Implementing the conceplual associations by combining inheritance hicrarchies introduces stand-
ardisation but leaves the developer to write all the code Lo implement each required association. This
does nol thercfore provide information hiding bul might provide an improvement over current tech-
niques.

The use of role types allows anticipated enhancements o systems. This is achieved by partially
separating the classes involved in an association. One of the classes is dependent only on the role type
for its implementation and can therefore be reused in any system which includes the role type. This
method appears o be useful for extending a system to add new participants in an existing role—an in-
crease in functionality which may be anticipated. However, the classes taking an active part in the as-
sociation, such as a person owning a car, require an additional instance variable and additional methods
$0 become tightly coupled to the class taking the passive part in the role, such as the car being owned.

The use of the Sociable class technique appears o be potentially capable of providing a greater
improvement in the reusability of components than the other methods selected for this comparison.

115

|
|
|
1

Chapter 6

Case Study

This chapter presents the results of a case study carried out to verify that the Sociable class technique
is successful when applied o a complete system. The case study was chosen 1o demonstrate the use
ol'a varicty of associations in order (o identily any problems encountered or further insights into the
use ol associations. The associalions required by the system are one-10-one, one-to-many and many-
to-many. The system also requires an association Lo be formed between two objects of the same class.
The development of the one-to-many and many-to-many associations is reported in appendix F. The
system is implemenied in Eiffel v2.3 because this language provides the best implementation of the
specilications of the association classes.

The case study is described in section 6.1. Section 6.2 describes the development of the system
using the Sociable class design technique. Scction 6.3 discusses the use of the Sociable class design
technique. The (inal section of this chapter, section 6.4 summarises the conclusions drawn from the
development of the case study.

6.1 Requirements specification

The kitchen garden system stlores information about a variety of crops and insects which may be found
in a garden. The system contains details of the user’s garden (0 monitor the crops sown and determine
that a defined crop rotation is being followed. All this information is loaded from files.

The system provides the following [unctions:

1. list the crops and insects which are stored in the system,
2. display the details of the garden,

3. find out which insects cal a certain crop,

4. find out what is ealen by a specified insect,

5. ‘sow’ a crop in a section of a plot within the constraints of the crop rotation rules (the user will
be able o override the constraints if required),

6. list the crops which have been sown in each growing area,

7. find where a given crop has been sown.

116

6.2 Development

The analysis of the system, section 6.2.1, was carried out following the guidelines and notation given
by Rumbaugh et al. [28]. The system was designed, section 6.2.2, using the Sociable class technique.
The implementation of the system using Eilfel is discussed in section 6.2.3. Section 6.2.4 discusses
the testing and usc ol the system.

6.2.1 Analysis

The analysis models, figures 6.1 - 6.3, use OMT notation. The features listed as attributes in the class
boxes are considered (o be intrinsic propertics of the objects of that class.

The object model, figure 6.1, shows that this system requires six classes which are related by four
different conceptual associations and two aggregation relationships. The ‘defines_rules’ association
between Garden and Crop rotation rales is a one-lo-one association. The ‘sown_in’ association
between Crop and Section is a one-lo-many association. This is because one crop can be sown many
times throughout the season. Each sowing is in a separale scclion. A new section is defined for cach
crop sown, The ‘eats_crop’ association between Crop and Insect is a many-lo-many association. The
‘cats-insect’ association between Insect and Insect is a many-lo-many association.

The top level data flow diagram, figure 6.2, shows a perform transactions process. This process
covers all the functions listed in section 6.1,

Figure 6.3 shows the final model of the required system after the object, dynamic and functional
models have been combined. The model uses a combination of OMT object and functional model nota-
tion. The lines with arrows represent [lows of data which were identified on the functional model. The
arrow heads point (o the class supplying the data, The constraints were also originally identified in the
functional model,

The class Transaction and its three subclasses, shown in figure 6.3, are not considered part of the
original object model, figure 6.1, because they represent operations applied to objects. Class Date is
not included on the original object model because it represents the type of an attribute and is used in
the same way as, for example, class String is used (o represent the name of a crop. Class Date is not
alibrary class so is included on the model of classes (o be designed and implemented.

The three subclasses of class Transaction provide the [unctionality of the system. Class Display is
responsible (or displaying the data stored by the system, that is functions 1 and 2 in section 6.1, Class
Query is responsible for allowing the user Lo find out about pests and predators, that is functions 3 and
4 in scction 6.1. Class Plant garden is responsible for allowing the user o sow seeds and find out what
is sown in the garden, that is functions 5, 6 and 7 in section 6.1,

6.2.2 Design

The system was designed using Sociable classes where applicable. The object model shows that ob-
jects of classes Garden, Crop rotation rules, Insect, Crop, and Section participate in associations.
These classes are therelore designed as Sociable classes and inherit the ability o participate in associ-
ations from class Social. This can be scen in (igure 6.4, Class Garden plot does not participate in any
associations in the current system so is not designed as a Sociable class. However, it is casy to envisage
extensions Lo the system which might require this class (o participate in associations. The consequences
of the decision not to design class Garden plot as a Sociable class are explained in section 6.3.3.

The associations involving objects of these classes are provided by instantiating the required library
classes. The requirced classes are shown in figure 6.5.

117

Crop rotation rules

Garden
name
width defines rules
length
define plot
Crop e plo
name
name lenath
name ’J.ﬂ].&__—_e variety wi(ﬁ.h
. group ;
¢ seas . n
aclive scason sowing scason local‘m -
W veriod current slale
conirol methods £rowtn perind history
space between plants
Jistance between rowy| define sgetion

Seclion

name
leagth
width
location

daie allocated

Figure 6.1: Object model for kitchen garden system

groups

nexl-crop-lype

garden garden plot section crop

insect

Figure 6.2: Top level data flow diagram for kitchen garden system

118

1

1
;
1
‘

Transaction

execule
Display Query Plant garden
insect insect garden
crop crop garden plot
garden crop rotation rules
cro
execute execule p
section
N execule
\\

cals

Insect

name
aclive scason

control methods

cats

Date

Crop rotation rules

groups

Garden

set-to-default
next-crop-type

<-- defines rules

name
width
length

define-plot
required-plot

{growing plots fit |n garden)

Crop

name
variety

group

sowing scason
growlh period

space between plants

G
name
length
width
location
current slate
history

istance between rows|

define-section
last-section

(sections it in growing plot}

{crop type should cduply
with current state of
growing plot)

Section

week number

current week

add-dates

Figure 6.3: Final model for kitchen garden sysiem

119

name
length
width

location

date allocated

Social

| - |

Garden Crop rolation rules Insect Crop Section

Figure 6.4: Sociable class hierarchy used in the kitchen garden system

Assoc Base class
One-to-one (F,G) One-to-Many (F,G) Many-to-many (F,G) Library classes
One-to-one One-to-Many Many-to-many Many-to-many Instantiations
(8;1(;;’1?(’)[3“011_1_“’“) (Crop, Section) (Inscet, Crop) (Insect, Insect)

Figure 6.5: Association hierarchy used in the kitchen garden system

The classes Garden and Garden plot are aggregations of other classes. This relationship in the
Sociable class design method is implemented by the client-server relationship, that is a data structure
of the parts is declared as an attribute of the whole structure. This method of representation reflects the
fact that sections and plots cannot exist without the garden in which they are located. This dependency
is emphasised by the class Garden being responsible for allocating the plots. Class Garden plot is
responsible for the allocation of sections,

The relationships involving the objects of class Date are one way ‘uses’ relationships. They are
required to provide intrinsic properties of the objects. For example, the active season of an insect is
intrinsic o that insect. The relationships involving class Date are therefore designed (o use pointers,
that is the client-server relationship, in the classes which require dates.

The relationships involving the subclasses of class Transaction are again one way relationships.
These were also designed using the client-server relationship.

6.2.3 Implementation

The classes which were designed as Sociable classes are derived from class Social. The rest of their
{eatures were implemented as defined by the analysis model. The interfaces of these classes can be seen
in appendix E.5. Objects of classes Garden plot, Date and the transaction hicrarchy do not participate
in associations so they do not inherit from Social.

The class used Lo coordinale the system is called Root and is responsible for setting up the required
information and for the initial interaction with the user. The system is designed for use by one gardener
so class Root declares one variable of class Garden. The system must know about many crops and

120

insects so the class Root declares lists of these two objects. The information about crops, insects and
the user’s garden are stored in files which are read at the start of each session. Files are also used (o store
information about the required associations. The set_up method of class Root carries out this function.
The code can be seen in appendix E. 1.

The associations between objects of the Sociable classes are implemented by instantiating the re-
quisite association from the library. The association between Garden and Crop rotation rules is im-
plemented by instantiating the One-to-one2 association with Garden and Crop rotation rules . The
two ‘cats’ associations are provided by instantiations of the Many-to-many associations. Of course,
they must have different names. One was defined as ‘cats-insect’, the other as ‘eats-crop’. The declar-
ation of the associations is shown by the following extract from the class Root,

defines_rules : ONE_TO_ONE2[GARDEN,CROP_ROTATION_RULES];
sown_in : ONE_TO_MANY [CROP,SECTION];

eats_crop : MANY_TO_MANY[INSECT,CROP];

eats_insect : MANY_TO_MANY[INSECT, INSECT];

The three associations described so far are simple associations between objects. The required ob-
jects are associated by using the associate method of the associations. These associations are created
by the Root class. The following extract of code shows how the required ‘eats-crop’ associations were
formed.

read_pests is
local
crop,pest : INTEGER;
do
pests.create("pests");
from pests.open_read;
until pests.end_of_file
loop
pests.readint;
pest := pests.lastint;pests.next_line;
pests.readint;
crop := pests.lastint;

—the next line of code forms an association between the required objects

eats_crop.associate(insectlist.i_th(pest),croplist.i_th(crop));
pests.next_line;
end; --loop

end; -- read_pests

This code shows that only one line of code has Lo be written by the programmer to form an associ-
ation between the required objects. The rest o the code is required to read the values from the file,

The fourth associalion, a one-Lo-many association between Crop and Section is more complex.
The formation of these associations is part of the functionality and is discussed in the next paragraph,

The functionality of the system, listed above in section 6.1, is defined in the subclasses of class
Transaction. Class Display, sce appendix E.2, is responsible for functions 1 and 2, that is display
the data stored by the system. Display simply asks the user to request the required information and
then outputs it to the screen. The other Transaction subclasses implement functions which require
associations to be traversed. Specifically, functions 3 and 4 which are implemented by the Query class,

121

see appendix E.3, use the two ‘cats” associations. The code used to display the insects which cat a
certain crop is shown below.

print_insect_eats_crop is

local
n : INTEGER;
list : LINKED_LIST[INSECT];
pest : INSECT;
crop : CROP;
do
io.putstring(" Which crop number do you wish to know about?"); io.new_line;
print_shortcrops;
io.putstring(" Enter the number corresponding to the crop");
io.readint;
n := io.lastint;io.new_line;
crop := croplist.i_th(n);

—the next line of code retrieves the list of insects from the required crop

crop.display;
list := eats_crop.find_objectsi(croplist.i_th(n));
if list.void
then
io.putstring ("has no known pests');
else
io.putstring("number of pests = ");
io.putint(list.count);io.new_line;
from list.start
until list.off
loop
pest:= list.item;
pest.display;
list.forth;
end; --loop
end;--if
end; --print_insect_eats_crop

This code shows that the retrieval of the required information involves accessing the list of insects
from the eats_crop association of the required crop using the find_objectsl method supplied by the as-
sociation and displaying each ilem in the list.

Function 5, sowing a crop, is more complex. This is because of the requirement to take the crop
rotation rules into account when sowing a crop. Access Lo the history attribute of the growing plot and
to the crop rotation rules of the garden is required before an association of this type is formed. It is
also necessary o determine that the desired number of rows can be sown in the chosen part of the area.
Thus, the ‘sown.in’ association cncompasses ‘dependency’ relationship and requires the ‘defines rules’
association (o be traversed and the current state feature of the growing area to be accessed. When it
has been established that the section should and can be allocaled, the association between section and
crop is formed using the associate method of the One-to-many association. Associations of this type
are added as a result of user input during a plant_garden Lransaction. It can be seen from the SOW-Crop
method of class Plant-garden in appendix E.4 that most of the code is required to confirm and validate
the user input. Again the programmer has (o write one line of code to form the actual association.

Functions 6 and 7 access the ‘sown in” associations created by function 4. The code to implement
these functions can be seen in crop_growing and area_growing features of class Plant_garden in ap-
pendix E.4. These functions are provided by accessing the required association using the findobjectl

122

and find_objects2 methods. The desired information is displayed on the screen. The code implement-
ing these functions is very similar 1o the code shown above for displaying the insects which eat a crop
so is not included here.

All the application specific code is contained in the root class or the subclasses of transaction. None
of the base classes were modified to implement the associations. In order (o provide the required asso-
clations, it was only necessary (o declare the associations as features of the root class and write a line
of code to form the required associations.

6.2.4 Testing

This section describes the problems encountered when testing the system and gives examples of the
system in use after debugging,

The testing of the program was relatively easy. Only one problem was encountered. This occurred
when the part of the system which uses the many-to-many association was being tested. The problem
came in forming the associations correctly. This problem turned out to be partly due (o an error in the
code in class One_to_many and partly 1o poor design of class Many_to_many. Once these errors were
corrected, the associations behaved as expected.

The following text shows the output from the system when a user asks which insects eat a chosen
crop. The user first selects the crop [rom the list

Which crop do you wish to know about?
Crop name: BROAD BEAN variety: SUTTON
Crop name: BROAD BEAN variety: LONGPOD
Crop name: CARROT variety: NANTES

Crop name: CAULIFLOWER variety: LATEMAN
Crop name: LETTUCE variety: TOM THUMB
Crop name: CABBAGE variety: MINECOLE
Crop name: CABBAGE variety: PROSPERA
Crop name: PEA variety: KELVEDON WONDER

0 N O O W N

Enter the number of the crop: 4
and is then given information such as:

Crop name: CAULIFLOWER variety: LATEMAN
number of pests = 3

Insect name: GREENFLY

Insect name: WHITE-FLY

Insect name: CABBAGE ROOT FLY

Sowing a crop is a more complex process. The user must first select the crop form the displayed
list.

Which crop do you wish to sow?

1 Crop name: BROAD BEAN variety: SUTTON

2 Crop name: BROAD BEAN variety: LONGPOD
3 Crop name: CARROT variety: NANTES

4 Crop name: CAULIFLOWER variety: LATEMAN
5 Crop name: LETTUCE variety: TOM THUMB

123

6 Crop name: CABBAGE variety: MINECOLE
7 Crop name: CABBAGE variety: PROSPERA
8 Crop name: PEA variety: KELVEDON WONDER

Enter the number of the crop: 1

The user is then asked where they wish (o sow the seeds.

Where do you wish to sow the seeds? Choose from the following areas.
1:-

the area is called plot 1

its location is current position: x = 0 : y= 0

The measurements are 3000 by 150

It is currently growing potato

2:-
the area is called plot 2

]

its location is current position: x = 200 : y= 0
The measurements are 3000 by 150

It is currently growing brassica

3:-
the area is called plot 3

its location is current position: x = 400 : y= 0
The measurements are 3000 by 150

It is currently growing legume

4:-

the area is called plot 4

its location is current position: x = 600 : y= 0
The measurements are 3000 by 150

It is currently growing rootcrop

Enter number of plot required: 1

If, as in this case, the user chooses a plot which should not contain the crop, the decision to continue
has 10 be confirmed.

This crop grew here 2 years ago and should not be in this plot,
Do you wish to sow it now? yes to agree

Il the user chooses o continue, questions are asked 1o find the number of rows and position within the
plotto sow the seeds. In thisexample the user has chosen o continue and sows a number of rows which
can be planted at the position.

yes
How many rows?
4

requires plot size
length of section = 120
width of area = 150

The area details are:

the area is called plot 1

its location is current position: x = 0 : y= 0
The measurements are 3000 by 150

It is currently growing potato.

