — (—0.4397 + 1.1197 — 0.5991)
z = 3.0789

To translate into an absolute probability:
p=e"/(1+¢")
p = 30789 /(1 4 ¢3.0789)

p = 0.9560

Now suppose that the same specification and instructions had been given
to Sam Slow, a new recruit and self-professed “novice” Z user. Suppose also that
the specification given to Sam was not expressed in thematic material at all, but
used single letters for variable names seemingly bearing little relation to real world
objects, as shown in Figure 8.2.

[C]
M = ml|m2

— MS

p,q:C
r: M

r' =ml

—MC
EMS

pFEg=T1=m2

Figure 8.2: Abstract Z specification for the missile system

How would these changes affect Sam’s ability to infer the logical conclusion,
p = g7 In the absence of a suitable statistical method, most software engineers would
probably make a subjective, educated guess based on their feelings towards Sam and

the specification. The scope of our model is fortunately sufficient to account for these
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conditions and can provide us with a much more quantifiably precise estimate.

To calculate logit(Abstract, MT, Novice):

z = (Const + Bar1 + BI2 + BEL) — (Bus + Bz + BEx)

2 = (2.4588—0.8794+0.7010—1.7765) — (—0.4397-+1.1197—0.5991)
z = 0.4230

To translate into an absolute probability:
p=e/(1+¢e")
p = 04230 /(1 4 ¢0-4230)

p = 0.6042

The question arises, however, of whether Sam’s team leader would be pre-
pared to risk the 35% differential in probability that Sam would not reach the same
logical conclusion as Will, given the criticality of the inference. Now consider the

revised version of our missile system’s formal specification shown in Figure 8.3.

__ MissileStatus
current, target : COORDS
report : MESSAGE

report’ = Hit

__ MuissileCheck
= MissileStatus

report = Hit = current = target

Figure 8.3: Revised Z specification for the missile system

If we were now to analyse the logic of the terms following the schema in-
clusion we would see that the antecedent of the conditional rule is being affirmed,
which suggests that a much simpler, modus ponens, inference is required. Sup-
posing Will and Sam are now asked to determine the implications of the schema

inclusion, the model predicts that their potential for failing to draw the logical con-
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clusion, current = target, has decreased to just 0.5% and 2.9% respectively. These
values are given by logit( Thematic, MP, Ezpert) and logit(Thematic, MP, Novice),
and performing the necessary translations. It should now be clear that application
of the model has strong implications for the ways in which formal specifications are

written and for the levels of expertise acquired by those people who work with them.

8.6.2 A Security Door Alarm

We have seen how our model might be used to quantify and compare the levels of
inferential complexity likely to be experienced by people with different levels of ex-
pertise when reasoning about formal expressions with different levels of meaningful
material. We now turn to consider how the model might be used to discriminate
between the logical forms of statements themselves, according to each one’s propen-
sity for eliciting erroneous decisions. As a further illustration of our model, we now
consider an altogether different scenario.

Imagine that Will Wise is specifying a security alarm system operation,
SecurityCheck, which is derived from the natural language requirements “The alarm
must be set whenever the door is locked”. The specification is intended for Sam
Slow, a programmer with little formal methods experience, who is responsible for
implementing the system. Although Will recognises that it is possible to write the
specification in one of numerous possible ways, two particular candidates that Will is
contemplating are SecurityCheck(a) and SecurityCheck(b), as shown in Figure 8.4.
It is worthy of note that the conditional expression in SecurityCheck(a) and the
disjunctive expression in SecurityCheck(b) are logically equivalent; p = ¢ = -p V q

(proof in Lemmon, 1993, p.59).
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DOOR := Locked | Unlocked
ALARM := On | Off

__DoorStatus
door_status : DOOR
alarm_status : ALARM

door_status' = Locked

__ SecurityCheck(a) — SecurityCheck(b)
=DoorStatus ZDoorStatus
door_status = Locked = —door_status = Locked V
alarm_status = On alarm_status = On

Figure 8.4: Two specifications of SecurityCheck

In the absence of an independent measurement system, the criteria that Will
uses to discriminate between the two candidates is liable to vary. It might, for exam-
ple, be based on Will’s personal writing style preferences, his previous experience in
writing for audiences generally, or his recollection of expressions which have caused
Sam to err in the past. Suppose that Will decides to favour the SecurityCheck(a)
option based on the intuitive feeling that it is easier to see that alarm_status = On
following the inclusion of schema DoorStatus in SecurityCheckv, and because there
are fewer grammatical constructs involved. The question we must ask is: Will this
decision lead to a specification which is less likely to cause Sam to err? Applica-
tion of the model predicts that the likelihood of Sam failing to make the neces-
sary inference with SecurityCheck(a) is only 2.88%, as compared with 21.79% for
SecurityCheck(b). Will’s intuitive feelings therefore appear to be well founded and,
based on these predictions, he would be well advised to favour the former option.
Although application of the model may not have changed the specification author’s
decision making process in this instance, the main difference is that his intuitive

feelings are now supported with concrete empirical evidence.
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8.7 Model Evaluation

