DIVISION OF COMPUTER SCIENCE

A Conservative Extension to CCS for True Concurrency
Semantics

Jean Baillie
David Smith

Technical Report No.200

May 1994

A Conservative Extension to CCS for True Concurrency
Semantics

Jean Baillie
David Smith

1 Introduction

In this paper we develop the theory of Concurrent CCS, first introduced in [Smi91]. CCCS is
a conservative extension to CCS which provides true concurrency semantics. This is achieved
by (i) a new action prefix operator, denoted by e, which ‘ties together’ its operands so that
they occur simultaneously, (ii) a new parallel composition operator, denoted by ||, and (iii)
the possibility of multiway synchronization.

The notion of simultaneous actions is captured pragmatically by the following condition: in
aeb, a and b act simultaneously and so e e b = be a. In particular Tea =ae7 = a. CCCS
allows and, indeed, sometimes forces, multiway synchronization.

Having introduced the notion of simultaneous actions (which we shall refer to as true con-
currency, other notions of the term notwithstanding), we need a new parallel composition
operator with a different semantics from the interleaving composition of |. Apart from the
fact that simultaneous actions arise naturally when two or more agents act concurrently, the
operator is necessary in order to prevent the deadlock which may occur due to action restric-
tion. For example if we have a process p, say, which contains a term such as ...a e b.p and
we restrict by {a, b}, then p may need to communicate with two distinct agents in order for
the restricted actions ¢ and b both to occur. We need to develop multiway synchronization
to address this. We are not concerned here with synchrony in the sense of wishing agents to
proceed in lockstep, as in SCCS [Mil83]. CCCS agents may still proceed at indeterminate
relative speeds, just as CCS agents, so we do not need to make explicit the action of waiting.
There is no assumption of a global clock; CCCS agents may proceed independently or simul-
taneously. We are enabling synchrony rather than assuming or forcing it. One consequence
of this is that parallel composition in CCCS does not distribute over summation, whereas in
SCCS, the product combinator (denoted by x and corresponding to our parallel composition)
does indeed distribute over summation.

The new parallel composition operator, denoted by ||, allows its operands to run in true
concurrency, so far as considerations of synchronization will permit, as well as allowing them
to run independently. || will be used anywhere that we wish to admit the possibility of
simultaneous execution of processes. So in the case of an agent containing a e b which is
composed under || with other agents, ¢ and b will always act in the same context, that

is, they act simultaneously with each other and may act simultaneously with appropriate
multisets of actions from the other agents in the composition.

2 Formal semantics of CCCS

2.1 Notation

Act, in CCCS is the commutative group {Act., 7, e, } with identity 7. We use u, v to range
over Act.. We will use the notation p = p’ to mean that p may engage in the multiset of
actions u (which may be empty) and evolve to p’. For each s € Act., we define the multiset
s’ as follows: '

(i) if s is atomic, then s’ = {s}

(i) 7' = {}

(iii) if s = uw e v then s’ = v/ W' where ¥ here denotes multiset union.

So for each s € Act,., s’ denotes the multiset of observable actions that occur simultaneously.
Action complementation is defined as follows:

{}¢= {3, {a,b}° = {@,b}, where @ = «.

We need to define one more piece of notation: let u and v be any two multisets. Then

utv={sWtlsCu,t Cv,u—s={v—1t}}

where ‘—’ denotes multiset difference. (It can easily be shown that { is associative.) For

example, consider the multisets v = {«,b,¢}, v = {@, c}. Then

utv={{b},{a,a0b},{b,c,¢},{a,ab,c,c}}

The intuition here is that either an action and its complement are both visible, or they
have communicated internally. For instance, the set {b} indicates that both @ and ¢ have
communicated through their respective complementary ports; the set {a,@,b} indicates that
¢ has communicated internally but ¢ and its complement are visible. So then, interpreting

. . . : _ def _
this as the possible actions of P||Q where P “ tebetand Q S ae ¢, we have

PllQ=b+aeGeb+becec+aoetebececC

2.2 Transition semantics

We use s to range over actions in Act., and P,) to range over processes.

Action Prefixing
seP 35 P

Choice
P 5% P'implies P +Q 5 P/
Q5 Q' implies P+Q 5 Q'

Constants .
P35 Pand Q I p imply @ 5 P’

Interleaved composition
P 5% P’ implies P|Q 5 P'|Q
Q = Q' implies P|Q % P|Q’
P P, Q S Q implies PIQ Y P|Q
The semantics for this operator are substantially those for pure CCS. We are effectively

regarding multisets of actions as atomic units; only two-way synchronization is permitted
and then only between multisets which are uniquely complementary.