Where in the plot do you wish to sow the seeds?
Enter the distance along the length of the plot.

200

After this successlul input, an association between the crop and the section is created. It is then
possible to ask where a crop has been sown. The user is first asked 1o select a crop.

Which crop do you wish to know about?
Crop name: BROAD BEAN variety: SUTTON
Crop name: BROAD BEAN variety: LONGPOD
Crop name: CARROT variety: NANTES
Crop name: CAULIFLOWER variety: LATEMAN
Crop name: LETTUCE variety: TOM THUMB
Crop name: CABBAGE variety: MINECOLE
Crop name: CABBAGE variety: PROSPERA
Crop name: PEA variety: KELVEDON WONDER

Enter the number of the crop: 1

0 N O ;bW N

The user is then told in which plot and the position within the plot that the crop has been sown.

Crop name: BROAD BEAN variety: SUTTON
is growing in plot 1 at current position: x = 0 : y= 200

The system was [urther tested with other input. The expected output was obtained.

6.3 Discussion

This section discusses three aspects of the development case study. Section 6.3.1 discusses the use of
the design technique. Scetion 6.3.2 assesses the traceability of the information through the devcelop-
ment process. Section 6.3.3 discusses the reusability of the classes involved in the system.

6.3.1 Use of the Sociable class technique

The use of the Sociable class technique presented no problems in the development of the case study.
The required associations and class structures can be read from the final object model of the required
system. The designer is not required to make decisions concerning the representation of cach associ-
ation. Such decisions in the design methods described in chapter 3.6 include:

125

e should the association be one-way or two-way?

e i one-way, which way?

e should subclasses be delined or should autributes be added to base classes?
e should a sct be used?

A designer using Lhe Sociable class method automatically defines two-way associations so either object
can be used for accessing the association,

Itis also easy Lo decide which classes should be declared as Sociable, namely all the classes which,
according to the object model, participate in associations. However, as section 6.3.3 points out, it may
be wiser 1o define more than the minimum number of classes as Sociable.

When a system has been designed using Sociable classes, the implementor of the system can imple-
ment an association by writing two lines of code in the driver class. One line declares the association,
the other crealtes the association object. One line of code is also needed to form the association between
the required objects.

Only the code required to provide the application specific functionality of the system must be writ-
ten in order Lo assemble a system [rom the basic classes. This process is simpler and quicker than
defining and coding new subclasses and distributing new information throughout pre-existing code.

6.3.2 Traceability of Information

The traccability of information is assessed by examining the information contained in the final ana-
lysis model of the required system and comparing this information with the information oblained by
examining the feature declaration ol cach class.

The final object model, figure 6.3, shows that the system contains one or more objects of classes
Crop, Insect, Crop_rotation_rules, Transaction , Display, Query and Plant_garden. It also shows
that the system contains objects of class Garden which represents an assembly structure consisting of
many Garden plot objects. Each of the plots consists of many Section objects. The model also shows
that:

1. the following associations ar¢ required:
e 2 one-10-one between Garden and Crop_rotation_rules,

e aone-lo-many between Crop and Section,

e many-lo-many between Insect and Crop and between Insect and Insect.
2. the lollowing one directional uses relationships are required:

e Insect, Crop and Section all usc Date,
e Display uses Insect, Crop and Garden,
o Query uses Insect and Crop,
e Plant garden uses Crop,Crop_rotation_rules, Garden, Garden plot and Section,
In the implemented system, the root class feature declarations show that the garden system in-

volves objects ol classes Garden, Crop, Insect , Crop_rotation_rules, Transaction , Display, Query,
Plant_garden and an integer. The declarations also show that the following associations exist:

e aone-to-one between Crop and Crop_rotation_rules,

126

|
i

Display Plant garden

Transaction Query
Inscet Cro
rop Garden
- Crop rotation rules
Section

Figure 6.6: Model drawn [rom root class declarations

e a one-to-many between Crop and Section,
e many-lo-many between Insect and Crop and between Insect and Insect.

This information is sufficient to generate the object model shown in figure 6.6.

Further information is required to form the complete model of the system. The structural features
ol each objectare defined by the classes. The structural features of the classes are sufficient lo generate
a model containing the same information as 6.3.

Thus it is possible Lo trace information from the original analysis model 1o the code and to regen-
erate the analysis model from the class features. '

6.3.3 Reuse of classes

The definition of classes Garden, Crop rotation rules, Insect, Crop, and Section as Sociable classes
provides reuse benelits over the alternative methods of providing the required associations. The asso-
ciations in which they are involved are relevant because of the system in which the classes are being
used rather than being intrinsic propertics ol the objects themselves, For example:

e Class Garden.
The association between class Garden and class Crop rotation rules is only required because
the garden is being used for growing vegetables. The concept of crop rotation would not be rel-
evant in an application concerning flower gardens. The use of an association allows the garden
class 1o be reused more casily in such a system.

e Class Crop

This class participates in two associations. The association with Section is again relevant be-
cause this is a planting system being developed rather than a system being used by a seed sup-
plier.

127

The association with Insect is required because the gardener requires o know information about
insects in the garden. This association is included as part of an original system but can be used o
demonstrate a further benefit of using the Sociable class technique. It would have been possible
to develop a kilchen garden system without requiring any information about pests or beneficial
insects. This extra could be added at a later stage by including an inscct class and declaring the
required associations in the system. It would not be necessary 1o define a new subclass of class
Crop.

Thus, all the classes which were designed as Sociable classes are available for reuse in an extension
to this system or in another system without requiring subclasses to be developed. The classes encap-
sulate only the information which is relevant (o their intrinsic properties. This information obviously
includes the fact that objects of these classes can participale in associations. The classes do not contain
information about the specific classes with which the objects can form associations so are not coupled
with classes unnccessarily. The method results in reduced coupling and greater cohesion of informa-
tion,

Class Garden plot, however, was not designed as a Sociable class because the model of the re-
quired system showed that it was not required Lo participale in associations. This decision restricts the
extensibility of the system. Imagine that the system is 10 be extended 1o contain information about
soil conditions, for example, which plots are infected with fungi. This would require an association
between a newly introduced Fungus class and the class Garden plot. Three ways (o implement the
new association are:

o usc one of the design techniques described in chapter 3.6.

e derive ancw subclass of class Garden plot which defines a sociable class, class Sociable Garden
plot.

o edit the source code of class Garden plot (0 include a line declaring it as a subclass of class
Social.

The first two methods do not require the source code of class Garden plot o be edited but adversely
affect the structure of the system. The third method involves editing the original class code. This is
usually considered (o be undesirable because the changes may alfect existing systems which usc the
class. In the case ol Sociable classes, the additional features gained by declaring Social as an extra
superclass are completely separate from, and do not interact with, the existing features of the class. In
Eiffel, the new features are not exported by the modified class so the interface of the class would not be
affected by such a change. It seems probable therefore that the existing system and any other systems
using the class would not be affected by the changes. The addition of “sociable” features (o existing
classes was identified in chapter 4 as an arca requiring further research, The potential problems can be
avoided by delfining classes as Sociable even il in the current version of the application, they do not
require the functionality,

6.4 Conclusions about the use of associations

This case study has reinforced the conclusions drawn in chapter 4. As predicted, use of Sociable classes
has enabled reduced coupling and provided greater cohesion of encapsulated information. The use of
Sociable classes has improved the reusability ol the classes involved in the system. The classes contain
only the features required to model their intrinsic properties. The application specific code is all located
in the functional classcs.

128

In addition, it was demonstrated that other classes of associations can be implemented and that
associations can be formed between objects of the same class. It was also suggested that in order o
maximise the extensibility of a system, all classes defined in the initial object model should be declared
as Sociable classes.

The case study required instances of one-10-many and many-lo-many associations. The exact car-
dinality of these associations was undefined. The associations used provide the facilities required to
make, access and delete such associations.

Other systems might require a specilic cardinality such as one-1o-two, one-to-three or two-to-five.
A user of the general onc-1o-many and many-to-many associations would be required to ensure that
the number of associations did not exceed the required specification. It may be possible to extend the
capabilities of the existing one-to-many and many-to-many associations (o include the ability to define
the maximum and/or minimum cardinality required. Allernatively, a new class could be developed for
cach cardinality. Extending the [unctionality of the existing classes appears (0 be the better option as
this would prevent an indcfinite number of association classes being required. The exact requirements
require further research.

The case study has verified that the Sociable class design technique can be successfully applied to
a significant system,

Chapter 7

Conclusion

This chapter assesses the usefulness of the Sociable class technique as a means of improving the re-
usability of components. Section 7.1 summariscs the reasons for developing the Sociable class design
method. The main rcason is the loss of information during the analysis or design phase of develop-
ment. Information is lost because several diflerent types of information are represented by the same
implementation construct and are not therefore traccable. The lack of traceability causes a reduction
in the reusability of the classes and in the extensibility of the system. The traceability of information
can be improved by using the Sociable class design technique. This design method and its use both in
a [easibility study and in a complete case study are summarized in section 7.2. The feasibility study
and case study indicate that the use of the Sociable class design method results in improvements in
the reusability of classes and the extensibility of systems.Section 7.3 suggests further research which
would be necessary 1o develop this design technique fully. Other arcas in which traceability could be
improved are also noted. Section 7.4 assesses the outcome of the project with respect Lo the original
aims,

7.1 Reuse and traceability

Reuse was defined, in scction 2.1, to mean use, with or without modifying the component, in an
extension to the existing system or in a different system. This wide definition of reuse was adopted
in order to maximize the benefits accrued by reusing components.

The reuse potential of components was shown in chapler 2 to be dependent on several factors. One
ol these [aclors is the traceability of information [rom the analysed requirements o the final product.
Improving the traceability ol information was shown (0 have the potential to led Lo improvements in
several of the other [aclors, such as standardisation and understandability, which affect the reusability
ol components. The research therclore concentrated on identifying an area in which the traceability of
information could be improved.

Chapter 3 investigated three object oricnted development methods which follow the waterfall pro-
cess model. It was found that, whereas object oriented analysis identifies several different types of
information about the interactions between the components of a system, object oriented programming
only allows two types of information (o be represented. Two of the most common and therefore the
most important types of information arc the facts that one component is an assembly of other com-
ponents, such as a car is composed ol wheels, body and so on, or that a component has a concep-
tual association with other components in the system such as ‘a person has an account’, Both these
types ol information are often represented by the same mechanism, the client-server construct, in object

130

oriented programming languages. The same constructis used to represent many other types of relation-
ship. This reduces the traceability of the relationship and results in a loss of information.

The use of the client-server construct to represent conceptual associations between objects was
shown to reduce both the reusabilily of components in a new system and the extensibility of systems.
This reduction in rcusability occurs because the classes involved in the association become bound to-
gether, long inheritance hierarchies are produced when a system is extended and there is a reduced
correlation between the problem domain and the implemented system. The information about the as-
sociation is not encapsulated but is distributed between the classes involved.

An allernative representation is the use of data structures to implement conceptual associations.
This was shown o cause dilTerent problems. This mechanism encapsulates the information about as-
sociations but distributes the information about the objects involved. It was decided that a separate
mechanism should be developed to allow conceptual associations to be distinguishable as separate con-
structs. This would improve traccability and should enhance the reusability and extensibility of the
system,

7.2 'The Sociable class design method

The Sociable class design method, described in chapter 4, was developed (o provide a separate con-
struct 1o implement conceptual associations. The separate construct is used 1o provide traceability of
the information from the analysis model to the implemented system. The method was designed (o be
applicable for development using a varicty ol current object oriented programming languages. The
technique can be implemented in languages which provide the basic object oriented features of encap-
sulation, inheritance and polymorphism.

The design method requires two new class hierarchies 1o be defined. One type of class is required 1o
define objects with the ability to take part in unspecified associations with other objects. Such classes
arc called Sociable classes and are derived from the base class Social. The other type of classes are
associations. All these classes are derived [rom class Assoc. This class is used to provide compatibility
between all the different types ol association. The different basic types of association are provided
by generic or template classes which are derived from class Assoc. One generic or lemplate class is
required for each type of association such as one-10-one or many-lo-many. These classes encapsulate
all the information required Lo make, break and access that type of association and are provided as
library classes. Specific instances ol association are produced by replacing the generic parameters with
the names of the required classes.

The viability ol the design method has been demonstrated by carrying out a feasibility study and a
complete case study. The feasibility study involved the development of a small system which was then
extended. This system was developed in [our object oriented languages. The feasibility study showed
that the design could be implemenied in cach of the languages. The implementation is most reliable in
languages, such as Eiffel, which support generics and dynamic type checking of reverse assignments.
Further evidence of the viability was provided by the developmentof a complete case study using Eiffel
v2.3. The case study, reported in chapter 6, demonstrated that a variety of different types of association
can be developed and that associations can be lormed between objects of the same class.

A system designed using the Sociable class method consists of classes which define the basic, in-
trinsic properties of the objects. Classes do not define any application specific associations in which
the objects may be involved. Application specific associations are defined by the application program
which creates one instance of each association. This instance is used to associale specified objects.
When a new association between specific objects is required a new instance of the association is added

131

to the objects involved. Thus conceplual associations are stored by the objects involved. Associations
arc object specific notclass specific. These properties maintain the object oriented nature of the system
because

e the classes deline the basic structure and propertics of the objects,
e the objects encapsulate all their own information,
o the associations encapsulate information about themselves.

A system designed using this technique can be readily extended to provide increased functionality
without requiring new subclasses o be declared. This increase in functionality includes the addition
of features which were not anticipated when the system was originally developed.

It should be possible to develop a system [rom pre-tested units. The pre-tested units would be the
application specilic classes as defined by the analysis model plus the library classes used to provide
the conceptual associations between objects. The application classes can be developed and tested indi-
vidually. The library classes providing the conceptual associations would be thoroughly tested before
inclusion in the library.

In chapter 5, the use of the Sociable class design technique was compared with other techniques
which can be used o implement associations between objects. It was found that the Sociable class tech-
nique gives potentially more reuse than the other design methods, This greater reusability is brought
about by improvements in traceability, information hiding, understandability, reliability and standard-
isation of representation of conceptual associations. The complexity of the system design is reduced
when compared Lo current methods ol implementation,

7.3 Future work

The Sociable class design technique presented in this thesis appears (o provide a viable mechanism for
the implementation of conceptual associations. It allows these associations Lo be visible in the imple-
mentation of the system. The present development has included the implemenmiion of case studies
using one-10-one, one-lo-many and many-to-many associations between objects. Further research is
needed Lo provide all the information required to complete the development of the method. Section
7.3.1 identifies some of the more important arcas.

Sections 3.6-3.8 indicaied that other information modelled during analysis was lost during the design
stage and therefore not traceable in the implementation. Section 7.3.2 indicates some areas in which
research might be benelicial.

7.3.1 The Sociable class technique

This section suggests arcas in which more research is required o allow the Sociable class technique Lo
be fully developed,

e The class Social provides a minimal set of operations. This may need to be extended o provide
other capabilitics. Some possibilitics arc:

L. the ability to request that an object returns a list of other objects with which it is associated,

2. the ability to request a list of the types ol association, such as ‘has-account’ or ‘has-share’,
in which it participates.

The requirement for other capabilities should be investigated.

132

i
|

o The class Social declarcs a data structure 1o store the associations. Investigations should be car-
ried oul to determine the most efficicnt data structure Lo use.

e The technique requires dynamic type checking during the access of associations. This is a relat-
ively slow process so should be investigated Lo allow developers 1o be cerlain that the processor
time required does not significantly reduce the efficiency of the system.

o Research needs Lo be carried out to identify all the generic classes of association which should be
developed as library classes. A [ull specification of all the required operations for each of these
classes needs to be developed and implemented.

e The current implementations of the basic associations provide only the minimum functionality
required. Itmay be possible (o add code to the features Lo provide additional functionality. Some
possibilitics are:

1. providing the ability 1o prevent duplication of the associations in the associate feature of
that class. This (eature is responsible [or making associations between specific objects.