A popular methodology advocated for the procurement of software metrics begins
by identifying those attributes which influence the quality of a product or process,
formulating these in terms of a model, and then conducting empirical research to
validate the model (Curtis, 1979; Fenton and Pfleeger, 1996). Sometimes, however,
the theoretical or empirical foundations for software metrics are improperly consid-
ered prior to their formulation or are checked only as an afterthought. Roche (1994,
p.80) states that the “usual method involves developing a metric and then searching
for some data for a validation study that often involves correlations between the
metric values and some attribute that can be found to be correlated with the data!”
The methodology used to develop our model differs from conventional approaches
in that an initial empirical study gave rise to our theories about which attributes
of a formal specification influence the development process (Vinter et al., 1996).
It was also empirical research which generated the data that populates our metrics
(Vinter et al., 1997a; 1997b; 1997¢; 1997d). So rather than construct a formal model
and then subject it to empirical validation, our methodology has proceeded in the
opposite direction by feeding data from empirical studies into a formal model.

It is argued in the measurement literature that the evaluation of software
metrics must be performed at both a theoretical and an empirical level (Sheppard
and Ince, 1993). In simple terms, the former asks whether the correct model has

been built, and the latter asks whether the model has been built correctly.

8.7.1 Theoretical Validation

The criteria specified by Sheppard and Ince against which a theoretical validation of
software metrics may be performed, along with a discussion of the extent to which

our model satisfies these criteria, are described as follows.
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1. The model must conform to widely accepted theories of software development
and cognitive science. This criterion is satisfied insofar as the model rests
upon the well supported theory from software engineering that errors in rea-
soning with software specifications are a potential source of software defects or
anomalies (Fenton and Pfleeger, 1996; Potter et al., 1996), and the well sup-
ported theory from cognitive science that people are prone to error and bias
when reasoning about specific types of logical statement in natural language

(Braine, 1978; Evans et al., 1993).

2. The model must be as formal as possible. In other words, the relationship
between the input measurements and the output predictions must be precise
i all situations. Furthermore, the mapping from the real world to the model
must be made as formal as possible. The model meets this criterion insofar as:

it always generates the same output for a given combination of inputs, every

valid combination of input parameter yields a deterministic output, and its

predictions are always given in a quantifiably precise, numeric form.

3. The model must use measurable inputs rather than estimates or subjective

Judgements. Failure to do so leads to inconsistencies between different users

: of the metric and potentially anomalous results. The model meets this crite-
rion insofar as the task of determining input parameters to the model is as
» objective as one could reasonably expect for a model of psychological com-
plexity. For example, the extent to which the logical terms have real world
referents determines the “material type” parameter, the type of reasoning to
be performed lends itself to the “inference type” parameter, and the length
or type of Z experience acquired by the reasoner lends itself to the “expertise

type” parameter. There is some room for inconsistency in users’ assessment

of which values to use as input parameters. Different users might not, for
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example, classify a given individual at the same expertise level. This kind of
inconsistency might be reduced through adherence to simple guidelines or the
maintenance of historical employee records. It seems likely that a certain de-
gree of subjective judgement will always be present, however, even if obscured

by guidelines based on “deterministic” criteria.

. The ordering of model evaluations is intentional, since meaningful empirical

work is of questionable significance when based upon meaningless models of
software. Therefore, theoretical analysis of the properties of a model ought to
precede validation. The model meets this criterion insofar as its central un-
derlying hypothesis is well founded. The question of whether users of formal
methods are liable to err in ways similar to those observed for the users of
natural language seems a reasonable one to ask in light of recent cognitive
findings and some of the problems facing today’s software developers. This
hypothesis underlies the model, whose worth is evident from its ability to iden-
tify potential sources of development errors and its ability to provide empirical

support for some of the claims associated with formal methods.

8.7.2 Empirical Validation

In order to justify the way in which a software metric is defined it is often necessary
to seek independent and objective evidence which supports the credibility of its
calculations. A common criticism of some systems is that the measures are either
unsupported by empirical evidence or that the methods used to validate them are
flawed or inadequate (Ory, 1993; Kitchenham, 1991). It is argued that several of the
measures proposed by Halstead (1977), for example, are unreliable because: they
are based on subjective personal belief or discredited psychological theories, there

are flaws in the mathematical derivation of the formulae, the metrics do not scale
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up to larger programs, and the experiments used to validate the metrics were flawed
in their design (Coulter, 1983; Ince, 1989).