Concurrent Composition
We define this by case analysis.
(i) each component of P || @ may proceed independently and interact with its environment,
or
(ii) agents may proceed concurrently and interact with their environment and/or with each
other. Formally, ‘

P 5 P'implies P||Q = P'||Q

Q = Q' implies P||Q 5 P|| Q'

P35 P Q5 Q implies P||Q 5 P'||Q for every 7 € u t v.

Restriction
Let L be any set of actions, 7 ¢ L. Then
P % P'implies P\IL % P\LifunL=0and u*nL =0.

Relabelling
P 5 P'implies P[f] i P'[f]
where f is a relabelling function and f(u) is the multiset {f(a)|a € u}.

We will give some examples to illustrate the use of the calculus, but first we need a mechanism
for expanding agents composed under ||.

3 The Concurrent Expansion Law

Proposition 1
Let P = (P1||P||...||P.), n> 1. Then

P S{ug.(Pi|. .. ||P])]...||P.)} where P; & P!
+ S{ro(Pull PP P) for every o € ug touy,
where P; 5§ P, P; 3 P}
+ E{ra.(Pull AP PP Po) for every 3 € (w4 foug) foug,

where P, 4 P/, P; 3 PJ{,Pk% P}

+ E{rn.(Pl’H‘.'. P - PL) for every v € (o (ur tug) T wg) o ug),
where P; % Pl,1<i<n}

Informally, this means that the P; may run independently through their observable actions
(the first line of the law) or else they may run concurrently in any combination of tuples up
to and including the case where all n are running concurrently. As can be imagined, this
makes for an explosion of states very early on in the expansion in cases where there are no
occurrences of the e operator and no restriction. The operator e, however, has the effect of
reducing the number of possible states quite significantly, as we shall show.

Example 1

Consider the agents P e 0.0, @ def ¢.b.0, first of all composed under |:

PlQ = c(P|0.Q)+aeb.(0]Q)
= c.(aeb.(0[0.Q)+b.(P [0))
+a e b.c.b.(0[0)
= c(aeb.b.0 +b.a0b.0)
+a e b.c.b0

If we restrict by b the compositon is deadlocked after the first action ¢, that is

PlQ\{b} = c.(P|0.Q)\{b}

Considering the same agents composed with || we have

PIQ = e(PIIBQ)+aeb(0]lQ)
+aobe c(QHbQ)_
= c(ae b(QHbQ) + b.(P}]0) + «.(0]]0))
+a ¢ b.c.b.(0]]0)
= c(ae b.0.0 +b.a e b.0+ a.0)
+a e b.c.b.0

Restriction by b gives the result P || Q\{b} = c.a.0\{b}.

Example 2

Counsider the agents P = a e b.P and Q = ¢.b.Q

P|Q =c(Pb.Q)+aeb(P|Q)
c(aob.(P|0.Q)+b.(P|Q))+aeb(P|Q)

(a0baeb(P|b.Q)+aebb(P|Q)+b(P|Q))+aeb.(P|Q)

Let R = P|b.QQ. Then

Il

Il

R=aeb.R+b.P|Q

So we may rewrite
PlQ=cR+aeb(P|Q), where R=aeb.R+b.P|Q

If we restrict by b, the composition would deadlock following the first term of the first line of
the expansion, that is,

PIQ\{b} = c.(P[D.Q)\{b}

a and b must act together and also synchronize with b, which is not permitted by |.
Now consider P and ¢ composed with ||:

Pll@Q :c.(PHB.Q+aob.(Pi|Ql+(LoIioc.(P]|5.Q) ~ ~
=c(a(P||Q)+aeb(P||b.Q)+b(P||Q))+aebec.(b(P||Q)+ aeb(P|b.Q))

Without completing this expansion it can be seen that the combinations are numerous when
there is no restriction. However, if we were to restrict by b the result is

PIIQ\{b} = c.a.(PI|Q)\{b}

Example 3

Consider P =c e b.P,) =G.ced.Q

Again, we consider both compositions, first of all without restrictions:

PlQ =aeb(P|Q)+a.(PlcedQ)
=aeb.(P|Q)+aced(P|Q)

a and @ cannot perform a silent communication because a occurs in the context of ae b in P.
If we were to restrict the composition by a the system would be deadlocked.