2. providing the ability to maintain data consistency when the participants in an association
change, or instance, Lo ensure that when a car changes ownership all the objects involved
reflect the change. This would help solve one of the problems encountered when imple-
menting Llwo way associations.

3. developing the library of associations to include classes for use in distributed systems. It
may be possible (o include in the association class the code necessary for accessing objects
which are located on diflerent machines.

4. providing the ability (o add attributes Lo associations.

o The possibility of improving the extensibility of existing systems by adding the ability to be “so-
ciable” to the existing classes has not yel been investigated.

In addition to this development work, other related arcas may be suitable for investigation. For
example, associations between objects are very important in database applications. It might be possible
to adapt the design technique (or use in database implementations and provide some of the advantages
which seem possible with the language implementations.

This research was restricted (o Lthe use of current object oriented languages. The design technique
developed seems (o have many potential advantages. The advantages might be increased by providing
Sociable classes and associations as language constructs. A Sociable class could then be declared by
using the keyword social in a similar way 10 the declaration of a generic or deferred class in Eiffel.
The required associations could also be declared by using language keywords.

7.3.2 Improving traceability of other relationships

This section identifies other aspects of the development process which do not provide traceability.

It was shown in section 3.7 thal the conceptual associations are only onc of the many relationships
between classes and objects which are implemented by the client-server relationship. These other re-
lationships are not traceable. Improving the raceability of these relationships might also improve the
reusability of the classes produced. Research could also be carried out Lo identify mechanisms to rep-
resent these relationships in programming languages.

A further area in which research might prove beneficial is the constructs used to represent subsys-
tems. Functional and/or structural subsystems are often identificd during analysis. It is not possible

133

to represent this concepl in object oriented systems while retaining the reusability of classes. A con-
struct Lo enable the implementation of subsystems may improve extensibility by dividing the system
into larger units than the individual classes.

7.4 Review of achievements

This section assesses the outcome of the project against the aims, defined in sections 1.1 and 2.3. The
broad aim defined in section 1.1 was o enhance software reuse in object oriented development. The
more specific aim was Lo improve the reusability of software components which can be developed in
currently available object oriented languages. Section 2.3 identified a narrower field within the original
aim. Thisled to the definition of the final objective which was to enhance the reusability of components
by improving the traceability of information. Reuse was defined as use, with or without modifying
the component, in an extension to the existing system or in a different system,

The Sociable class design method was developed and shown to be applicable (0 a variely of object
oriented languages. The method was used in the development of a case study. The results of the case
study demonstrate that this method improves traceability by improving the representation of conceptual
associations. Three significantly dilferent associations were developed for the case study showing that
the method can represent a range of associations.

The improvement in traceability enhances the reusability of the components because:-

1. the implemented classes closely resemble those defined during analysis. This makes the classes
casier Lo understand which should improve the ability to identify and reuse classes from a soft-
ware library. This enables classes Lo be reused, with or without modification, in a different sys-
tem.

2. the implemented system is less complex than the same system implemented by using the other
techniques investigated. The simplicity of the system enables the functionality to be extended
more easily, thus providing reuse, without modification of the components, in an extension (o
an existing system, This contrasts with the usual methods of development which require the
declaration of new subclasses to implement associations between objects.

In addition, systems are simpler to implement because library classes are used to implement as-
sociations between objects. The classes required 1o implement this design can be implemented using
currentobject oriented language [catures. However, the benefits of the design method might be further
cnhanced by the inclusion ol the required classes as language construcls.

The Sociable class design method increases the traceability of information about relationships by
improving the representation ol conceptual associations in programming languages. The increased
traceability improves the reusability ol the software components. The Sociable class design method
successfully mects the aims of the project.

134

Appendix A

Eiffel classes used to implement the
Sociable class method

This appendix contains the code used o implement the classes used in the implementation of the So-
ciable class design method.

A.1 Class Assoc
This is the base class for all associations.

class ASSOC

EXPORT

make_assoc{ASSOC} , declaredtype{SOCIAL}
feature
declaredtype:STRING; -- added to provide dynamic type checking
create (declared_type : STRING) is

do

declaredtype := declared_type.duplicate;
end; --create

make_assoc(objects : LINKED_LIST[ANY]) is

-~ the parameter is declared as a list of type ANY so that any variety of
-- objects can be associated. It is necessary to have at least one of the
-- objects derived from SOCIAL in order to use this class.

do
io.putstring("this feature must be defined by subclasses");io.new_line;
end; --make_assoc

end --ASS0C

A.2 Class One-to-one2
This class provides code Lo generale an association between 2 objects with access in either direction.
class ONE_TO_ONE2(a -> SOCIAL, b -> SOCIAL]

export
find_objectl, find_object2, associate, disassociate,
make_assoc {ONE_TD_ONE2}, get_object1{ONE_TO_ONE2},
get_object2{ONE_TD_ONE2}, make_list{ONE_TO_ONE2},
find_assocl1{ONE_TO_ONE2},find_assoc2{ONE_TO_ONE2},
break_assoc {ONE_TO_ONE2}

inherit
ASSOC

! rename create as basecreate
: redefine make_assoc

feature
X a;
y b

done :BOOLEAN;

create (declared_type : STRING) is

local
type :STRING;

do
type := declared_type;
basecreate(type);

end;--create

associate(objectl : A, object2 : B)
-- makes an association between the two named objects.
-- The class of the calling
-- association is the class of association produced.

is
local
ol : A;
02 : B;
link : ONE_TO_ONE2(A,B];
assoclist : LINKED_LIST[SOCIAL];
do
ol := objectl;
02 := object2;
link:= current.deep_clone;
assoclist.create;
assoclist := link.make_list(ol, 02);
link.make_assoc(assoclist);
end; --associate

disassociate(objectl : A, object2 : B) is
--breaks the association between two objects

local
ol : A;
02 : B;
link : ONE_TO_ONE2[A,B];
assoclist : LINKED_LIST[SOCIALJ];
do

ol := objectl;
02 := object2;
link:= current.deep_clone;
assoclist.create;
assoclist := link.make_list(ol, 02);
link.break_assoc(assoclist);

end; --disassociate

find_object1(object2 : B): A is
-— returns an instance of the first actual generic parameter.
-~ Void if no association exists.

local
p : B;
asi : ONE_TO_ONE2[A,B];
r : A;

do

136

p := object2;
asl := find_assoc2(p);
if not asl.void then
Result := asl.get_objectl;
else
Result := r;
end; --if
end; --findobjectl

find_object2(objectl : A): B is
-~ returns an instance of the second actual generic parameter.
-- Void if no association exists.

local
p : A
asl : ONE_TO_ONE2[A,B];
r : B;
do
p := objectl;

asl := find_associ(p);
if not asl.void then
Result := asl.get_object2;
else
Result :
end; --if
end; --findobject?2

1

r;

-— private features

make_list(objl : a, obj2 : b) : LINKED_LIST[SOCIAL] is
-~ this feature must be called before make_assoc.the first named object must
--conform to the first actual generic parameter. The second parameter must
-- conform to the second actual generic parameter.
=~ This cannot be included as a precondition because x and y are void at
-~ this stage. It may be possible to add a create procedure to cure this
-- problem.

local
list ; LINKED_LIST[SOCIAL]
do
list.Create;
x.Create;
y.Create;
list.put_right(obj2);
list.put_right (objl);
done := TRUE;
Result := list;
ensure
list.i_th(1) .conforms_to(y),list.i_th(2).conforms_to (x)

—-- THESE POSTCONDITIONS CAUSE A SEGMENTATION FAULT IF X AND Y ARE VOID
-- REFERENCES. THE TWO OBJECTS ARE THEREFORE CREATED ABOVE.
end; --make_list

make_assoc(objects: LINKED_LIST[SOCIAL]) is

require
objects.count =2, done, objects.i_th(1).conforms_to(x),
objects.i_th(2).conforms_to(y)
-- the conforms_to checks should be superfluous.
do
X = objects.i_th(1);
y := objects.i_th(2);
x.addAssociation(current) ;
y.addAssociation(current) ;
end;--make_assoc

137

|
]
|
1

break_assoc(objects: LINKED_LIST[SOCIAL]) is
--removes the association from the list of associations of both objects

local
p : B;
asl : ONE_TD_ONE2(A,B];
r : A;
do
r := objects.i_th(1);

P := objects.i_th(2);
asl := find_assoc2(p);--check that association exists
if not asi.void then
--should really get the association from objectl as well and check
—-- that they are the same
p.deleteAssociation(asl);
r.deleteAssociation(asl);
end;--if
end;-~break_assoc

find_assocl(objectl :A) :ONE_TO_ONE2[A,B] is
-- returns an instance of the same class as association which has objecti
-- as the instance of its first actual generic parameter. Returns void if no
-- instance of the association exists.

local
assoc : ONE_TO_ONE2[a,b];
p : A;
¢ : ASSOC;
do
p:= objectl;

c:= p.accessassociation(current);
assoc 7=c¢;
Result := assoc;

end; --find_assocl

find_assoc2(object2 :B) :0ONE_TO_ONE2(4,B] is
-- returns an instance of the same class of association which has object2
-- as the instance of its first actual generic parameter. Returns void if mno
-~ instance of the association exists.

local
assoc : ONE_TO_ONE2[a,b];
p : B;
c : ASSODC;
do
p:= object2;

c:= p.accessassoclation(current);
assoc 7=c;
Result := assoc;

end; -- find_assoc?2

get_objectl : a 1is
do
result:= x
end; --get_objectl

get_object2 : Db is
do
result :=y

end; --get_object2

end -- ONE_TO_ONE2

A.3 Class Social
This class is the base class for all Sociable classes.

class SOCIAL

138

export
addAssociation{ASSOC}, accessAssociation{ASSOC},
association_found{ASS0C}, deletelAssociation{ASSOC}
feature
associations : EXPANDED LINKED_LIST[ASSOC];
association_found : BOOLEAN;

addAssociation (¢ : ASSOC) is -- adds an instance of class
-- assoclation to the list of associatiomns.
do
associations.finish; -- go to the end of the list
associations.add_right(c); -- add the association
end; -- addAssociation

accessAssociation(c : ASSOC) : ASSDC is
--find and return the instance of the required type of connection
~- association_found false if not found and VOID returmned.
-- association_found true if found.

local
i: INTEGER; -- used for controlling loop
x : ASSOC;
do
association_found := false;
from i := 0;

until i = associations.count or association_found

loop
i:= i+1l; -- initially get element number 1
x:= associations.i_th(i); -- get the ith

-- element from the list

if x.declaredtype.equal(c.declaredtype)
--reference semantics

-- the element is the required type

then
association_found := true;
else
x.forget;
-- resets value of x to VOID
end;--if
end; --loop
Result := x; -- returns the value of x
end; -- accesslssociation

deletelAssociation(c:ASSOC)is

local
i: INTEGER; -- used for controlling loop
x : ASSOC;
done : BOOLEAN;
do
association_found := false;
from i:=0;
until i = associations.count or done
loop
ir= i+1; -- initially get element number 1
x:= associations.i_th(i); -- get the ith

-- element from the list
if x.declaredtype.equal(c.declaredtype)
--reference semantics
-~ the element is the required type
then
done := true;
associations.go(1i);
associations.remove;
else
x.forget;

139

I
1
x

-~ resets value of x to VOID

end;-~if
end; --loop
end;-- deletelssociation

end -- SOCIAL

A.4 Class Person

This class is an example of a Sociable class. It inherits from Social 0 obtain all the required features.

class PERSON
export

first_name, address, telNo, assignName, assignAddress, assignTelNo
inherit SOCIAL

feature
-~ attributes identified during analysis
first_name : STRING;
address : STRING;
telNo : INTEGER;
-- exported assign features
assignName (s:STRING) is
do
first_name := s.duplicate;
end; --assignName

assignAddress (s:STRING) is
do
address := s.duplicate;
end; --assignAddress

AssignTellNo (i:INTEGER) is
do
telNo := 1i;
end; -- assignTelNo

end --person

140

Appendix B

Modula-3 classes used to implement
the Sociable class method

This appendix contains the code used o implement the classes used in the implementation of the So-
ciable class design method. Each class is implemented as a pair of modules. One of the modules rep-
resents the interface and the other presents the implementation.

B.1 Class Assoc

This is the base class [or all associations.

INTERFACE Assoc;

TYPE T <: Assoc;
Assoc = DOBJECT

METHODS
makeAssociation(list : REF ARRAY [1..5] OF ROOT)
END;

END Assoc.

ook sk ok o o ok ok ok ok ok Sk ok 3ok oK oK ok ok 3k oK oK oK o oK oK ok Kok o ok ok o ok ok ok ok ok ok ok kK ok ok ok ok ok ok K oK

MODULE Assoc;
IMPORT Wr, Stdio;

REVEAL

T = Assoc BRANDED OBJECT
OVERRIDES

makeAssociation := makeAssoc;
END;

PROCEDURE makelAssoc(self :T; list : REF ARRAY [1..5] OF ROOT) =
BEGIN
Wr.PutText(Stdio.stdout, " This must be
redefined by subtypes.\n");
Wr.Close (Stdio.stdout);
END makeAssoc;

BEGIN
END Assoc.

B.2 Class One-to-one2

This class provides code o gencrale an association between 2 objects with access in cither direction.

141

GENERIC INTERFACE one_to_one2(F,G);
IMPORT Assoc;

TYPE
T<: one_to_one2;
one_to_one2 = Assoc.T OBJECT
METHODS
associate(objectl: F.T; object2 : G.T);
find_objectl(object2 : G.T) : F.T;
find_object2(objectt : F.T) : G.T;
END;
END one_to_one2.
K ok R K ok ook ok ok o K oK R KR K oK K ok K K ok K K Kok R KR o ok oK o ok ok ok ok ok ok

GENERIC MODULE one_to_one2(F, G);

(* Really need two parameters of type sociable. The parameters are the module’

name not the type name but the compiler will not allow the same module to be
imported twice,

*)

IMPORT VWr, Assoc;

REVEAL
T = one_to_one2 BRANDED 0OBJECT
obl : F.T;
ob2 : G.T;
OVERRIDES
makeAssociation := makeone_to_one?2;
associate := assct;

find_objectl := f_objectl;
find_object2 := f_object?2;
END;

PROCEDURE makeone_to_one2(self : T; list :REF ARRAY (1..5] OF ROOT) =
(* The compiler will not accept an array of Social.T as compatible
with array of ROOT in the base class. *)) :

BEGIN
self.obl := list[1];
self.ob2 := list[2];
self.obl.addAssociation(self);
self.ob2.addAssociation(self);
END makeone_to_oneZ2;

PROCEDURE assct(self:T; objectl: F.T; object2 : G.T) =
VAR
link := NEW (T);
assoclist := NEW (REF ARRAY [i..5] OF ROOT);
BEGIN
(* make a new copy of the associationx)
(* These lines may not be necessary+)
link.obl := self.obt;
link.ob2 := self.ob?2;
(* assign the required objects to the assoclist#*)
assoclist[1] := objectl;
assoclist[2] := object2;
(xmake the association between the objects)
link.makeAssociation(assoclist);
END assct;

PROCEDURE f_objecti(self:T; object2 : G.T) : F.T =
VAR

asl : T;
BEGIN

(* find the required instance of the association*)

asl := find_assocl(self, object2);

IF NOT asi=NIL (* if the association exists*)

THEN (* return the first object of the associationx)
RETURN asl.obil

ELSE
RETURN NIL

END (*IFx*)

END f_objecti;

PROCEDURE f_object2(self:T; objectl : F.T) : G.T =
VAR
asl : T;
BEGIN
(* find the required instance of the associationx)
asl := find_assoc2(self,objectl);
IF NOT as1=NIL (* if the association existsx)
THEN (* return the second object of the association*)
RETURN asl.ob2
ELSE
RETURN NIL
END (*IF%*)
END f_object2;

PROCEDURE find_assoc2(self:T; objectl : F.T) : T =
VAR
assoc :T;
BEGIN
RETURN objectl.accessAssociation(self);
END find_assoc2;

PROCEDURE find_assocl(self:T; object2 :G.T) : T =
VAR
assoc :T;
BEGIN
RETURN object2.accessAssociation(self);
END find_assocl;

BEGIN

END one_to_one2.