The method used to formulate our model in this thesis has been advantageous
in the sense that the research necessary for its empirical validation was performed
during the model’s formulation. In order to see this one has only to ask the question:
How might one approach the empirical validation of the model or its underlying
hypotheses? The answer is that one would run empirical experiments designed
to test the extent to which the trained users of formal methods succumb to error
and bias when reasoning about specific combinations of formal operator. But this is
clearly something which has already been done, indeed, it is something we needed to
do in order to generate the model. This is not to suggest, however, that a replication
or extension of the empirical studies would not be of value. Further empirical studies
would help to refine the probability data which populates the model; the greater
and more representative the samples which underly the model, the more accurate its
predictions are likely to be. Such studies may also call into question, via refutation,
some of the theoretical assumptions which have hitherto been unrecognised, hence,
refining the theoretical basis for the model.

There now follows a discussion of the criteria specified by Sheppard and Ince
against which an empirical validation of software metrics may be performed, along

with a description of how far our model meets these criteria.

1. The hypothesis under investigation. When the aim of a model has not been
clearly defined it can be unclear as to what is being validated, which can lead
to significant results being derived from an unusable model. The aims and
scope of our model, however, were defined at the outset of this research and
are spelt out clearly in Chapter One of this thesis. The criteria against which

the model may be validated should therefore be clear. Given that these early
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discussions and our theoretical validation have shown the relevance of the
hypotheses underlying the model to current software engineering concerns, it

should be evident that the model can generate usable and meaningful results.

. The artificiality of the data used. The data which populates the model is
based on actual, rather than theoretical, instances of human reasoning by large
numbers of staff, students and professional users, each with various levels of
expertise. It is therefore representative of the full range of formal methods’
users. This provides for a degree of flexibility in the model’s predictions.
Although this could, of course, be improved with more resources and unlimited
access to a cooperative software engineering community, the data obtained
seems adequate for the demonstration of our model. The null hypothesis
which we sought to test during validation was whether the users of formal
methods succumb to similar non-logical errors as those committed by users
of natural language. Given that the results of our empirical validation could
have shown users not to reason in these ways by failing to err, or by erring in

different ways, the null hypothesis gave rise to a fair test of the model.

. The validity of the statistics employed. The statistical tests uséd in the em-
pirical validation of a model must be capable of refuting the hypothesis under
investigation. The decision to use analyses of variance was dictated by the need
to know which factors had a significant influence on participants’ reasoning
performance. The decision to use regression based techniques was dictated by
the need for quantifiably precise estimates of how far each factor contributed
towards participants’ reasoning performance. The statistical tests were there-
fore appropriate for their purpose. Given that they could, and sometimes
did, yield results which conflicted with intuition and the recommendations of

published literature, these tests were applied objectively.
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Having evaluated the model against Sheppard and Ince’s criteria at an em-
pirical level, we now scrutinise the relation between its predictions and the results
of our empirical studies. We calculated earlier that the probability of drawing an
AC conditional inference for an expert reasoner in thematic material is 92% (p =
0.9151). If we were to calculate the inferential complexity for the same inference and
material type but for lesser experienced 7 users, we would expect to obtain lower
probability values. These calculations yield a slightly lower p value of 0.9135 for a
proficient user and a much lower p value of 0.6460 for a novice user. This shows that
there is an incremental effect on the model’s predictions for users with increasing
levels of expertise, and that the increment in p caused by an increment in one of the
model’s input parameters is far from being a uniform one, as one might expect. The
same incremental effect for expertise level is observable in the conditional reasoning
model’s predictions across all four inference types and both material types.

Based on the results of our study of conditional reasoning, we would intu-
itively expect to see a similar incremental effect by maintaining the same material
and expertise type then changing inference type from MP to AC to MT to DA,
or by maintaining the same inference and expertise type then changing material
type from TFL to AFL. So according to the model, a user’s chances of drawing a
logically correct conditional inference diminishes along with their level of expertise,
the ease of the inference, or the amount of realistic material. Trends in the model’s
predictions, such as this, are entirely consistent with the results of our empirical
studies which revealed significant correlations between participants’ expertise lev-
els and their levels of correctness. The real worth of our model, however, becomes
evident in those cases where the rank orders of complexity in its predictions do
not conform so strongly with our intuitive expectations. In such cases, the model
may alert its users to potential problem areas in formal specifications which might

otherwise be overlooked in design reviews.
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8.8 Summary

This chapter has shown how closely our descriptive model reflects the experimental
data upon which it is based, how the model might be applied in software engineering
contexts, and how far the methods used in generating the model satisfy well accepted
software measurement criteria. We have progressed from cognitive theories of human
reasoning, to models of the ways in which people reason about formal specifications,
which in turn yield predictive measures of inferential complexity. Our investigative

line of inquiry has therefore proceeded hitherto from theories to models to measures.
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Chapter 9

Conclusions

“Only when certain events recur in accordance with rules or regularities, as
is the case with repeatable experiments, can our observations be tested -
in principle - by anyone. We do not take even our own observations quite
seriously, or accept them as scientific observations, until we have repeated

and tested them” (Popper, 1992, p.45).