PllQ =

@b (PI1Q)+ (Pl co d.Q)

+a@.(Pllced.Q)
aobd.(P||Q)+b(cod(P|Q)+aeb.(PllcedQ)
+aebeced(P||Q))
+a.(aeb.(P|lcoedQ)+ced(aebPl|lQ)
taebecoed(P|Q))

Again we find that without restriction, the states are numerous. However, if we restrict by «

the result is P || Q\{0} = b.co d.(P|| Q)\{b}

Example 4

Lastly we consider a composition of four terms: P = a.b.P, Q = a.b.Q and two copies of
R = cea.R. We restrict by a and b. We find that the composition P|Q | R| R\{a, b} cannot
proceed; it is deadlocked from the beginning. On the other hand
Pl QI Bl R\{a,0} c.(PI[0.Q | R|| R)+ c.(b.P]| Q|| RI| R)

+eoc.(b.P]|0.Q|| R|| R)\{a,b}
= c.c.(b.P||b.Q||R||R)+ c.c.(b.P||b.Q || R|| R)

teec(PllQ || R]| R)\{a,b}
= cc(P||Q|IR||R) +coc(P|| QI R|| R)\{a,b}

What we see from these examples is that composition under || gives rise to a larger state
space than composition with |. This is what we should expect, particularly where there is
no restriction of actions and no use of e. Care is needed in the design of agents which are
to be allowed to proceed in true concurrency; there will clearly be undesirable ‘clashes’ and
certain time orderings to be avoided. Agents which will eventually become part of a truly
concurrent system will need to be specified in conjunction with one another and not as more
or less independent units. It can be argued that the operator | is unnecessary in CCCS;
where agents are specified using the e prefix operator, it is unlikely that we should then
wish to restrict their composition to interleaving only. However, without |, CCCS is not a
conservative extension to CCS—that is, unless it is possible to embed CCS in CCCS using
only the || operator for composition, though on the face of it this seems unlikely. More work
is needed on the development of the calculus before we decide we can dispense with |.

4 Proof of the Concurrent Expansion Law

We recall the law from section 3.

Proposition 1

Let P = (P1||Ps]] .- .||Pn), n > 1. Then

P =
+

S{ui (Pl P P) 0 P = PUY

S{ro.(Prll PP Pa) |

for every 7 € u; t uj, where P; 2% P!, P; 4 P}

S{ra Pl PP P Py

for every r3 € (u; f u;) t uy, where P; % P!, P; it P!, P % ply

E{ra (PP P N
for every v, € ((...(ug Tu2)...Tw;)... 1 uy), where P, = P/,1 <i<mn}

Proof
The proof is by induction on n. For n = 1 we need to prove that
Py =%{u.P{: P, 3 P}

which follows immediately. Assume the result for n and consider R = P||P,4+1. From the
transition rules we have that

R = Y{ui(P||Puy1): P Y P}
+E{tnp1-(PllPhyy) : Pagr 3 Plyy} .
+5{rs.(P'||P,4y) ¢ for every 13 € ut tnt1, where P % P/, Poyy 23" Py}
= Ri+ R+ R3

From the inductive hypothesis, the first two terms of R expand to give

Ri+ Ry = S{ui.(Py|...|P!||...||Pul|Pog1) : P 3 P/1<d< 0}

S{ra (Lol NP PHL - Pal [Pagr) o for every ma € u; t uy,
where P; % P/, P; X4 P/}

+ I{ra (Pl PP P Pl Paga)

for every 3 € (u; ;) t w, where P; =% P! P; 4 P, Py = P}

-+

£ Sl PLPPL P |
for every v, € (... (w1 fug)...Tu;)...1uy), where P; B p1<i<a}
+ S (PP PallPagn) © Pagn ™3 Py}

The first and last lines of the above can be combined, giving the required extension to the
first part of the law to accommodate P,y (that is, the part that says that each agent may
act independently). So far P,4; has taken no part in any communication; the third term of
R gives us this. For P,;; to communicate with P it may be communicating with just one of
the P;, or with two of them, or three, etc., as follows:

Ry = S{ro.(Pill...[|P]]|.. || Pul|P)yy) o for every 7o € wit uny,
+X{ra (Pl PP Pol[Prgy) o for every r3 € (ui §ug) T tngr,

FE{rp (P AP PP

for every ng1 € ((coo(urtug).o ot wi) ot un) T tngr,
where P; & PL1<i<n+1}

10

When we place the summand R3 together with R; + Ry above, all the terms in R3 except the
last term are absorbed. So we have

R = S{up(Pi||..||P|.. ||| Poy1) : P; 8 P!}
+ E{ro(Bull P AP Pl Prgr) o for every 7o € ug touy,
where P; 4§ P!/, P; 3 P!}
+ E{ra(Pull PP PRI Pol|Prgr) - for every rg € (ui uj) T w,
where P; 5 P!, P; %% P!, P, % Pl}

+ X{rn (Pl PPl Prg) o for every rp € (o (un fuz) . fug) .o un),
where P; & P!, 1<i<n}

+ Z{rap (PP P Pryg)

for every 741 € (L. (ur Tug) oot ws) oot) t Ungt,

where P; 4 P/,1<i<n+1} O

The proof may be extended to accommodate restriction and relabelling. The Expansion
Law of CCS remains substantially unchanged except that occurrences of «, representing
atomic action, are replaced by u, representing multiset action. Internal communication may
only occur between complementary multisets (which may be simply complementary atomic
actions).