B.3 Class Social

This class is the base class [or all Sociable classes.

INTERFACE Social;
IMPORT Assoc;

TYPE
T <: Social;
Social = OBJECT
METHODS
addAssociation (c:Assoc.T); (* add a new instance of type
connector to the list of connections*)
accessAssociation («c¢: Assoc.T) :Assoc.T; (* return the instance of
the required type of connection , if none found NIL is returnedx*)
deleteAssociation (c:Assoc,T);(*delete association ¢ from the list
of connectionsx*)
END;
END Social.

ok ok ok ok ok ok ok ok ok ook 3k ok 3k o oK ok ok ok o o ok ok ok o ok ok ok kR ok R ok ok ok ok ok ok ok ok ok ok ok ok ok ok

143 ’

MODDULE Social;
IMPORT Assoc;

CONST maxAssociations = 10;

REVEAL
T = Social BRANDED OBJECT
associations : ARRAY [1..maxAssociations] OF Assoc.Assoc;
OVERRIDES

addAssociation ;= alssoc;
accessAssociation ;= acclssoc;
deletelAssociation := dellssoc;

END;

PROCEDURE aAssoc (self :T; «c¢: Assoc.T) =
(* add a new instance of type comnector to the list of connections*)
VAR

i : INTEGER;
BEGIN

(* find next empty space in array *)

i:=0;

REPEAT

INC (i);

UNTIL self.associations[i] = NIL;

self.associations[i] := c;
END alssoc;

PROCEDURE acchAssoc (self : T; «c: Assoc.T) : Assoc.T = (* return the
instance of the required type of connection , if none found NIL is returned#)

VAR
i=0;
x : Assoc.T;
BEGIN
x := NIL;
REPEAT (% iterate through the array of associations
until the requested type is found.*)

INC (i)
x := self.associations[i];
UNTIL i = maxAssociations OR TYPECODE (x) =TYPECODE (c);

RETURN x;
END accAssoc;

PROCEDURE deldssoc(self :T; c :Assoc.T) =

VAR
i:=0;
X : Assoc.T;
BEGIN
x := NIL;
REPEAT (* iterate through the array of associations
until the requested type is found.*)
INC (1);
x := self.associations[i];
UNTIL i = maxAssociations OR TYPECODE (x) =TYPECODE (c);
IF TYPECODE (x) =TYPECODE (c) THEN
self.associations{i] :=NIL
END; (#IF*)
END delAssoc;

BEGIN

END Social.

144

B.4 Class Person

This class is an cxample of a Sociable class. It inherits [rom Social 10 obtain all the required features.

(* This is the interface for the class person with associations*)

INTERFACE Person;
IMPORT Text , Social;

TYPE
T <: Person;
Person = Social.T OBJECT
METHODS
newPerson();

addName(s;Text.T);

getName () : Text.T;

addAddress (s:Text.T);

getAddress () :Text.T;

addTelNo (n:INTEGER) ;

getTelNo(): INTEGER;
END;

END Person.

Kook o K oo Kok ook ok ok o o sk o o ok K KoK K K o KK o Sk K Sk Kk o kK o o
(* This is the implementation for the class person with associations*)

MODULE Person;
IMPORT Social;

REVEAL
T = Person BRANDED OBJECT
name: TEXT;
address : TEXT;
telNo : INTEGER;
OVERRIDES
addName := addN;
getName := getN;
addAddress := addA;
getAddress:= geth;
addTelNo := addT;
getTelNo := getT;

END;
PROCEDURE addN (self :T ; s:TEXT) =
BEGIN
self.name := s;
END addN;

PROCEDURE getN (self :T):TEXT =
BEGIN

RETURN self.name;
END getN;

PROCEDURE addA(self :T ; s:TEXT) =
BEGIN

self.address := s;
END addA;

PROCEDURE getA(self :T):TEXT =
BEGIN

RETURN self.address;
END getA;

PROCEDURE addT(self :T ; n:INTEGER) =
BEGIN

self.telNo := n;
END addT;

PROCEDURE getT(self :T): INTEGER =
BEGIN

RETURN self.telNo;
END getT;

BEGIN

END Person.

146

Appendix C

Oberon-2 classes used to implement
the Sociable class method

This appendix contains the code used o implement the classes used in the implementation of the So-
ciable class design method.,

C.1 Class Assoc

This is the base class or all associations.

MODULE Assoc; (* Record plus type bound procedures*)

TYPE
string *= ARRAY 32 OF CHAR;
Assoc* = POINTER TO AssocDesc;
AssocDesc * = RECORD
(xexported in order to read-only export the fields *)
declaredType - : ARRAY 32 OF CHAR;
END (*recordx*) ;

PROCEDURE(a : Assoc) assignTypex(s: string);
BEGIN

COPY (s,a.declaredType);
END assignType;

END Assoc.

C.2 Class One-to-one2

This class provides code to generate an association between 2 objects with access in cither direction,
This is a template [or all associations ol this type. In order to define a specific association, make a copy
of this file with the required name. In the IMPORT statement replace the two occurrences of Social with
the required module names. The module must be renamed both at the top of the file and after the final
END.

MODULE OneToOne2;
IMPORT Assoc, DObject, A := Social, B := Social;
TYPE T* = POINTER TO OneToOne2Desc;

OneToOne2Desc = RECORD(Assoc.AssocDesc)

objl : A.T;
obj2 : B.T;
END (* RECORD#*) ;

147

PROCEDURE (a : T) associatex(objectl 1A T; object2 : B.T);

VAR

link : T;

type : Assoc.string;
BEGIN

NEW (1link);

COPY (a.declaredType,type);
link.assignType(type);
link.objl := objectl;
link.obj2 := object2;
link.obj1l.AddAssociation(link) ;
link.obj2.AddAssociation(1link);

END associate;

PROCEDURE (a : T) findObjectl*(object2 : B.T) : A.T;

VAR

asl : T;

o : B.T;

b :Assoc.Assoc;
BEGIN

(* Find the required instance of the association)
o := object2;
b := 0".AccesslAssociation(a);
WITH b :T DO
asl := b;
END (#WITH*) ;
RETURN asi1”.objt
END findObjectl;

PROCEDURE (a : T) findObject2*(objectl : A.T) : B.T;

VAR

as2 : T;

o : A.T;

b :Assoc.Assoc;
BEGIN

(* Find the required instance of the association*)
o := objectl;
b := 0" .AccessAssociation(a);
WITH b :T DD
as2 := b;

END (*WITH*) ;
RETURN as2”.o0bj2

END findObject2;

END OneToOne2.

C.3 Class Social

This class is the base class lor all Sociable classes.

MODULE Social; (* Record plus type bound proceduresx)

IMPORT Object, Assoc;
TYPE
T* = POINTER TO SocialDesc;
SocialDesc * = RECORD (Object.ObjectDesc)
(*exported in order to read-only export the fields *)
associations - : ARRAY 10 OF Assoc.Assoc;
END (*record*) ;

PROCEDURE(s : T) AddAssociation* (a : Assoc.Assoc);
(* add a new instance of association to the array of associations#*)
VAR
¢ : INTEGER;

148

BEGIN

c :=0;
REPEAT
INC(c);
UNTIL s.associations[c] =NIL;
s.associations[c] := a;

END AddAssociation;

PROCEDURE (s : T) AccessAssociation*(a: Assoc.Assoc) : Assoc.Assoc;
(* return the instance of association of the type requested.
NIL returned if not found*)

TYPE

string =ARRAY 32 OF CHAR;
VAR
¢ : INTEGER;
X : Assoc.Assoc;
current, required : string ;
BEGIN
c = 0;
COPY (a.declaredType,required);
REPEAT
INC(c);
X := s.associations[c] ;
COPY (x.declaredType,current);
UNTIL (c=10) OR (x.declaredType = a.declaredType);
RETURN x;
END AccessAssociation;

END Social.

C.4 Class Person

This class is an example of a Sociable class. It inherits [rom Social to obtain all the required features.

MODULE Persons; (* Record plus type bound procedures*)
IMPORT Social;
TYPE
T* = POINTER TD PersonDesc;
PersonDesc * = RECORD (Social.SocialDesc)
(xexported in order to read-only export the fields *)
name- : ARRAY 32 OF CHAR;
address- : ARRAY 32 OF CHAR;
telNo- : INTEGER;
END (*recordx*) ;

PROCEDURE(p:T) AssignName*(n : ARRAY OF CHAR);
BEGIN

COPY (n, p.name);
END AssignName;

PROCEDURE (p:T) AssignAddress* (n : ARRAY OF CHAR);
BEGIN

COPY (n, p.address);
END AssignAddress;

PROCEDURE (p:T) AssignTellNo* (i :INTECER);
BEGIN

p.telNo := 1i;
END AssignTellNo;

END Persons.

149

Appendix D

C++ classes used to implement the
Sociable class method

This appendix contains the code used o implement the classes used in the implementation of the So-
ciable class design method.

D.1 Class Assoc
This is the base class for all associations.

#ifndef ASSOC_H
#define ASSOC_H

/* #define NULL ({void *)0) */
#include <iostream.h>

class Social;
typedef char *AssocType;

class Assoc {
int itag;
char *ctag;
public:
Assoc(void) { 1}
virtual AssocType mytype_dyn(void) { return “error";}
int sametype(AssocType id) { return strcmp(id,mytype_dyn())==0; }
+;

class AListElem {
Assoc *val; AListElem *nxt;
AListElem(Assoc #*v, AListElem *n) { val=v; nxt=n;}
friend class AssocList;

¥

class AssocList {
private:
AListElem *1, #*iterp;
public:
AssocList(void) { 1=NULL; iterp=NULL; }
void add(Assoc *a) { 1 = new AListElem(a,l); }
int empty(void) { return 1==NULL; }
void iterset(void) { iterp=1; }
void iterstep(void) { if(iterp!=NULL) iterp=iterp->nxt; }
int iterdone(void) { return iterp==NULL; }
Assoc *iterget(void) { if(iterp!=NULL) return iterp->val; }
}

#endif ASSOC_H

150

D.2 Class One-to-one2

This class provides code to generate an association between 2 objects with access in either direction.

This implementation uses two classes 1o implement the specification of class One-to-one2. Class OneToOne2Node
is used to provide the actual links between the objects. Class OneToOne2 provides the [unctionality

required to make and access the associations.

#ifndef ONETOONE2_H
#define ONETOONE2_H

#include <iostream.h>
extern "C" {

extern char #*strdup(char *);
}

#include "assoc.h'

template<class A, class B>
class OneToOne2Node : Assoc {
private:
A *a;
B *b;

char *typename;
public:
OneToOne2Node(A *aa, B *bb, char *tn) :Assoc() {
a = aa; b = bb; typename = strdup(tn);
}
char *mytype_dyn(void) { return typename; }
friend class OneToOne2<A,B>;
}

//template<class A, class B>char *OneTo0One2Node<A,B>::typename = 0;

2k 3 ok ok ok ok 2k ok ok ok ok 3k K ok ok 3k ok 3k ok ok 3 ok ok 3k 3k ok sk ok %k 3k ok sk k ok ok ok %k ok ok sk ok ok ok ok sk ok ok 3k ok sk ok ok ok ok ok ok ok Kok skok Kok ok ok

template<class A, class B>
class OneToOne2 {
char *assoctypename;
public:
OneToOne2(char *typn) {
// OneToOne2Node<4,B>::typename = strdup(typn);
assoctypename = strdup(typn);

void associate(A *aa, B *bb) {
OneToOne2Node<A,B> *tmp = new OneToOne2Node<4,B>(aa,bb,assoctypename);
aa->addassoc(tmp); bb->addassoc(tmp);

}

A *geta(B *bb) {
AssocList #o0s = bb->findassocs(assoctypename) ;
os->iterset();

return ((OneToOne2Node<A,B> #) (os->iterget()))->a;

return NULL;

}

B *getb(A *aa) {
AssocList *o0s = aa~>findassocs(assoctypename);
os=>iterset();
return ((OneToOne2Node<A,B> *) (os->iterget()))->b;
return NULL;

}
};
#endif ONETOONE2_H

151

D.3 Class Social

This class is the base class [or all Sociable classes. It is implemented in two (iles. the header file is
printed first.

#ifndef SOCIAL_H
#define SOCIAL_H

#include "assoc,h"

class Social {
private:
AssocList assocs;
public:
Social(void) :assocs() { }
vold addassoc(Assoc *a);
AssocList *findassocs(AssocType 1d);

};

#endif SOCIAL_H
K oK oK K KK oK R o Kok ok oK oK ok o K K ok o oK oK 3 ok K K oK ok ok ok ok o o ok o ok ok ok oK Kok oK
#include "social.h"

void Social::addassoc(Assoc #*a) {
assocs,add(a);

}

AssocList #*Social::findassocs(AssocType id) {
AssocList *res = new AssocList;
assocs.iterset();
while(! assocs.iterdone()) {

if (assocs.iterget () ->sametype(id)) {
res->add(assocs.iterget());

}
assocs,.iterstep();
}
return res;
}

D.4 Class Person

This class is an example of a Sociable class. It inherits from Social (0 obtain all the required features.