This chapter begins with a discussion of how far the overall and subsidiary aims
of the research programme were met. It reflects on the methodology, describing
the problems that were encountered and how, with the benefit of hindsight, they
might have been avoided or reduced. The research results, the proposed model and
its underlying theories are discussed in relation to their contribution to empirical
knowledge, and their implications are explored from the perspectives of the software
engineering and cognitive science communities. Several possible directions are pro-
posed that could usefully build upon these results. Finally, some concluding remarks

summarise the main findings from the programme of investigation.

1
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9.1 Meeting the Research Aims

The overall aim of this research was to explore a new approach for supporting soft-
ware engineering claims with empirical evidence and help to reduce the numbers of
defects that appear in software systems as a result of poorly written software spec-
ifications. In pursuit of this aim we have developed a prototype system of metrics
based on empirical data. These metrics can be used, first, to evaluate some of the
psychological claims associated with formal methods, second, to identify potential
sources of reasoning difficulty in specifications and as a basis for engineering less
error-prone designs. The overall aim of this research has therefore been met. It
should be recognised, however, that the descriptive model developed in this thesis
is a tentative one. It cannot account for all of the different forms of human infer-
ence that could lead to the introduction of software defects, nor all of the linguistic
conditions which could evoke them. This was inevitable in view of the exploratory
nature of the investigation and the fact that the overriding aim was to demonstrate
the feasibility of the research approach, rather than the generality of the metrics.
Three subsidiary aims were identified under the overall aim at the outset of

the project. We now consider how far these were met.

1. Identify through o review of the cognitive science literature those key factors
which significantly affect human reasoning performance in natural language
contexts. Links to empirical knowledge and theories stemming from cognitive
research were used to identify properties of formal specifications liable to elicit
human reasoning errors in formalised contexts. In searching for possible lin-
guistic sources of reasoning difficulties in a given language, it is reasonable to
focus on common properties which have been shown to cause reasoning errors
elsewhere. The line of inquiry was therefore directed towards similar variables

for which cognitive science had produced empirical evidence of people’s sys-
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tematic fallibility in natural language contexts. These variables included log-
ical operators, such as the propositional connectives and predicate quantifiers
from logic, and linguistic conditions, such as the degree of thematic material,
the believability of speculative conclusions, the structure of the inference to

be drawn, and the order of terms manipulated.

. Test through empirical study whether the non-logical errors and biases that

reasoners exhibit in natural language contexts are liable to transfer into the
formal domain. Different combinations of those variables identified under the
first subsidiary aim were manipulated under experimental conditions and the
resulting effects on reasoning performance were noted. The results suggest
that non-logical reasoning heuristics can be cued by the way in which logical
statements are expressed and the linguistic conditions in which they appear.
This finding is consistent with the results from natural language based stud-
ies which suggest that control of an individual’s reasoning may be usurped
by higher order, non-logical, language independent cognitive processes. The
presence of this “transfer effect” is further supported by the fact that partic-
ipants’ erroneous responses were consistent with co’gnitivé theories originally
propounded to account for non-logical errors in natural language based studies

and with trends in the empirical data yielded by these studies.

. Formulate a system of metrics for quantifying how far different combinations

of these factors are likely to affect human reasoning performance in formalised
contexts. Having established that users of formal methods are prone to various
forms of error and bias when reasoning about formal specifications, a means
of assessing the potential of alternative design representations for admitting
these non-logical heuristics was developed. This was achieved by synthesising

the results of the main studies into a descriptive model which may be used
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to quantify the levels of inferential complexity in given specifications. The
model is not complete, of course, but it has proved adequate for its intended
purpose by demonstrating a means for discriminating between alternative de-
sign representations in software engineering contexts, and by demonstrating
an empirical means for testing some of the software engineering community’s

psychological claims relating to the use of formal methods.

9.2 Reviewing the Research Methodology

Given the lack of previous research into the cognitive processes involved in formal
specification, the aims and scope of this project were far from clearly defined at its
outset. Although the intention had been to help reduce the numbers of errors com-
mitted in the specification process as a result of erroneous human decisions, it was
unclear exactly what an investigation of this nature would entail and how it could
be performed. The initial study helped in this respect by explicating some of the
key cognitive processes involved in formal specification, generating empirical data
around which the research methodology could be refined, and instilling a sense of
confidence that there were relevant and interesting findings to be made. It might be
argued that our initial investigation could have been omitted and attention directed
immediately towards the main studies, since it was only their results which formed
the basis for our system of metrics. This programme of research could not have
achieved its aims, however, without the knowledge gained from the initial study, be-
cause it was this knowledge which set a context for the main studies by pointing to
likely sources of human reasoning errors in formalised contexts, and by stimulating
empirical hypotheses which the main studies sought to address.