5 Equivalence in Concurrent CCS

5.1 Bisimulation

We need to define a notion of equivalence over CCCS agents; the model which suggests itself
immediately is a generalized bisimulation.

Definition 1: A binary relation § € P x P over agents is a (weak) bisimulation if (P,Q) € §
implies, for all v € Act,,

(i) Whenever P % P’ then, for some @', Q & Q" and (P',Q"Y e S

(i) Whenever @ = Q' then, for some P’, P L pand (P,QheS

In fact, the more general form of the transition relation = is only necessary in the case when
w is atomic; all occurrences of 7 in multisets of actions are absorbed by definition. In this
model there can be no equivalence between pairs of agents where one contains simultaneity
(i.e., the operator o) and the other does not; equivalences between standard CCS agents are
preserved and so the relation is a conservative extension of weak bisimulation.

This model, while seemingly a natural extension of bisimulation, is nevertheless suspect.
Bisimulation models observation equivalence; the u referred to in the definition are multisets
of actions occurring simultaneously, not all of which, therefore, can be observed. We need to
permit sets of observers if we wish to adopt this model of equivalence. Notwithstanding, we
illustrate the notion with two examples.

11

Example 5

Consider the agents

P=aebP
Q=a@Q
R=0R

The composition Q|| R yields

QIIR = ab.(QI|R)+ b.a.(QIIR) + a o b.(QIIR),
clearly not equivalent to P; but if we use the signal ¢ to synchronize @ and R as follows
Q =aecqQ

R =beC.R

and restrict by ¢ we have

Q'IIR\{c} = a o b.(Q'||R)\{c} = P

12

Example 6

We now consider the agent Spec defined as

Spec =4 a.Spec+ a e a.Spec

and implemented by I'mp, defined by

Imp = P||P\{b}, where P P +0.Q, Q “op

The expansion of I'mp gives

Imp = a.(P||P)+ a.(P||P)+ aea.(P||P)+ 7.(Q||Q)
= a.(P||P)+ aea.(P||P)+ 7.(a.(P||P)+ a e a.(P||P))
= ’;-(“-(PHP) +aea.(P[|P))
~ Spec

I'mp is equivalent to its specification Spec. It is not congruent to Spec, owing to the instability
of I'mp.

5.2 Testing

We recall Hennessy’s tests from [Hen88]. Tests of the form

lw+b(lw+...+ b (lw+a)...)

or
Lw+ by (1w + ba(lw 4 ...+ bp(ayw + ...+ agw) .. .)

are sufficient to distinguish between any two processes which are not testing equivalent.
However it is not clear that there is a test to distinguish between P =-@.04+0.0 and) = ab.0.
The test aw + bw is certainly passed by P and intuitively we might feel that @ ought also
to pass such a test since it can deliver either @ or b. In order to distinguish between them
(which we clearly wish to do) tests of a different form need to be designed.

13

Related to this question, we might ask how we are to extend the notion of traces to include
simultaneity and what sort of trees might be the denotation of CCCS terms. We suggest the

following model, exemplified by the agent P “ webecdin Figure 1.

SO

S1

®

Figure 1: The tree for the CCCS agent ¢ “ebec.do

What we see from this is that in order for P to evolve from the state Sy to the state 57 all
three actions «, b and ¢ must have occurred. However the observer can take only one path

through the tree, though he has three choices for this, namely, ad, bd, cd. This suggests trace

(or may) equivalence with the agent Q I wd + bd + cd, represented by the tree shown in

Figure 2.