#ifndef PERSON_H
#define PERSON_H

#include <iostream.h>
#include "social.h"

class Person : public Social {
private:
char *name;
int age;
public:
Person(char *n, int a) :Social() {
name = new char{strlen(n)+1];
strcpy(name,n); age=a;

const char *who(void) { return name; }
const char *getname(void) { return name; }

152

int getage(void) { return age; }
‘ void show(void) { cout << "Person{" << name << ", " << age << "}"; }

}

; #endif PERSON_H

153

Appendix E

Case study implementation

This appendix contains the code skeletons for the classes used in the implementation of the case study
detailed in chapter 6. The code shown is sulficient o allow the reader to understand the classes without
reading the details, All the code which accesses associations is shown in the skeletons. Section E. 1
contains the main controlling class for the system. Sections E.2- E.4 conltain the classes which provide
the application specific functionality. Section E.5 contains the Sociable classes and section E.G contains
the code for the other classes required by the system.,

E.1 Root class

This class coordinates the system [unctionality.

class ROOT
feature

-- DATA
garden : GARDEN;

croplist : LINKED_LIST[CROP];
crop_rotation : CROP_ROTATION_RULES;
insectlist :LINKED_LIST{INSECT];

-- ASSOCIATIONS

defines_rules : ONE_TO_ONE2(GARDEN,CROP_ROTATION_RULES];
sown_in : ONE_TO_MANY[CROP,SECTION];

eats_crop : MANY_TD_MANY[INSECT,CROP];

eats_insect : MANY_TO_MANY [INSECT,INSECT];

-- FUNCTIONALITY

session : TRANSACTION;
display : DISPLAY;

query : QUERY;

plant_garden : PLANT_GARDEN;

choice : INTEGER;

-- STORAGE
gardens,crops,insects,predators,pests:FILE;

create is
local

do
io.putstring(" Welcome to the garden system");
io.new_line;
io.new_line;

io.new_line;

set_up; --reads in data
display.create(garden,croplist,insectlist);
query.create(croplist,insectlist,eats_crop, eats_insect);
plant_garden.create(garden,croplist, crop_rotation,defines_rules,

sown_in);
from get_choice;
until choice = 10
loop
inspect choice
when 1 then session := display
when 2 then session := query
when 3 then session := plant_garden
end; -- inspect

session.execute;
get_choice;
end; -- loop
end; --create

set_up is
do

~read information from files to set up the required data and associations

end;--set_up

get_choice is
do

— display menu of choices
— get their choice

end;--get_choice

read_gardens is
—read the details from the file into the garden variable

end; --readgardens

read_crops is
—read the delails from the file into the list of crops

end; -~ readcrops

read_insects is
—read the details [rom the file into the list of insccls

end; --read_insects

read_predators is
—read the details [rom the file o form the associations between insects

local
predator,pest : INTEGER;

do
predators.create('predators");
from predators.open_read;
until predators.end_of_file
loop

predators.readint;

predator := predators.lastint;predators.next_line;
predators,readint;
pest := predators.lastint;
eats_insect.associate(insectlist.i_th(predator),insectlist.i_th(pest));
predators.next_line;
end; --loop
end; -- read_predators

read_pests is
—read the details from the file to form the associations between insects and crops

local
crop,pest : INTEGER;
do
pests.create("pests");
from pests.open_read;
until pests.end_of_file
loop
pests.readint;
pest := pests.lastint;pests.next_line;
pests.readint;
crop := pests.lastint;
eats_crop.associate(insectlist.i_th(pest),croplist.i_th(crop));
pests.next_line;
end; --loop
end; -- read_pests

end --root

E.2 Class Display

This class is responsible for displaying the data stored by the system.

class DISPLAY
export execute

inherit transaction
feature
choice : INTEGER;
garden : GARDEN;
croplist : LINKED_LIST[CROP];
insectlist :LINKED_LIST[INSECT];

create(g: GARDEN;c_1: LINKED_LIST[CROP];i_1 :LINKED_LIST[INSECT]) is
do
garden:= g;
croplist := c_1;
insectlist := i_
end; --create

1;

execute is

do

io.putstring(" Welcome to the display section");
io.new_line;

from get_choice;
until choice = 10
loop

inspect choice
when 1 then display_garden
when 2 then display_crops
when 3 then display_insects

end; --inspect

get_choice;

156

end; --loop
end; --execute

get_choice is
do

— display menu of choices
— get their choice

end;--get_choice

display_garden is
do

—display the garden details

end; --display_garden

display_crops is
do

— display the list of crops

end; --display_crops

display_insects is
do

— display the list of insects
end; --display_insects

end --display

E.3 Class Query

This class allows the user to find out about pests and predators.

class QUERY
export execute

inherit transaction
feature

choice : INTEGER;
croplist : LINKED_LIST[CROP];
insectlist :LINKED_LIST[INSECT];

eats_crop : MANY_TO_MANY[INSECT,CROP];
eats_insect : MANY_TO_MANY[INSECT,INSECT];

create(c_l : LINKED_LIST[CROP];i_1 :LINKED_LIST[INSECT];
e_c : MANY_TO_MANY([INSECT,CROP]; e_i : MANY_TO_MANY([INSECT,INSECT])
do
croplist := c¢_1;
insectlist := i_1;
eats_crop := e_c;
eats_insect := e_
end; -- create

1;

execute is
do

157

is

io.putstring(" Welcome to the question section");
io.new_line;

from get_choice;
until choice = 10
loop

inspect choice
when 1 then print_insect_eats_crop
when 2 then print_insect_eaten_by_insects
when 3 then insect_eats
when 4 then crops_eaten_by_insect

end; --inspect

get_choice;

end; --loop
end; --create

get_choice is
do

— display menu of choices
— get their choice

end;--get_choice

print_shortcrops is

— display name and varicty ol all crops
end; -- print_shortcrops
print_shortinsects is

— display names of all inscets

end; -- print_shortinsects
print_insect_eats_crop is

local
n : INTEGER;
list : LINKED_LIST[INSECT];
pest : INSECT;
crop : CROP;
do

— gel users choice of crop
—use eats_crop association to return list of insects cating the crop

list := eats_crop.find_objectsl(croplist.i_th(n));
crop.display;
if list.void
then
io.putstring(" has no known pests");
else

— display list of pests

end;--1if
end; --print_insect_eats_crop

print_insect_eaten_by_insects is
local
n : INTEGER;
list : LINKED_LIST[INSECT];
predator,pest : INSECT;
do

— get users choice of insect

—use eats_inseet association to retum list of insects cating the insect

158

list := eats_insect.find_objectsi(insectlist.i_th(predator);

predator.display;
if list.void
then
io,putstring("has no known predators");
else

— display list of pests
end;--if
end; --print_insect_eaten_by_insects

insect_eats is

local
n : INTEGER;
listl : LINKED_LIST[CROP];
list2 : LINKED_LIST[INSECT];
insect,pest : INSECT;
plant : CROP;

do

— get users choice of inscct
—use eals_crop association to return list ol crops caten by the insect

listl := eats_crop.find_objects2(insectlist.i_th(n));
if listl.void
then
io.putstring("No known crops eaten");
else

— display list of crops eaten
end;--if

—use eals_crop association lo return list of crops eaten by the insect

list2 := eats_insect.find_objects2(insectlist.i_th(n));
if list2.void
then

io.putstring("No known insects eaten');io.new_line;
else ’

— display list of crops caten

end;--if
end; -- insect_eats

crops_eaten_by_insect is
local
n : INTEGER;
list : LINKED_LIST[CROP];
plant : CROP;
insect : INSECT;
do

— get users choice of insect
—use eats_crop association to return list of crops calen by the insect

list := eats_crop.find_objects2(insectlist.i_th(n));
insect.display;
if list.void
then
io.putstring(”No known crops eaten");
else

— display list of crops ealen

end;--if
end; --crops_eaten_by_insect
end --query

159

E.4 Class Plant_garden

This class is responsible [or allowing the user to sow secds and (ind out where crops are growing.

class PLANT_GARDEN
export execute
inherit TRANSACTION
feature

choice :INTEGER;

garden: GARDEN;

croplist : LINKED_LIST[CROP];

crop_rotation : CROP_ROTATION_RULES;

defines_rules : ONE_TO_ONE2{GARDEN,CROP_ROTATION_RULES];
sown_in : ONE_TO_MANY [CROP,SECTION] ;

create(g: GARDEN; c¢ : LINKED_LIST[CROP], c_r : CROP_ROTATION_RULES;
d_r : ONE_TO_ONE2[GARDEN,CROP_ROTATION_RULES];
s_i : ONE_TO_MANY[CROP,SECTION])

is
local

do
garden := g;
croplist :=c;
defines_rules:= d_r;

crop_rotation := c_r;
sown_in := s_i;
end; --create

execute is
do
io.putstring(" Welcome to the planting section");
io.new_line;
io.new_line;
io.new_line;
from get_choice
until choice = 10
loop
inspect choice
when 1 then SowW_crop
when 2 them crop_growing
when 3 then area_growing
end; --inspect
get_choice;
end; --loop
end; --create

get_choice is
do

— display menu of choices
— get their choice

end;--get_choice

sow_crop is

local
plant : CROP;
area : GARDENPLOT;
next_type: STRING;
sow : BOOLEAN;
section : SECTION;

160

place,rows : INTEGER;
length : INTEGER;
do

— {ind out the crop 10 sow
— {ind out where to sow it
— what is the next crop Lype 10 go in this area?
—does selected crop group coincide with current state of plot?

if plant.group.equal(area.current_state)
— yes then crop can be sown

then
sow := TRUE;

—would this comply with the desired crop rotation?
— tell user it should be in this area next year.
—ask if wish to sow anyway if answer yes

then
sow := TRUE;
end; --if

— il crop grew here last year
— tell user crop grew here last year and should not be in this plot
—ask il wish to sow anyway il answer yes

then
sow := TRUE
end; --if
end;--if

— if user has decided to sow the crop

— ask for the number of rows required and the position in the plot
— if plot can be allocated

— form an association between crop and section

sown_in.associate(plant,section);
end; --sow_crop

crop_growing is

local
plant : CROP;
area : GARDENPLOT;
next_type: STRING;
sow : BOODLEAN;
section : SECTION;
place,rows : INTEGER;
length : REAL;
sectionlist : LINKED_LIST[SECTION];

do

—ask user which crop they wish to find — use the sown_in association to return the list of sections growing the crop
sectionlist := sown_in.find_objects2(plant);

— il crop has been sown
— display the list of places

end;--crop_growing

area_growing is

local
plot : GARDENPLOT;
sections : ARRAY_LIST[SECTION];
crop : CROP;

do

161

— find out which plot is required
—if sections have been planted use sown_in association to find out which crop is growing in each section

crop := sown_in.find_objectl(sections.item);
— display the list of crops
end; --area_growing

end --plant_garden

E.5 Sociable classes

This section contains the code skelelons of the Sociable classes used in the kitchen garden system,

E.5.1 Class Crop

class CROP export

display_details, assign_name,

assign_variety, assign_group, assign_sowing_season,
assign_growth_period, assign_space_between_plan,
assign_distance_between_r, crop_name, variety, group,
sowing_season, growth_period, space_between_plants,
distance_between_rows, display

inherit SOCIAL

feature

crop_name,variety,group : STRING;

sowing_season : ARRAY[DATE];

growth_period :DATE;
space_between_plants,distance_between_rows : INTEGER;

create is

do
sowing_season.create(1,2);

end; --create

— assign features for all the above [eatures
display_details is

— display all the details of the crop

end; --display_details

display is

— display the name and variety of the crop
end; --display

end --class CROP

E.5.2 Class Garden
class GARDEN export

garden_name, display,

assign_garden_name, define_plot, width, length,
required_plot, last_plot

inherit SOCIAL

feature
--attributes

162

! garden_name: STRING;
:
length,width: INTEGER;

areas: ARRAY_LIST [GARDENPLOTI];

create(gname: STRING; len, wid : INTEGER) is

do
assign_garden_name (gname) ;
define_size(len,wid);
areas.Create;

end; --create

| — assign features [or all the above features

display 1is
do

—display the garden details

end; -— display

define_plot (aname:STRING; len,wid,coordl,coord2 :INTEGER) is
local

newvarea : GARDENPLOT;

done, correct :BOOLEAN;
do

—creale a new arca
—add it 1o the arcas feature if valid
— output error message if not valid.

end; -- define_gardenplot

display_area_details is
—display details of all the garden plots.

end; -- display_area_details

required_plot: GARDENPLOT is
—return the required plot

end; --required_plot

last_plot :GARDENPLOT is

—return the last plot in the list

end; --last_plot

end --class GARDEN

E.5.3 Class Section

class SECTION export
area_name, a_length, a_width, assign_name,
assign_length, assign_width, location,

assign_location, set_date

repeat NAMED_AREA
inherit SOCIAL;NAMED_AREA

163

feature
location :POINTY1;
date_allocated : DATE;

create(sname:STRING;length,width: INTEGER)
—assign parameters to [eatures

end;--create

assign_location(x,y:INTEGER) is
— assign value to location

end; --assign_location
set_date(week: DATE) is

— assign date 1o date_allocated

end; --set_date
end —--section

E.5.4 Class Insect

class INSECT export

is

insect_name, active_season, control_methods,

assign_insect_name, assign_active_season,

assign_control_methods, display, display_details

inherit SOCIAL

feature
insect_name, control_methods : STRING;
active_season : ARRAY[DATE];

create is

do
active_season.create(1,2);

end; --create

— assign methods for above [eatures
display_details is

~ display all the details of the insect
end; --=display_details
display is
— display insect name

end; --display
end -- insect

E.5.5 Class Crop_rotation_rules
class CROP_ROTATION_RULES export

set_to_default, next_crop_type, error

inherit SOCIAL
feature

164

types : ARRAY_LISTLSTRING];

max_value : INTEGER; -- used to hold the number of crops in the rotation

rules_assigned,error :BOOLEAN;

Create is
do

types.create;
end; --Create

set_to_default is

— add required default values

end;~--set_to_default

next_crop_type (typel: STRING) : STRING is
—return the next crop type in the series

end; -- next_crop_type

end --crop_rotation_rules

E.6 Other classes required

E.6.1 Class Gardenplot
class GARDENPLOT export

area_name, display_details, set_history, history,
sections, last_section, location, assign_name,
assign_length, assign_width, assign_location,
current_state, a_width, define_section,
completed
feature

area_name:STRING;

a_length,a_width:INTEGER;

location :POINT1;

done :BOOLEAN;

sections : ARRAY_LIST[SECTION];

history : ARRAY[STRING];

completed : BOOLEAN;

create(aname: STRING;a_len,a_wid,coordl,coord?2 :INTEGER)
— assign paramelers to features

display_details is

— display details of plot

end; --display_details

set_history(index:INTEGER, value : STRING)is

- assign values Lo history variables

end; --set_history

last_section:SECTIDN is

— return the most recently allocated section

end; --last_section

is

define_section(aname:STRING;len,vid,coordl,coord2: INTEGER) is

165

— creale a new section and allocate it 1o sections if valid
— outpul error message if cannot be allocated

end; -- define_section

current_state : STRING is

| —return first item in the history variable

end; --current_state

end --class GROWINGAREA

E.6.2 Class Date

| class DATE export

weekno, current_week, assign_week_number,
add_date, display

feature

weekNo : INT;

current_week : DATE is

~return 4 date

end; =--current_week

assign_week_number(v : INTEGER) is

end; --assign_week_number
display is

— display a date
end; -~ display

— convert an integer Lo a date
i end --date

166

Appendix F

Association library classes

This appendix describes two library classes. These classes provide one-to-many and many-to-many as-
sociations between two objects. The interfaces of these classes are as similar as possible to the interface
of class One-to-one. The only difference between the interfaces is in the find-object methods. These
changes are required because of the cardinality of the associations. Specifically, class One-to-one
provides find-objectl and find-object2 methods, class One-to-many provides find-objectl and find-
objects2 methods and class Many-to-many provides find-objectsl and find-objects2 methods. This
similarity of interface simplifies the use ofassociation classes in the development of a system while the
differences serve Lo emphasise the cardinality of the association.

The many-to-many association is developed as a class containing two one-to-many associations.
The specification of class One-to-many includes the extra features and interface methods required to
develop class Many-to-many. Section F.1 gives the specification and discusses the development of
a one-to-many association. Class Many-to-many is specified and described in section F.2, The code
used to implement both library classes is given in section F.3.

F.1 Class One-to-many

The class used to implement this association is designed in the same way as the class One-to-one de-
scribed in chapter 4. This class implements a general one-to-many relationship. It is intended to be
used whenever Lhe exact cardinality of the required relationship is not known or is undefined.