The programme of investigation has broken with two marked trends in tradi-

tional computing science research. This was necessary in view of the research aims.
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First, it has focussed on the human users of software engineering technology, rather
than on the technology itself, in the belief that users play a highly significant part
in determining the performance of that technology. Second, it has adopted much
more of an interdisciplinary stance than many computing research programmes, by
applying theories and procedures from cognitive science to address software engi-
neering problems. Computing research stands to benefit by adopting a cognitive
stance, first, by learning the psychological implications of applying its technologies
and, second, by supporting or refuting the claims relating to these technologies with
empirical evidence. It is therefore not only the results or theories to emerge from
this research which may be beneficial to the software engineering community, but
the way in which the research was conducted.

Although computing research has proposed a range of statistical models to
characterise various kinds of complexity in development contexts, the ways in which
some models are formulated reflect only the personal views of their originators; these
views are not shared by the wider computing or cognitive communities (Coulter,
1983; Ince, 1989; 1990; Ott, 1996). Consider, for example, the metrics proposed
by Halstead (1977) and DeMarco (1982). A comparison with the methods used
to generate our model of inferential complexity reveals some marked differences,
perhaps the most notable of which is that all and only the data from our empirical
studies populate the model’s mathematical formulae; our calculations do not rely
upon subjective weightings. Whilst it may be argued that subjective judgement
decides which variables are input as parameters to the model, selection of these
variables can now be refined, along with their underlying theories, in a scientific way,
that is, in response to repeatable studies building on the results of this research. It
is noteworthy that new research directions at other UK academic sites, such as the
Empirical Assessment of Formal Methods project at Southampton University, are

seeking further means for the assessment of claims relating to formal methods.
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Although the descriptive model developed in this thesis provides an empir-
ical means for assessing some of the claims associated with formal methods, there
is no apparent reason why similar models should be restricted to the Z notation,
to formal methods, to the specification process, nor even to human reasoning. By
using theories from cognitive science as a basis for the design of appropriate studies
and following the same procedures used in this research, similar models might be
formulated to measure the psychological complexity of other software engineering
technologies, such as program design or source code. As in this research, the pro-
cess of generating data to support such models can help to identify unforeseen or
overlooked problems associated with the use of software technologies, regardless of
whether these technologies are emerging or well established. The resulting models
may be used to mitigate against various forms of human error, and as an empirical
basis for evaluating anecdotal claims or comparing competing technologies.

With the benefit of hindsight the prompt used to extrapolate confidence rat-
ings during the three main studies could have been improved. Although the intention
had been to present category titles on a linearly ordered scale, it is debatable as to
whether such an order is suggested by: “Not confident”, “Guess” and “Confident”.
The category “Guess” is problematic because it is unclear how far it falls between
the other two categories or, indeed, whether or not it even does so. This problem
might be resolved by selecting more appropriate category titles: “Not confident”,
“Slightly confident”, and “Highly confident”. Alternatively, the use of a numeric
scale would ensure a fixed interval between participants’ ratings.

A central component of the methodology used in this research was the appli-
cation of theories and procedures from cognitive science to assess the performance
of human participants under experimental conditions. Given that our experimen-
tal tasks required participants to exercise deductive forms of reasoning in formalised

contexts to reach the correct answers, the decision to use logic as the criteria against
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which to assess participants’ responses was a natural one. This decision simplified
the task of performance assessment by making the concepts of “logicality” and “cor-
rectness” synonymous in the context of our experiments. Under other criteria the
correctness of participants’ judgement might not be so clear-cut, particularly where
this criteria is based solely on the experimenter’s personal opinion. It should be
recognised that the methodology may be unsuitable for experiments based on infor-
mal reasoning, for example, where the criteria used to evaluate the correctness of
human decisions often cannot be formally defined and what is regarded as “correct”
is liable to vary between individuals - as exemplified during our initial investigation,
which incorporated a survey of writing style preferences. Ideally, the criteria for
assessing performance will provide an independent, categorical assessment of cor-
rectness for all possible response types, in a manner analogous to logic for deductive
reasoning. Such criteria might, for example, include the laws of arithmetic to as-
sess the correctness of participants’ mathematical calculations, or the grammar of
a programming language to assess the syntactical validity of responses expressed in
that language.