14

S3

Figure 2: The tree for the CCCS agent ¢ def ad + bd + cd

Indeed we may well not wish to distinguish between these two in the trace model; an exper-
imenter who can only observe one thing at a time (in keeping with the relativistic view) is
subject to severe limitations on his capability. In that case, it is intuitively right to identify
P and @ in this model. We then have that

L(P)=L(Q)={e,a,b,c,ad,bd,cd} *

However, if we feel that, notwithstanding the real limitations of experimenters, this identific-
ation is too generous and we wish to distinguish between processes such as P and) then we
might express the language of P as

L'(P) = {e,{a,b,c},{a,b,c}d} *=x*

to suggest the choice of any element of the set {a,b,c} but also implying a difference from
L(P) above. In this case, unfortunately, language inclusion is no longer the model for may
preordering. The intrinsic weakness of the trace model together with the nice properties it
enjoys lead us to think that there is no need for this distinction and to accept L(P) as a
model of the traces of P, identifying as it does the agents P and ¢. Unfortunately, this
means that we need to define a different class of test for the explicit purpose of establishing
must preordering only, and only where CCCS agents are involved (the tests are redundant
otherwise); we shall explore this a little further.

5.2.1 Extending the set of tests: restriction

In order to distinguish P “I b from Q “y + b we need to design tests which exploit the
simultaneity of @ and b in P; though it may be true that we can see either a or b (but not
both) in P, we cannot see ¢ without b also occurring, or b without a. This suggests tests
which include restriction. The question whose answer will enable us to distinguish between P
and @ is: can we see if b is restricted? or bif « is restricted? We could design an experiment,
ep, such that eg = aw\{b}; this test—and its complement e; = bw\{a}—is passed by @ (both

15

may and must) but not by P (neither may nor must). If we wish to retain the trace model
*, then, we need to confine the use of this type of test to must testing only.

It is difficult to think of any test that P should pass but not @, bearing in mind that we are

interested in observable results rather than purely theoretical ones. This would give us the
C

orderings P,y @ and P~y @, with the must preordering here not relating to internal
nondeterminism. It was suggested in [Bai92] that the conjunction of these two orderings might
be regarded as a satisfaction relation between CCS implementations and their specifications;
here, it would be a very unsatisfactory satisfaction relation for, say, a vending machine that
purported to give the choice of tea or coffee but, regardless of the choice, delivered both every
time. The fact that the observer of the machine can see only one of the outputs will be of little
comfort to the manufacturer. On the other hand, when we visit a cinema with two screens,
we choose just one to watch, though both will run concurrently regardless of our choice. In
this case, the satisfaction relation might indeed be perfectly satisfactory.

. d J
We now consider the agents R S aeb + a and S “aeb + a + b; to recap, we have

P def aeb

0wt

R def aeb+ a

Sdéfaob+(t+b

and the tests eg = aw\{b} and e; = bw\{a}. We find that Q musteg, Rmusteg, S must e,
() must ey, S muste; but Rmayfst ey giving

C C
u
P '\‘mustR NmustQ N must S

and accepting the usual trace model, as * above, we have
P wma,y R ~may Q ~may 5

The type of test exemplified by ey and e; does not distinguish between ¢ and 5. In the case
of @), the choice of a, say, implicitly precludes b; if we don’t want b to occur, we simply choose
a (or make no choice at all) and we can be sure of no b action. In 5, by contrast, we should
need to exclude b explicitly, otherwise s contains implicit nondeterminism. Since must testing
is intended to detect this and order process at least partly on that basis, this suggests that
we would want to distinguish between @ and 9; if so, then the new tests are still insufficient.

5.2.2 Extending the set of tests: multiple experimenters

So far we have avoided using tests which include the operator e; this is because the experi-
menter has always been assumed to be singular and therefore unable to observe simultaneous
actions. In now introducing this operator into tests we make an implicit assumption that
there is one experimenter to observe each simultaneous action. We should still like to keep
the trace model so use these new tests only for must testing.

Tests of the form a; e aqw + ay e ay e azw+ ...+ ay e ay...e a,w in addition to Hennessy’s
set of tests will distinguish between CCCS agents, and also between CCCS and standard

16

CCS agents. In particular, the test e = a o bw will distinguish between ¢ and 9 in 5.2.1.
C

This, alas, give us () ~,u59: not what we want. Intuitively, must testing distinguishes
between processes on the basis of nondeterminism and divergence; S contains a degree of
nondeterminism which ought to be detected under must testing and which should result in
S being below @) in the must preordering. We need a test which formalizes the question: can
we engage in action a successfully and be sure that no other action has occurred? Tests that
involve hiding do not quite answer this question. This is the subject of future work.

References

[Bai92] E. J. Baillie. Towards a Satisfaction Relation between CCS Specifications and their
Refinements. PhD thesis, University of Hertfordshire, 1992.

[Hen88] Matthew Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983,

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Smi91] David Smith. Concurrent CCS: An introduction. Technical Report 126, Hatfield
Polytechnic, 1991.