F.1.1 Class specification

Class Name: One.to_many
Class Interface: One_to.many[F,G]
Description: Generic class to produce one to many associations between two
objects which are derived from Social.
Forms a two way link.
Super classes: Assoc
Features:
Private Attributes
object] : F;
objects2 : LINKED_LIST[G];
Public Methods
associate(object! : F; object2 :G);
makes an association between the two objects
if consistent with a one to many association.
disassociate(object] : F; object2 :G);
breaks an association between the two objects.
find_objectl1(object2 :G) : F;
returns an instance of the first generic parameter,
VOID if no association exists.
find_objects2(object] : F) : LINKED_LIST[G];
returns a list of the second generic parameter,
VOID if no association exists.
Features available to other instances of same class
make_new_assoc(objects : List of objects);
¥s

167

add_assoc(object: G);
break_assoc(objects : List of objects);
getobjectl;

getobjects2;

make_list;

find_assocl;

find_assoc2;

add_to_y;

Features available to class Many_to_many
make_onenew_assoc(objects : List of objects);
add_to_y(object:G);
find_assocl;
| make_list(objects : List of objects);
‘ Method descriptions
} associate(objectl : F; object2 :G);
1 assign object] and object2 to a list (I) — object 1 as first element
object2 as second element,
create a new instance of the association—if valid,
call the make_new_assoc feature on the new association passing
the list (1) as the parameter.
if not valid return an error message
disassociate(object] : F; object2 :G);
assign objectl and object2 to a list (I) — object 1 as first element
object2 as second element,
call the break_assoc feature passing the list (1) as the parameter.
find_object1(object2 :G) : F;
use the access-Association feature from class Social
to obtain the required association if it exists.
If the association exists, return the value of objectl
else return VOID.
find_objects2(objectl : F) : LINKED_LIST[G];
use the access_Association feature from class Social
to obtain the required association if it exists.
If the association exists, return the list of object2
else return VOID.
make_new_assoc(objects : List of objects);
requires two objects in the list (list | from feature associate)
— both objects must be instances of a Sociable class,
first element must be of class F,
second element must be of class G,
first element assigned o attribute objectl,
second object added to objects?2,
‘ current instance of associalion added to the list of associations in each object.
i break_assoc(objects : List of objects);
" requires two objects in the list (list | from feature disassociate)
both objects must be instances of a Sociable class,
find the association between the two objects,
remove this from object2’s collection of associations,
if last object2 removed delete the association from objectl
find_assocl(objectl :A) :ONE_TO.MANY[A,B];
returns an instance of the same class as association which has objectl
as the instance of its [irst actual generic parameter. Returns void if no
instance of the association exists.
find_assoc2(object2 :B) :ONE_TO_.MANY[A,B];
returns an instance of the same class of association which has object2
as the instance of its sccond actual generic parameter. Returns void if no
- instance of the association exists.
add_assoc(object2 : B);
add object 2 to end of list of object 2s
add association to object2
add_to_y(object2 : B)
add a new object to feature y
make_oneway.assoc(objectl:A,object2:B);
create a new association and attach it 1o objectl

168

F.1.2 Design issues
In order to implement this class, several decisions had to be taken.

1. Data Structure

A data structure is required to store the objects at the ‘many’ end of the association. It was de-
cided that a linked list should be used as this does not involve placing any unnecessary limit on
the number of objects which can be associated.

2. Retrieving the objects

There are alternative ways of retrieving the objects from the ‘many’ end of the association. For
example, it would be possible to find the first, second, third etc. object from the list of instances.
This requires the user to be certain of the order in which the objects were added to the list and
would require the interface of the class to provide methods to access each individual object in the
list. Such access could be provided either by methods such as find-1st-object2, find-2nd-object2
etc. or by one find-object2 method.

Methods such as find-1st-object2 would require a single parameter, an instance of the object at
the ‘one’ end of the association. This corresponds with the parameter list in the find-object2
method provided by the interface of class One-to-one. However, this class, class One_to_many,
is designed to allow a single object to be associated with an indefinite number of other objects.
An indefinite number of access methods would also be required resulting in a large and complex
class interface.

The provision of a single find-object2 method requires this method to be supplied with a second
parameter to provide the numerical index of the object being retrieved. This results in meth-
ods from different classes having methods which perform the same function requiring different
parameters, Such a situation would make the use of associations more complex.

It was decided that the simplest and best method of retrieving the ‘many’ objects involved in
this type of association was to provide one method which returned all the ‘many’ objects in a list
structure. The method is find-objects2 which requires a single parameter, that is an instance of
the objectat the ‘one’ end of the association. The parameter list of this method corresponds with
the parameter list of the find-object2 method provided by the interface of class One-to-one,

The use of a find-objects2 method has two advantages. Firstly, the method emphasises the car-
dinality of the association, thus ensuring that the programmer is aware of the type association
being implemented. Secondly, a small simple class interface is provided.

The developer is left with the task of extracting the required object from the list. (The same
problem would be encountered by developers using the conventional methods of implementing
one-to-many associations.)

F.2 Class Many-to-many

This class implements a general many-to-many relationship. It is intended to be used whenever the
exact cardinality of the required relationship is not known or is undefined.

The implementation of a many-to-many associaitons requires a clear understanding of the exact
meaning of a many-to-many relationship. It is clear from figure F.1 that:

e objects of class A are participating in one-to-many relationships with objects of class B.
e objects of class A are participating in one-to-many relationships with objects of class B.

However, the situation is more complex than that. Normally in a one-to-many relationship each object
of class B can be associated with only one object of class A. That this is not the case with the indi-
vidual parts of a many-to-many relationship can be seen from figure F.1. This class of association is
implemented as two separate and distinct one-to-many associations. One association represents each
direction.

F.2.1 Class specification

Class Name: Many-to_many
Class Interface: Many_to_many[F,G]
Description: Generic class to produce one to many associations between two

169

Objects of class A Objects of class B

Figure F.1: Many to many relationships

objects derived from Social.
Forms a two way link.
Super classes: Assoc
Features:
Private Attributes
firstlink : ONE_.TO-MANY/F,G];
secondlink : ONE.TO.MANY[G,F];
Public Methods
associate(object] : F; object2 :G);
makes an association between the two objects,
disassociate(objectl : F; object2 :G);
breaks an association between the two objects.
find_objects1(object2 :G) :LINKED_LIST[F];
returns a list of the first generic parameter,
VOID if no association exists.
find_objects2(objectl : F) : LINKED LIST[G];
returns a list of the second generic parameter,
VOID if no association exists.
Method descriptions
associate(objectl : F; object2 :G);
if required make new association(s) an attach to the objects
else add objects to existing associations.
Use make_one_way method and add_assoc method from class One_to_many.,
disassociate(objectl : F; object2 :G);
use the disassociate method from class One_to_many.
find_objectls(object2 :G) : F;
use the find_objects2 method on the secondlink.
find.objects2(objectl : F) : LINKED _LIST[G];
use the find_objects2 method on the firstlink.

F.2.2 Design issues

This class uses the class One-to-many for its implementation. Class Many-to-many declares two one-
to-many associations. It is not possible for class Many-to-many to manipulate these one-to-many as-
sociations using only the public features of class One-to-many. This is because the associate method
of class One-to-many ensures that the objects at the ‘many” end of the association are associated with
only one of the objects at the ‘one’ end of the association. This is clearly violates the requirements
of a many-to-many relationship. The associate method of class Many-to-many needs to bypass the
checks.

The checks can be bypassed by using the make_new_assoc feature of class One-to-many which
creates a new one-to-many association. However, using this feature would result in each association
being attached to both objects even though access is only required in one direction when used as part
of a many-to-many association. Redundant information would be stored. Using the make_new.assoc
could also mean that an object has a very long list of associations, several of which would be the same

170

%

type. In order to prevent both the storage of redundant information and the long list of associations,
a new method was added to the class One-to-many. This method is called make_oneway_association
which, as its name suggests, implements a one way association. The method is exported to class Many-
to-many. Implementing the many-to-many associations as described above ensures that the list of as-
sociations for each object is kept to a minimum.

It was also necessary to allow class Many-to-many to access some other features of class One-to-
many. The find_assocl method was required to provide access to the associations of each object. The
add to_y method was required to add new objects to existing associations. The make_list method was
required to create the parameter for the make_oneway_association method.

F.3 Code

This section confains the code used to provide one-to-many and many-to-many associations.

F.3.1 Class One-to-many
class ONE_TO_MANY[a -> SOCIAL, b -> SOCIAL]

export
find_objectl, find_objects2, associate, disassociate,

make_new_assoc {ONE_TO_MANY}, get_object1{ONE_TO_MANY},
get_objects2{ONE_TO_MANY}, make_1ist{ONE_TO_MANY,MANY_TO_MANY},
find_assoc1{ONE_TO_MANY,MANY_TO_MANY},Find_assoc2{ONE_TO_MANY},
break_assoc {ONE_TO_MANY}, add_assoc {ONE_TO_MANY},
y{ONE_TO_MANY}, add_to_y{ONE_TO_MANY,MANY_TO_MANY},
make_oneway_assoc{MANY_TO_MANY}

inherit
ASSOC

rename create as basecreate
--redefine make_assoc

feature

x : A;

y : LINKED_LIST([BI];
done :BOOLEAN;

create (declared_type : STRING) is
local
type :STRING;

do
type := declared_type;
basecreate(type);
end;~-create

associate(objectl : A, object2 : B)

-- makes an association between the two named objects.
-- The type of the calling
-~ association 1is the type of association produced.

is
local

ol :
02 : B;

=

171

1
?
1
e
a
|
|
3
;
|
i
J
«'
x
1

link1l, 1ink2 : ONE_TO_MANY([A,B];
assoclist : LINKED_LIST[SOCIAL];

do

ol :
02

objectl;
object2;

linkl := current.find_assocl(ol);
1link2:= current.find_assoc2(02);
if linkl.void and 1link2.void
-- no association of this type exists for objectl or object2
--so create a new one and attach to both objects.

then
linki:= current.deep_clone;
assoclist.create;
assoclist := linkl.make_list(ol, 02);
linkl.make_new_assoc(assoclist);

elsif (not linkl.void) and link2.void then
~-association of this type already exists for ol but not o2
--so add 02 to existing list
linkl.add_assoc(02);

elsif not linkl.void and not link2.void then
-- both objects have this type of association

if linkl = link2 -- links are same
then
io.putstring (" association already exists");
else -- links not the same
io.putstring(o2.generator);
io.putstring(" already associated with a ");
io.putstring(ol.generator);
io.new_line;
end;--if
elsif linkl.void and not link2.void then)
-- object 1 not involved in assocn but o2 is -illegal in 1:M
io.putstring(ol.generator);
io.putstring(" not in an association but ");
io.putstring(o2.generator);
io.putstring(" already associated with a ");
io.putstring(ol.generator);
io.new_line;
end; --if

end; --associate

disassociate(objectl : A, object2 : B) is
--breaks the association between two objects

local
ol : A;
02 : B;
link : ONE_TO_MANY[A,B];
assoclist : LINKED_LIST[SOCIAL];
do

1

ol := objectl; -- assign values to lacal vars,.
02 := object2;

link:= current.deep_clone;

assoclist.create; '

assoclist := link.make_list(ol, 02);
link.break_assoc{assoclist);

172

end; --disassociate

find_object1(object2 : B): A is
-- returns an instance of the first actual generic parameter.
-~ Void if no association exists.

local
p : B;
asl : DONE_TO_MANY[A,B];
r : A;
do
p := object2;
asl := find_assoc2(p); ~--retrieve required assoc from object

if not asl.void then
Result := asl.get_objectl;
else
Result := r;
end; --if
end; --findobjectl

find_objects2(objectl : A): LINKED_LIST[B] is

-- returns a list of instances of the second actual generic parameter.
-- Void if no association exists.

local
p A
asi : ONE_TO_MANY[A,B];
r : LINKED_LIST([B];
do
p := objectl;
asl := find_assocl(p); --retrieve required assoc from object

if not asl.void then

Result := asl.get_objects2;
else

Result := r;
end; ~-if

end; --findobjects2

-- private features

make_list(objl : a, obj2 : b) : LINKED_LIST[SOCIAL]

~- this feature must be called before make_assoc.the first named object must
~-conform to the first actual generic parameter. The second parameter must
-- conform to the second actual generic parameter,

is

local

list : LINKED_LIST[SOCIAL]
do

list.Create;
x.Create;

y.Create;
list.put_right(obj2);

173

list.put_right(objl);
done := TRUE;
Result := list;

end; --make_list

make_new_assoc(objects: LINKED_LIST[SOCIAL])

is

do

x := objects.i_th(1);
- y.finish;
y.add_right (objects.i_th(2));

x.addAssociation(current);
| objects.i_th(2).addAssociation(current);

end;--make_new_assoc
make_oneway_assoc(objectl:4,object2:B) is

do
y.create;
X := objectl;
y.add_right (object2);
x.addAssociation(current);
end;--make_oneway_assoc

add_assoc(object2 : B) is

do -- add object 2 to end of list of object 2s
add_to_y(object2);
-- add association to object2
object2.addAssociation(current);
end;-- add_assoc

add_to_y(object2 : B) is
do
y.finish;
y.add_right (object2);
end;--add_to_y
break_assoc(objects: LINKED_LIST[SOCIAL])
--removes the association from the list of associations of objects as needed

is
local
p : B;
asl : ONE_TO_MANY[A,B];
r : A;
do
r := objects.i_th(1);
p := objects.i_th(2);
asl := find_assoc2(p);--check that association exists

if not asl.void then

--remove assoc from p and remove p from list
p.deleteAssociation(asl);
asl.y.start;
asl.y.search_equal(p);
asl.y.remove;

i

if asl.y.count =0 -- list of associations is empty
then

1 r.deleteAssociation(asl);
end; --if

174

end;--if
end;--break_assoc

find_assocl(objectl :A) :ONE_TO_MANY[A,B]

-- returns an instance of the same class as association which has objectl

-- as the instance of its first actual generic parameter. Returns void if no
-- instance of the association exists.

is
local
assoc : ONE_TO_MANY[a,b];
p : A
c . ASSO0C;
do
p:= objectl;
c:= p.accessassoclation(current);
assoc 7=c;
Result := assoc;
end; --find_assocl

find_assoc2(object2 :B) :0ONE_TO_MANY([4,B]

-~ returns an instance of the same class of association which has object2

-- as the instance of its second actual generic parameter. Returns void if no
-~ instance of the association exists.

is
local
assoc : ONE_TO_MANY[a,b];
p : B;
¢ : ASSO0C;
do
p:= objectl;
c:= p.accessassociation(current);
assoc 7=c;
Result := assoc;
end; -- find_assoc?2

get_objectl : a
is
do
result:= x
end; --get_objectl

get_objects2 : LINKED_LIST[B]
is
do
result :=y
end; --get_objects2

end -- ONE-TO-MANY

F.3.2 Class Many-to-many
class MANY_TO_MANY[a -> SOCIAL, b -> SOCTAL]

export
find_objectsl, find_objects2, associate, disassociate,
inherit

ASSDC

175

rename create as basecreate
--redefine make_assoc

feature
Istlink : ONE_TO_MANY[A,B];
sndlink : ONE_TO_MANY[B,A];

create (declared_type : STRING) is
local

type,typel,type2 :STRING;

do
type := declared_type;
basecreate(type);
typel :=type;
typel.append("1");
Istlink.create(typel); --assign type to required 1:M links
type2 :=type;
type2.append ("2");
sndlink.create(type2);
end;~-create

associate(objectl : A, object2 : B)

-- makes an association between the two named objects.
-- The class of the calling

-- association is the class of association produced.
is
local
ol : A;
02 : B;
; linkl : ONE_TO_MANY[A,B];
| link2 : ONE_TO_MANY[B,A];
| list : LINKED_LIST[SOCIAL];
do
ol := objectl; ---assign parameters to local vars
02 := object2;

list.create;

-- retrieve associations from ol and o2

linkl := current.Istlink.find_associ(ol);
1link2 := current.sndlink.find_assoc1(02);
if linkl.void and link2.void -- no association of this type exists

--for objectl or object2
then

--make associations between the objects
linkl := Istlink.deep_clone;
linkl.make_oneway_assoc(ol,02);
1link2 := sndlink.deep_clone;
1link2.make_oneway_assoc(02,01);

elsif (not linkl.void) and link2.void
--association of this type already exists for objectl, add o2 to its
-- list and make new 1:M and attach it to o2
then
linkl.add_to_y(02);
: list:= sndlink.make_list(02,01);
; link2 := sndlink.deep_clone;
: link2.make_cneway_assoc(o2,01);

176

elsif linkl.void and not 1link2.void
-- association of this type already exists for object2, add ol to its
-- list and make new 1:M and attach it to ol

then

link2.add_to_y(ol);

list:= Istlink.make_list(ol,02);
linkl := Istlink.deep_clone;
link1.make_oneway_assoc(ol,02);

elsif not linkl.void and not link2.void then

-- associations exist for both objects
link1l.add_to_y(02);
link2.add_to_y(ol);

else
end; --if
end; -—associate
disassociate(objectl : A, object2 : B) is

~-breaks the association between two objects

local
ol : A4;
02 : B;
do
ol := objectl;
02 := object2;

—--break link from each end
Istlink.disassociate(ol,02);
sndlink.disassociate(o02,01);

end; --disassociate
find_objectsi(object2 : B): LINKED_LIST[A] is

-- returns an instance of the first actual generic parameter,
-- Void if no association exists.

local
p : B;
asl : ONE_TD_MANY[B,A];
r :LINKED_LIST[A];

do

p := object2;
Result := sndlink.find_objects2(p);

end; --findobjectl

find_objects2(objectl : A): LINKED_LIST[B] is

-- returns an instance of the second actual generic parameter.
-~ Void if no association exists.

local

p : A;
asl : ONE_TO_MANY[A,B];

177

r : LINKED_LIST([B];

do
p := objectl;

Result
end; --findobjects2
end -- MANY-TO-MANY

:= Istlink.find_objects2(p);

178

Appendix G

An investigation into the type
checking of generic types in ISE Eiffel
v2.3

This appendix describes the results of an investigation carried out into the dynamic type checking fea-
tures provided by Eiffel. Version 2.3 was used. The investigation arose from problems encountered
when developing a system which required the retrieval of different generic type objects from a collec-
tion of base type objects. It was found that the Eiffel dynamic type checking features did not distinguish
between some different generic types. As a consequence of this, a tag field had to be added to the gen-
eric types so that this could be used to retrieve the required type of object from the data structure.