The problem of finding adequate numbers of suitably skilled participants is
one which faces applied cognitive science research in general. This problem became
pronounced during the latter stages of this research as the supply of willing and
eligible volunteers gradually approached exhaustion. The problem was exacerbated
by the need for adequate numbers of participants with specific levels of expertise
in order that the experimental groups could be counter balanced and appropriate
statistical tests performed. At present there is a relatively small number of regu-
lar 7 users, even fewer industrial practitioners, and many of these are reluctant to
participate in what are generally perceived to be tests of their competence. This
is understandable because the question of whether formal methods do in fact lead

to the benefits commonly purported in the computing literature remains a com-
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mercially sensitive issue for the producers of formal methods technologies, for the
organisations who purchase and apply them, and for the customers who rely upon
systems developed from them. This was illustrated in the many queries raised by
participants from industrial organisations about whether their “test scores” would
be made available to their seniors or to external organisations. Although prospec-
tive volunteers were told that their anonymity would be preserved and that their
responses would be treated in the strictest confidence, the aforementioned concerns

may have dissuaded many other industrial users from participating in this research.

9.3 Further Implications and Future Directions

This thesis has focussed almost exclusively on variables for which cognitive science
has produced empirical evidence of people’s systematic fallibility, namely, specific
combinations of logical constructs and linguistic conditions in natural language. It
is possible, however, that reasoning in formalised contexts may be influenced signifi-
cantly by many more independent variables than we have considered in this research.
We must be prepared to take on board other relevant findings from cognitive science
and investigate their effect on human reasoning performance. We have painted only
a small part of the overall picture and it will take many more studies of the ways in
which people reason in formalised contexts before we will be able to discover exactly

what it is we are painting.

“We may say that the most lasting contribution to the growth of scientific
knowledge that a theory can make are the new problems which it raises”

(Popper, 1974, p.222).

In the forthcoming discussions we explore the main implications of the re-
search findings for both the software engineering and cognitive science communities,

pausing occasionally to suggest possible directions for future research.
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9.3.1 Testing the Formalists’ Claims

Although the model of inferential complexity developed in this thesis is a tentative
one and no claims are made regarding its immediate suitability for application,
the methods used in its formulation demonstrate an approach via which anecdotal
claims pertaining to software engineering technologies can be subjected to empirical
examination. The approach has been used here to quantify how far the human
potential for error is liable to remain after formalisation of the software specification
process. Rather than being based on subjective belief, the lines of inquiry pursued
in this research stem from well supported cognitive studies. Rather than using
isolated case studies from which results can be difficult to extrapolate, we have
borrowed experimental procedures from cognitive science to subject our theories to
empirical scrutiny. It is argued that software measurement pursuits stand to benefit
by taking on board correctly interpreted findings from psychology in this manner
(Coulter, 1983; Fenton and Pfleeger, 1996; Ott, 1996).

Although it was not a direct aim of this research, the same methodology may
be used to generate a model of inferential complexity for natural language predicates.
The feasibility of this idea was demonstrated in our study of conditional reasoning,
where a natural language based version of the formaliséd tasks was presented to
a separate experimental group. This research has generated the empirical data to
populate a model of inferential complexity for a range of linguistic conditions in
formal contexts. It remains as an exercise for future research to apply the same
theories, follow the same methodology, and repeat the experiments to generate a
model for quantifying inferential complexity in informal contexts. Once this has
been achieved, the two models might be used to compare the inferential complexity
of logically equivalent formal and informal specifications. One would expect the

claims concerning the relative benefits of formal and informal specifications to gain
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more credence providing they are based on empirical comparisons of this kind, rather

than isolated case studies and subjective opinion.

9.3.2 Writing Formal Specifications

Although the cognitive processes in the creative process of writing formal specifica-
tions were not a direct focus of concern at the outset of this research, our analysis
of the ways in which people interpret and reason about specifications has yielded
implications for the ways in which specifications are written. This is because specifi-
cations containing high levels of inferential complexity are more likely to elicit errors

of human judgement than those without.

“A formal model of a system must be able to be represented in a manner which
both elucidates the inferences which may be drawn from it and, where possible,

captures the designers’ intended interpretation” (Gurr, 1995, p.395).

For every statement expressed in a formal notation it is always possible to
find an alternative expression which conveys the same meaning, owing to the logical
nature of their underlying grammars. It should be clear that our model of inferential
complexity enables us to estimate how far each alternative is likely to admit errors of
human reasoning and, hence, which properties of a formal notation are the “safest”,
or least error-prone, to use in given situations. It thereby provides a basis for
discriminating between alternative ways of expressing designs, and for resolving
development decisions such as: “Would it be safer to use p = ¢ or —¢q V p; negative
or affirmative forms; abstract or thematic identifiers?” Application of the model is
therefore likely to prove beneficial at the initial creative stage of the specification
process, when a designer frequently makes numerous implicit decisions of this kind
and where “there exists a multiplicity of potential designs for even the most trivial

problem” (Sheppard and Ince, 1989, p.91).

210




Although formal grammars are generally much more restricted than those
of natural languages, the style in which formal specifications are written is an ac-
tive area of research. Following the development of formal notations, the software
engineering community began publishing recommendations for particular linguis-
tic styles and desirable properties of formal specifications. Gravell’s (1991) claim,
that communication may be improved by emphasizing preciseness rather than con-
ciseness, was subjected to empirical analysis during our initial study. The results,
although tentative, suggest that audiences exhibit no significant difference in their
preference for precise, concise and verbose styles. Rather than revealing any general
preferences, the results suggest marked links between audiences’ ages, levels of ex-
perience and their style preferences. We focus now on two specific recommendations
which illustrate how claims based on anecdotal evidence can give rise to oversimpli-

fied conceptions of the cognitive processes involved in formal specification.

1. Macdonald (1991, p.7) recommends that “it is usually better to avoid one-
letter names for variables unless they are only used locally, such as in quantified
expressions”, while global identifiers “should be given meaningful names (often

full words) in order to make understanding easier for the reader”.

Rather than being based on results from purposely designed experiments,
Macdonald’s recommendation appears to be based on intuitive belief and personal
experience. The predictions of our model suggest that, whilst human reasoning
performance may indeed be facilitated for conditional rules containing meaningful
names rather than abstract one-letter names, the opposite seems to be the case
for disjunctive, conjunctive and quantified rules. Macdonald’s recommendation is
therefore consistent with our model’s predictions only in the case of conditionals.
It does not seem applicable to the other forms of logical rule because reasoning

performance was observed in many cases to improve as a result of using abstract
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content. If the users of formal methods follow Macdonald’s recommendation unecrit-
ically then, despite their good intentions, the predictions of our model suggest they

are liable to write formal specifications which cause erroneous decisions.

2. It is argued that a formal specification should contain both mathematical and
natural language descriptions of the required system (Bowen, 1988; Hall, 1990).
Gravell (1991, p.148) argues, moreover, that the “syntactic gap” between the
two forms should be kept as narrow as possible “by choosing a mathematical

formulation which closely mirrors a straightforward English description”.

Gravell’s recommendation is appealing, at least intuitively, because the ex-
pression of formal statements in ways which mirror their natural language counter-
parts could cue people in formalised contexts to favour those pragmatic reasoning
procedures with which people are highly familiar and which tend to be used success-
fully on a frequent basis in everyday life. Our empirical studies suggest that reason-
ers’ use of these same everyday heuristics in formalised contexts can be distractive,
however, and can lead to the endorsement of logical fallacies. Gravell’s recommenda-
tion might therefore be considered contentious. Jacky (1997, p.8) presents a counter
argument to Gravell’s recommendation in his claim that a good formal model is no
mere paraphrase of a prose description, but “a different éxpression of the same be-
haviours, in a form that is better organized to serve as a guide for programming”.
The question arises: Which, if any, of these two contradictory recommendations
should the users of formal methods employ? A cognitive approach could provide

answers to empirical questions of this kind.

9.3.3 Extending the Model to Complex Predicates

The design of our main empirical studies has focused on the ways in which people

reason about “atomic” predicates in the Z notation, that is, forms containing only
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one logical connective or quantifier, plus negatives. This design was deemed a sen-
sible starting point to test for similar errors and biases as those exhibited in natural
language based studies of human reasoning, especially since these studies adopt a
similar approach. The scope of our model of inferential complexity is relatively
narrow as a result of this design, however, because the model in its present state is
applicable to only a small subset of the possible predicates that can occur in Z spec-
ifications. It would be interesting to test how far the results from our studies, and
also from the natural language based studies, generalise to more “complex” predi-
cates containing different combinations of multiple logical operators. The scope of
our model must be extended in this way before it will be applicable in industry. A
starting point for such research might be an investigation into the formal equiva-
lents of those few complex predicates for which cognitive science has already gener-
ated evidence of people’s fallibility in informal contexts, such as multiply quantified
statements like “Every man knows some woman, therefore, some woman is known
by every man” (Johnson-Laird et al., 1989; Wason and Johnson-Laird, 1982).
Providing systematic reasoning errors can be elicited for an atomic predicate
containing a single logical operator, these errors are unlikely to be rectified by adding
extra operators to this predicate. It would be reasonable to expect measures of
inferential complexity to increase for complex predicates, particularly where all of
the additional operators are logically necessary for the conclusion to be drawn.
The cognitive theories which underly our atomic model could therefore account for
human reasoning errors with complex predicates, however, it is unlikely that there
will be direct correlations between the measures yielded for atomic and complex
predicates. We must be careful not to make any claims based on this intuitively

obvious assumption, however, without adequate support from empirical data.
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9.3.4 Extending the Model to Composite Inferences

The process of reasoning about a formal specification, and rigorous verification in
particular, can require lengthy chains of deductive reasoning with numerous inter-
mediate stages. Consider the premiss pair “p = r; p”, where only one conditional
modus ponens inference is necessary to reach the logically valid conclusion, “r”.
Contrast this with the premisses “(p V ¢) = r; p”, where disjunctive elimination
and conditional modus ponens inferences are necessary to reach the same conclu-
sion, “r”. We must consider how our statistical model can be extended to cope with
“composite” inferences of this nature involving intermediate stages.