The tests were carried out using linked lists and arrays from the Eiffel library. Static tests were
carried out using the ISE compiler. In order to anticipate the results of the tests, the Eiffel {2, 51] defin-
itions of the terms class, type and object are explained in section G.1. The features used to ascertain the
dynamic type of objects are explained in section G.2. Section G.3 describes the tests carried out. This
section includes the expected and actual results for each test. The information in sections G.1 and G.2
is used to determine the expected results. The final section discusses the results and draws conclusions
about the use of the dynamic type checking features.

G.1 Eiffel terminology
This section explains the Eiffel use of the terms class, type and object. Briefly the definitions are:

class the textual description of a type
type describes the structure and capabilities of objects which can be created.

object an instance of both a class and a type

The Eiffel interpretation of classes and types binds the two concepts together because the type in-
cludes information about structure as well as capabilities. The type of an object is usually determined
by the class from which it is generated.

A generic class is declared with formal generic parameters and defines a template for a set of types
not one specific type. Each member of the set of types is formed by providing actual generic para-
meters for each of the formal generic parameters in the class definition. The types produced are called
generically derived types.

The class definition used to produce a generically derived type is called its base class. One generic
base class can instantiate many generically derived types. Each generically derived type has a different
type and is its own base type. Each generically derived type shares the same general structure and
functionality as other types derived from the same generic base class but differs in the details of both.

These definitions mean that for an object produced by a non-generic class, the type and generating
class are the same, However, instantiating generic classes produces a set of objects with different types
but with the same base class.

179

G.2 Features used in the investigation

Two features which can be used to distinguish between different dynamic types were investigated.
They are:

1. the reverse assignment attempt, 7=,
2. the conforms_to function from class ANY,

Each of these functions has a different purpose. The reverse assignment attempt causes an assign-
ment to be made if and only if the dynamic type of the target of the assignment conforms to the dynamic
type of the source. The syntax of the reverse assignment attempt is

customer 7= people_list.get(i);

where customer is of class CUSTOMER, people_listisalistcontaining variables conforming
to class PERSON, get (1) is the feature which retrieves the i-th element from the list.

If the dynamic type of the i-th element is the same as, or conforms {o, the static type of the customer
variable, the assignment is made. If not, the value of the variable is Void. After a successful assignment,
the features of the subclass can be accessed. This means that any features declared by the class from
which the variable customer was generated can be called.

The conforms_to function is declared by class ANY which is the ultimate base class of all Eiffel
classes. Features from class ANY are made available to all descendants so the conforms_to feature can
be used to test for conformance between two objects. The conforms_to feature is defined as supplying
the answer to the following question:

Is dynamic type of current object a descendant of the dynamic type of other?

The term descendant can also mean the type itself. Thus an object of class PERSON conforms to
another object of class PERSON.

Acall suchas p.conforms_to(c) , where p is the current object and ¢ is other, returning true
does not permit access (o any extra features present in ¢ through variable p.

Another feature provided by the Eiffel language was used in the tests. The feature generator was
used to ascertain the generating class of the variables.

G.3 Tests carried out

A small system was implemented. The root class contained the following variables:
e a list of people containing elements of type PERSON,
e a list of accounts containing elements of type ACCOUNT,
o a list of anything containing elements of type ANY,
e an array containing elements of type PERSON,
e a variable of each type of element,

Elements were added to the list of people and list of accounts and several tests carried out. The
tests were carried out in two groups. The first group consisted of three static tests using the compiler.
The second group were five dynamic tests which used the features explained in section G.2. The code
used is given in section G.5.

The Eiffel definitions of types and classes given above were used to determine the expected results
of the test. These definitions indicate that each instantiation of a generic class has a different type but
the same base class. Each instantiation is its own base type. The type and class of objects of generic
types are not the same. For non-generic classes the type and class of an object are the same.

The results of the tests are presented in two groups. The results of the static tests are presented first.

Static tests

The type checking system is expecled (o ensure that incorrect types are not assigned. The compiler
which performs static type checking should reject attempts to assign incompatible types.

180

e Test 1 Assign people list to accounts list.
Expected results

The compiler is expected to reject attempts to assign an instance of one type to an instance of a
different type even if they have the same base class. This code should not compile.

Actual results
The code did not compile.

o Test 2 Reverse assign the people list to the accounts list,
Expected results

The compiler is expected to reject attempts o use the reverse assignment attempt L0 assign vari-
ables from different branches of the type hierarchy. This code should not compile.

Actual results
The code did not compile.

e Test 3 Test the people list for conformance with the accounts list.
Expected results

The compileris expected to reject atlempts to use the conforms_to feature to test for conformance
between variables from different branches of the generic type hierarchy. This code should not
compile.

Actual results
The code did not compile.

Dynamic tests

The accounts list was assigned to the list of anything, so the list of anything now contains the accounts
list. These tests are designed (o ascertain whether the dynamic type checking system prevents runtime
type errors when generic types are used.

o Test 4 Test the list of anything, now containing the accounts list, for conformance with the people
list.
Expected results

These two objects are different instantiations of the generic class LINKED_LIST. According to
the definitions, each is a different type and is its own base type. The conforms_to feature should
return False.

Actual results
Returned True

o Test 5 Test the list of people for conformance to the array of people.
Expected results

These two objects are instantiations of different generic classes. The conforms-to feature should
return False.

Actual results
Returned False

o Test 6 Reverse assign the list of anything, containing the accounts list to the people list.
Expected results

These objects have different dynamic types, the reverse assignment attempt should not assign
objects of one type to objects of a different type. The assignment should not be successful.

Actual results

This feature call was successful. The list of accounts was assigned to the list of people. The
people list now contained elements of type ACCOUNT. This means that a variable of one gen-
erically derived type was assigned to a variable of another type with the same base class.

181

e Test 7 After successfully performing the above assignment, assign elements from the people list,
now a list with elements of type ACCOUNT, to objects of type PERSON.

Expected results

The system should refuse to assign ACCOUNT elements from the list to objects of type PER-
SON.

Actual results

The elements in the list were assigned to objects of type PERSON even though they were actually
ACCOUNT objects.

The system considered these ACCOUNT objects to be instances of the type PERSON. Attempts
to access features of the objects resulted in either a segmentation fault or spurious values being
reported.

o Test 8 After the above assignments were made, the generating class of each variable was determ-
ined.

Expected results

1. All the linked list variables should be generated by class Linked List.
2. The array of People should be generated by class Array.
3. The elements should be generated by the class of their declared type.

Actual results

This showed that all the variables with the same generic base class were generated by the same
class as expected.

This test also showed that after Test 7 a person variable, declared as p: PERSON, extracted from
the person list was generated by class ACCOUNT.

G.4 Discussion and Conclusion

The results show that when objects are generaled from a generic class where a set of types are derived
from one class, the dynamic type checking does not give the expected results although the static type
checking does. ‘

The above results indicate that different instantiations of one generic class have different static types
but the same dynamic type. This implies that the Eiffel type system uses one set of information for static
type checking and another for dynamic type checking. Consequently it is possible to make assignments
at runtime which are rejected as type errors if attempted statically.

The results of the tests using generator indicate that the behaviour of the reverse assignment attempt
and conforms_to may to be allied to the class from which the object is generated.

The conclusion drawn from the above resulls is that the dynamic type checking mechanisms may
be testing the generating class of an object rather than the actual type of an object. Thus performing
dynamic class checking rather than dynamic type checking. In the case of non generic types the result
is the same because the generating class defines one type only. However, in the case of generic types
one class can define many types and the distinction between dynamic type checking and dynamic class
checking becomes significant. Dynamic class checking means that it is possible to assign a variable of
one generically derived type to a variable of a different generically derived type. The resultis that it is
possible for an Eiffel program to abort with a run time type error or to use spurious values for variables.

These test results suggests that Eiffel dynamic type checking features should only be used with non
generic types. The dynamic type of generically derived objects requires the addition of tag fields which
can be used to ascertain the dynamic type.

G.5 Code of root class for generic type conformance tests

class CONFCODE

feature
Create is
local

182

x : ANY;
p :PERSON;
a :ACCOUNT;

all : LINKED_LIST[ANY];
people :LINKED_LIST [PERSON];
accounts : LINKED_LIST[ACCOUNT];

apeople : ARRAY[PERSON];
w,y :ANY;

do
! -- create all the required lists,

people.Create;
accounts.Create;

~- add entries to people,accounts.
p.Create;

p.assignName("Audrey");
p.assignAddress ("hut 220");
people.put_right(p);

p-forget;

p.Create;
p.assignName ("Mary"’ ’B220°°);
p.assignAddress ("B220");
people.put_right (p);
p.forget;
a.Create;
a.open(l);
a.addFunds(1.00);
accounts.put_right(a);
a.forget;
|
1

a.Create;

a.open(2);
a.addFunds(1.00);
accounts.put_right(a);

--print out the lists

io.putstring ("people list");
io.new_line;
p:=people.i_th(1);

p.print;

io.new_line;
p:=people.i_th(2);

p.print;

io.new_line;

io.new_line;
io.putstring("accounts list");
io.new_line;

a := accounts.i_th(1);
a.print;

io.new_line;

a := accounts.i_th(2);
a.print;

183

io.new_line;

-- tests with generic lists

io.putstring (" TESTING GENERIC LISTS");

io.new_line;

ko ok ok ok o ko oK ok st ok sk ok ok ok ok ok ok ok sk ok ook ook o ok ok sk ok sk ok sk o ok o ok o sk ok ok ok ok ok ok Sk ok ok ok o ok
--Test 1

--accounts:= people;

--Type mismatch: PERSON is not a descendant class of ACCOUNT

--Type mismatch: LINKED_LIST[PERSON] is not a descendant class of
--LINKED_LIST[ACCOUNT]

=Kok ok ok K o K oKk sk ok ook oK ook oo oo o ok K o K ok ok ok ok ok o K ok sk ok o ook ko ok ook sk ok ok ok ok ok ok ok
--Test 2

--accounts 7= people;

-- Type mismatch: ACCOUNT is not a descendant class of PERSON

-~ Type mismatch: LINKED_LIST[ACCOUNT] is not a descendant class of
-- LINKED_LIST{PERSON]

-- Type mismatch: LINKED_LIST[ACCOUNT] does not conform to LINKED_L
--IST[PERSON]

— sk o ok okok ok ok ok ok ok ok ok ok ok Kok K ok ok ok R o ok ok o 3 ok ok % ok 3k ok ok ok 3k ok ok K ok ok ok sk ok ok 3 ok ok ok sk sk ok ok
--Test 3

--if accounts.conforms_to (people)

--then io.putstring ("people and accounts conform");

--else io.putstring(" no conformance");

--end ;--if

-- COMPILATION ERROR

--"test", Type mismatch: PERSON is not a descendant class of ACCOUNT
--"test", Type mismatch: LINKED_LIST[PERSON] is not

--a descendant class of LINKED_LIST[ACCOUNT])
--"test", Incorrect type for argument number 1 of conforms_to

— ok ok sk ok ok ok ok ok ok ok ok Sk ok ok ok Kok Kok Kok ok ok Kk K ok o oK oK oK ok ok ok koK ok ok ok ok ok oK o oK Kok K oKk oK K
ok ko ok o ook ok ok okok ok ok ok ok ok ok ok ok Kok ok Kok ok ok K K ok 3 oK o ok ok ok ok ok ok ok ok 3 ok o oK oK ok oK ok oK K ok K ok ok ok ok

i0.putstring (M -—mm== s e oo ");

io.new_line;
io.putstring("ASSIGNING ACCOUNTS TO ALL.");io.new_line;

all := accounts;

io.putstring(" all now contains;");
io.new_line;
io.new_line;
x:=all.i_th(1);
x.print;
io.new_line;
x:=all.i_th(2);
x.print;
io.new_line;
— stk stk ko sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk K oK ok oK ok ok o R Kok ok ok oK ok oK ok o oK K ok K ok ok K ok oK ok ok ok ok R ok

--Test 4

io.new_line;io.new_line;io.new_line;

io.putstring (M=———mmmm e e ");
io.new_line;

io.putstring ("TESTING all.conforms_to(people)");io.new_line;

if

184

all.conforms_to(people)
then

io.putstring("accounts conforms to people");io.new_line;
else

io.putstring("accounts does not conform to people");
end; --if

== sk b ok ok ok ok sk ok ok ok sk sk ok ok ok o sk ok ok sk ok ok ok ok ok sk ko % 3k vk Sk ok 3k 3k ok 3k ok %k K k 3k ok 3k ok ok ok ok % ok ok sk ok R ok ok sk ok ok

io.new_line;io.new_line;io.new_line;
io.putstring (M-——m s e e e
io.new_line;
io.putstring("TEST 56");io.new_line;
apeople.create(1,10);
apeople.put(people.i_th(1),2);
apeople.put (people.i_th(2),1);
io.putstring("elements of people list
assigned to apeople - printing apeople");
io.new_line;
apeople.print;
p:= apeople.item(1);
p.print;
io.new_line;
p:= apeople.item(2);
p.print;
io.new_line;
--if apeople.conforms_to(people)

--then
~--io.putstring (" apeople conforms to people");
--end; --if

--DOES NOT COMPILE BECAUSE LINKED_LIST
--[PERSON] NOT DESCENDANT OF ARRAY[PERSON].

y:= apeople;

io.putstring("variable y: ANY now contains apeople");io.new_line;
io.putstring ("TESTING y.conforms_to(people)");io.new_line;

if y.conforms_to(people)

then

io.putstring(" apeople conforms to people");

else

io.putstring(" apeople does not conform to pecple'");
end; --if

io.new_line;
io.new_line;
io.new_line;

w:= people;

y:= apeople;

io.putstring("variable y:ANY contains apeople");io.new_line;
io.putstring("variable w:ANY now contains people");io.new_line;
io.putstring ("TESTING y.conforms_to(w)");io.new_line;

if y.conforms_to(w)

then

io.putstring (" apeople conforms to people");

else

io.putstring(" apeople does not conform to people™);
end; --if

io.new_line;

185

ok ok ok ok ok ok ok ok ok oK ok oK ok oK ok Kok oKk ok K R KK o 3 ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok K ok ok ok ok ok oK ok
--Test 6

io.new_line;io.new_line;io.new_line;

io.putstring(M--——=-——mm e e ")
io.new_line;

io.putstring ("TEST 6");io.new_line;

io.putstring ("TESTING people 7= all');
io.new_line;
people 7= all;

io.new_line;
— kKoK ook ok ok ok Kok 3K o ok ok ook stk ok ok ok ok Kok ok ok ok ok ok 3k ks ok ok ok ok 3k ok ok oKk ok ok ok ok ok ok ok ok Kok ok ok oK ok o Kk
~--Test 7

io.new_line;io.new_line;io,new_line;

lo.putstring (M———— - e e "y,
io.new_line;

io.putstring ("TEST 7");io.new_line;

io.putstring("people list after reverse assignment attempt ");
io.new_line;
:= people.i_th(1);
.print;
.nevw_line;
1= people.i_th(2);
.print;
io.new_line;