The feasibility of extending the model to cope with composite inferences
was demonstrated during the study of disjunctive and conjunctive reasoning, where
participants were required to draw two stage inferences, comprising application of a
De Morgan’s law followed by an introduction or elimination rule, in order to reach
the correct conclusion. The results for these tasks suggest that performance increases
along with the experience and expertise of the reasoner. It is left as an exercise for
future research to determine whether increased exposure to formal notation has a
similar facilitating effect for the other forms of composite inference that are typically

drawn when users reason about formal specifications in industry.

9.3.5 Extending the Model to Other Formal Notations

The grammar of Z has been used in this research as a tool for experimentation
and metrics formulation. The measures yielded by the resulting model are limited
because they can only be interpreted in relation to Z specifications. The accuracy
with which the same measures might also quantify levels of inferential complexity
in other notations is an open question. Besides extending our model to account

for more complex forms of predicate and composite forms of inference, we might
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also question whether models of inferential complexity can be devised for formal
notations other than Z. The scope of our metrics could generalise in this way, given
that the logical calculi underlying the Z notation are the same as those underlying
many other formal notations, but this remains to be tested.

Standard logic (that is, propositional logic with predicate calculus extensions)
forms the grammatical basis for many other popular notations including: Gypsy
(Ambler, 1977), Larch (Guttag et al., 1985), RAISE (RAISE Language Group,
1992) and VDM (Jones, 1989). Given that many of these notations share the same
logical symbols as Z for denoting negation, condition, disjunction, conjunction and
quantification, it seems likely that a repetition of our experiments in these gram-
matical contexts would yield similar results to populate a system of metrics which,
in turn, would yield similar measures of inferential complexity. It would make for
an interesting research exercise to investigate and quantify the ways in which users
reason about specifications expressed in different notations, and one whose results
could have far-reaching implications for the ways in which notations are selected for

use on software projects if any significant differences were found.

9.3.6 Automated Tool Support

Our model of inferential complexity is aimed at the initial stages of software projects
where formal specifications are usually constructed and, during the course of which,
many key development decisions are made. A specification document might undergo
numerous revisions, however, during the course of an entire project, and measures
must be gathered and analysed following revisions in order to ascertain when these
give rise to levels of complexity outside acceptable limits. It may be impractical
to perform this process manually or on a regular basis, however, in view of the
large numbers of calculations involved, its time consuming nature, and the risk of

data collection or analysis errors. Experience has shown that the automation of
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collection and analysis procedures enables metrics to be influential at the initial
design stage of software projects (Bainbridge et al., 1990). A computerised tool,
capable of automatically generating up to date measures of inferential complexity
from given specifications, would clearly be helpful to developers in this respect.

A key component of many automated metrics collection tools is a language
parser which scans given texts and applies mathematical formulae to yield mean-
ingful measures (Heitkoetter et al., 1990; Whitty, 1997). An essential prerequisite
for the development of this component is a precise and complete description of the
grammatical rules comprising the language in which the texts are written (Roche,
1994). Such a description is often not available, however, or cannot be defined ex-
plicitly. Until the advent of formal methods, program source code had been one of
the few tangible outputs from the software development process amenable to auto-
mated means of parsing and measurement (Ince, 1989). Given that the grammatical
foundations of many formal notations are explicitly defined and that it is possible to
write parsers for such grammars, formal specifications can now be treated in a sim-
ilar manner, but at an earlier stage in the development process. A possible exercise
for a future academic project would be to develop a tool capable of parsing Z spec-
ifications and applying our formulae for measuring inferential complexity in order

that these may influence the ways in which developing specifications are expressed.

9.3.7 Knowing When to Apply the Model

One dilemma raised by the development of our model, and by measurement systems
in general, is knowing when to favour a model’s statistical predictions over contra-
dictory predictions based on the learned experience of human practitioners. This
dilemma is explored in the case of the clinical psychology community by Meehl’s
(1973) thesis, “When shall we use our heads instead of the formula?” Whilst intu-

itive and statistical methods have their relative merits and clinical psychologists seek
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