[l Rl

o o

io.new_line;

io.putstring("accessing the features of person objects");
io.new_line;

io.putstring("people.i_th(2) tellNo ");

io.new_line;

io.putint (p.telNo);
io.new_line;io.new_line;
io.putstring("calling p.assignName(Tom)");

io.new_line;

p.assignName("Tom") ;

io.putstring("calling p.print");io.new_line;
p.print;
io.new_line;
io.nevw_line;
io.putstring("people.i_th(2) telNo ");

io.new_line;
io.putint(p.tello);

ek KKK KK kK Kk Kok kK R K K oK ok ok ok KK Kok oK ok ok ok K K ok ok K ok ok ok o o K K K K ok ok ok oK oK ok o 3 3k ok ok ok ok ok oK ok ok
--Test 8

io.new_line;io.new_line;io.new_line;

1o.putstring (M= ——==—m ")
io.new_line;

io.putstring("TEST 8");io.new_line;

io.putstring("Name of current objects generating class i.e.the type of");
io.nevw_line;

io.putstring(" which it is a direct instance");io.new_line;

io.putstring("people :LINKED_LIST [PERSON]; -- ");
io.putstring(people.generator);io.new_line;

186

io,putstring(" accounts : LINKED_LIST[ACCOUNT]; -- ");
io.putstring(accounts.generator);io.new_line;

io.putstring("apeople : ARRAY[PERSON]; -- ");
io.putstring(apeople.generator);io.new_line;
io.putstring("all : LINKED_LIST[ANY]; -- '");
io.putstring(all.generator);io.new_line;

io.putstring("a :ACCOUNT; -- ");io.putstring(a.generator);
io.new_line;

io.putstring(" p :PERSON; -- ");io.putstring(p.generator);

io.new_line;

end; --create
end -~ confcode

G.6 Results of generic type conformance tests

people list
HMaryH
"B220"

0

"Audrey"
"hut 220"
0

accounts list
2
1.000000

1
1.000000

TESTING GENERIC LISTS

ASSIGNING ACCOUNTS TO ALL.
all now contains;

2
1.000000

1
1.000000

TESTING all.conforms_to(people)
accounts conforms to people

TEST 5
elements of people list assigned to apeople - printing apeople

1

10
"Audrey"
"hut 220"
0

llMaryll
"B220"
0

variable y: ANY now contains apeople

187

TESTING y.conforms_to(people)
apeople does not conform to people

variable y:ANY contains apeople
variable w:ANY now contains people
TESTING y.conforms_to (w)

apeople does not conform to people

TEST 6
TESTING people 7= all

TEST 7

people list after reverse assignment attempt
2

1.000000

1
1.000000

accessing the features of person objects
people.i_th(2) telNo
16777231

calling p.assignName(Tom)
calling p.print

559096

0.000000

people.i_th(2) tellNo
16777231

TEST 8
Name of current objects generating class i.e.the type of
which it is a direct instance

people :LINKED_LIST [PERSON]; -- LINKED_LIST
accounts : LINKED_LIST[ACCOUNT]; -- LINKED_LIST
apeople : ARRAY[PERSON]; -- ARRAY

all : LINKED_LIST[ANY]; -- LINKED_LIST

a :ACCOUNT; -- ACCOUNT

p :PERSON; -- ACCOUNT

188

Appendix H

Published paper

The following paper is published in Microprocessing and Microprogramming 40 (1994) 811-814

189

ELSEVIER Microprocessing and Microprogramming 40 (1994) 811-814

Microprocessing
and
Microprogramming

Implementing Associations between Objects

Audrey Mayes, Bob Dickerson and Carol Britton

School of Information Sciences, University of Hertfordshire, College Lane,Hatfield, Herts AL10 9AB, UK

Tel 0707 284763 Fax 0707 284303

email comrjam@herts.ac.uk or comqch@herts.ac.uk

1. Introduction

This paper presents an alternative design
method for the implementation of conceptual as-
soctations identified during the analysis of a prob-
lem.

Object-oriented development methods such as
OMT [1], identify associations between objects.
Somie of these associations represent aggregations
of objects such as a wheel is part of a car. Other
associations represent conceptual links between
objects such as a person has an account. These
types of association are shown in figure 1.

t

i) an aggregation association

»'

ii) a conceptual association

Figure 1. Associations between objects

These two types of association clearly repres-
ent different concepts. However, both are usu-
ally implemented in object-oriented programming
languages by using the client-server relationship.
The class representing an aggregation declares an
instance of the classes which represent its parts.

A class involved in a conceptual association de-
clares an instance of the classes with which it is
associated. The addition of an association usu-
ally requires the declaration of new subclasses
of the classes involved. The result of using the
client-server relationship to add conceptual asso-
ciations is that the implemented objects become
less like the objects identified during analysis and
are bound together in the same way as aggrega-
tions. The effects are:

e the classes used to define the objects are ap-
plication specific and therefore less reusable

(2.

e the structure of the system is difficult to
understand.

It is agreed by Kilian [2] and Rumbaugh [3]
that the provision of associations as separate
constructs in object oriented systems would in-
crease reusability and improve the clarity of sys-
tem design.

‘The design method presented here allows con-
ceptual associations from the analysis model to be
implemented directly by using Sociable Classes.
These Sociable Classes have the ability to parti-
cipate in associations without the addition of at-
tributes.Conceptual associations are provided as
instances of generic classes. New associations can
be added as required by introducing a new in-
stantiation of the required type of association to
the system. It is not necessary to define new sub-
classes of the participating objects. The concep-
tual associations retain the object-oriented struc-
ture by storing the associations with the objects.
Relational tables of associations are not added to
the system.The design technique overcomes some
of the problems mentioned above.

0165-6074/94/$07.00 © 1994 — Elsevier Science B.V. All rights reserved.

SSDI 0165-6074(94)00059-X

190 .

812 A. Mayes et al. | Microprocessing and Microprogramming 40 (1994) 811-814

2. Basis of the design

In order to differentiate between conceptual as-
sociations and aggregations, a mechanism must
be provided to allow different degrees of binding
between objects. The different degrees of binding
would result in:

o groups of objects which are tightly bound
because they represent aggregations, such
as a car.

e objects which are loosely coupled to other
objects hecause they take part in concep-
tual associations, such as a person has an
account.

In this suggested design, the client-server rela-
tionship is used to implement aggregations. The
loose coupling between objects is produced by
adding conceptual associations between objects.
For example, an association is added between a
person and an account to implement the associ-
ation ‘a person has a bank account’. It is not
necessary for all objects of a class to be involved
in all types of association.

In order for a design to provide loosely coupled
objects, the following facilities should be avail-
able:

e a means of explicitly implementing associ-
ations between objects.

o the ability for objects to take part in many
different associations. These associations
must be added to objects without chan-
ging the definition or implementation of the
classes of which they are instances. There-
fore, the classes should have no knowledge
of the specific assoclations in which any or
all of its objects are involved.

o the ability to add new logical relationships
without producing subclasses of the classes
involved.

The next section describes the classes used in
the Sociable Class design technique which at-
tempts to meet the above criteria.

191

3. Sociable Classes and related constructs.

Sociable Classes define objects which have the
ability to take part in a potentially unlimited
number of different associations. The design tech-
nique using Sociable Classes requiresthe declara-
tion of two abstract base classes, Social and As-
soc. Sociable Classes are subclasses of Social.
The associations between objects are formed by
instances of subclasses of class Assoc.

When an association is made, instances of asso-
ciations become linked to the part of the object
which was inherited from Social. Associations
therefore become part of the objects involved in
the association not separate entities stored in a
data structure. They remain part of the object
until the association is broken. When an asso-
ciation is broken, the object ceases to have any
knowledge of that type of association.

One instance of each type of association re-
quired in the system is declared and used to cre-
ate, access and delete all other instances of that
type of association.

3.1. Class Social

This class provides the ability to add, retrieve
and delete associations from an object. In order
to provide this ability, the class Social declares
a collection of associations as a private attrib-
ute and provides features to access this attrib-
ute. The collection may be implemented by any
appropriate data store.

The features to access the private attribute are
not made publicly available. The only classes
which can access the attribute are Assoc and
its derivatives. The access is limited in this way
to encapsulate knowledge of the implementation
of associations. All Sociable Classes are derived
from Social and do not need to access any of its
features.

3.2. Class Assoc

This base class is declared to allow all associ-
ations to be assigned to the same data structure in
instances of the class Social. The associate and
disassociate features are defined by class Assoc.

- These two features represent the minimal func-

tionality that must be provided by all subclasses.
The variable number of objects involved in asso-

A. Mayes et al. | Microprocessing and Microprogramming 40 (1994) 811-814 813

ciations means that different numbers of features
are required to access the objects participating in
different forms of association. One access feature
will be required for each object involved. These
features cannot therefore be defined in the base
class.

3.3. Sociable Classes

Sociable classes are implemented by declaring
the required classes as subclasses of Social. The
features defined by the analysis model are then
added. The following extract of code gives two
examples of the definition of Sociable Classes us-
ing Eiffel notation [4].

class PERSON
export first_name,...

inherit SOCIAL

feature
first_name : STRING;

end —--person
class ACCOUNT

export
accountNumber,. ..
inherit SOCIAL

feature
accountNumber: INTEGER

end —-—account

3.4. Associations

The many different types of associations re-
quired in systems are provided by subclasses of
Assoc. Fach subclass defines a general type of
association, such as a one-to-one bidirectional as-
sociation. Figure 2 shows part of the association
hierarchy. The subclasses of Assoc, in the lower
level of figure 2, are generic classes which supply

192

1 One-to-Many l Many-to-many 0%;“5;:"';‘;

|

[One- to-onc2

Figure 2. Association class hierarchy

the implementation of features provided by asso-
ciations of that type.

For example, class One_to_one2 implements
one-to-one bidirectional associations. That is,
it implements associations between two objects
and allows the association to be traversed via
either object. This generic class requires two
formal generic parameters, one for each of the
objects involved in the association. It provides
implementations for the associate and disassoci-
ate features inherited from class Assoc. It also
defines the features required to access the objects
involved in a specific association. The classes
used to replace the formal generic parameters
must be Sociable Classes. Using Eiffel nota-
tion, the interface of this class is One_to_one2
[A—SOCIAL, B—SOCIAL]. An association
between a person and an account is declared as
has-account : One_to_one2(Person,Account).

4. Using Sociable classes

This section gives an example of the use of the
Sociable class design technique. The association
beihg implemented is shown in Figure 3. The
classes Person and Account are declared as in-
dicated in Section 3.3. The root or main class is
declared as follows:

class BANK
feature

a,b : PERSON;
X,y : ACCOUNT;

has-account : ONE_TO_ONE2[PERSON,ACCOUNT];

814 A. Mayes et al. | Microprocessing and Microprogramming 40 (1994) 811-814

Create is

do

--create and assign values to

—-person and account variables
a.Create;

x.Create;

—-create the association variable
has-account.Create(hasaccount);

--(the parameter is required for
-~ reasons beyond the scope
~- of this paper)

-- associate the required objects
has-account.associate(a,x);

-~ find the account belonging
-— to person a
y := has-account.find_object2(a);

--the account can the be
—-accessed via object y

-- find the person owning
-- account x
b := has-account.find_objecti(x);

--the owner of account Xx
——can then be accessed via object b

end;-—Create
end --BANK

5. Conclusion

A system designed and implemented by using
the above technique would consist of classes which
are recognisable as definitions of the objects iden-
tified in the analysis model. The client-server re-
lationship is used to implement the structure and
attributes of each class. The classes would not
he modified by the addition of extra attributes to
provide associations with other classes of objects.
New subclasses of objects would be introduced

193

Person Account
name Hus balance
address credit limit

N type

Figure 3. Simple banking application object
model

only when extra attributes or structure need to
be added to existing classes. The implemented
system would be simpler and therefore easier to
understand, maintain and enhance. The classes
would be readily available for use in other sys-
tems because application specific features would
not have been added.

Further research is being carried out into the
use of other languages for implementation and
into the possibility of including the constructs
defined in this paper in a language definition.
This work forms part of a PhD thesis to be sub-
mitted Sept 94.

REFERENCES

1. J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-oriented
Modelling and Design. Prentice-Hall Interna-
tional Editions, Englewood Cliffs, New Jer-
sey, 1991. °

9. Michael Kilian. A Note on Type Composition
and Reusability. OOPS Messenger, 2(3), 7
1991.

3. J. Rumbaugh. Relations and semantic
constructs in an object-oriented language.
OOPSLA’87, 1987.

4. B. Meyer. Object-oriented Software Con-
struction. Prentice Hall, Hemel Hempstead,
1988.

Bibliography

[1] T.CaperJones. Reusability in Programming: A Survey of the State of the Art. IEEE Transactions
on Sofware Engineering , 10(5), September 1984.

[2] B. Meyer. Object-oriented Software Construction. Prentice Hall, Hemel Hempstead, 1988.

" [3] Wayne C. Lim, Effects of Reuse on Quality, Productivity, and Economics. IEEE Software, 11(5),
September 1994,

[4] B.J. Cox. Planning the Software Industrial Revolution. Byze, 10 1990.

[5] P.A.V. Hall, editor. Software Reuse and Reverse Engineering in Practice. Chapman and Hall,
London, 1992,

[6] V.R.Basili and H.D. Rombach. Support for comprehensive reuse. Software Engineering Journal,
91991,

[7] T. Biggerstaff and A. Perlis, editors. Software Reusability, Vol 1. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1989.

[8] William B. Frakes. Success Factors of Systematic Reuse. IEEE Software, 11(5), September 1994,

[9] J. A. Mayes. A survey of the current state of reuse in a software environment. TR 146, University
of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, 1992,

[10] R. Wirfs-Brock, B. Wilkerson, and L. Weiner. Designing Object-Oriented Software. Ptentice
Hall, Englewood Cliffs, New Jersey, 1992.

[11] L Sommerville. Software Engineering. Addison Wesley, third edition, 1989.

[12] D. A.Lamb. Sofiware Engineering: planning for change. Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

[13] P. Naur. Programming as Theory Building. Microprocessing and Microprogramming, 15, 1985.

[14] K. S. Rubin. Reuse in Software engineering: An Object-Oriented Perspective. In COMPCON
Spring ' 90 Thirty-Fifth IEEE Computer Society International Conference, 1990,

[15] J. A. Mayes and C. Britton. Are there any parallels between object-oriented system development
and other branches of enginecring? TR 139, Hatfield Polytechnic, College Lane, Hatfield, Herts
AL109AB, 1992.

[16] J. A. Mayes. A comparison of development methods used in traditional engineering and soft-
ware engineering. TR 147, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB,
1992.

[17] M. Lenz, H.Schmid, and P. Wolf, Software Reuse through Building Blocks. [EEE Software,
29(4), 4 1987.

[18] M. Stovsky and B. Weide. The Role of Traditional Engineering Design Techniques in Software
Engineering. In SEKE Proceedings 2nd International Conference on Software Engineering and
Knowledge Engineering, 1990.

[19] G. Booch. Object Oriented Design with Applications. Benjamin/Cu‘mmings Publishing Com-
pany, Redwood City,California, 1991.

194

[20] Thomas A. Standish. An Essay on Software Reuse. IEEE Transactions on Software Engineering,
10(5), September 1984.

[21] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application sofware main-
tenance. Commun. Ass. Comput. Mach., 21, June 1978.

[22] L. Berlin. When Objects Collide: Experiences with Reusing Multiple Class Heirarchies. In
ECOOPIOOPSLA 90 Conference on Object-Oriented Programming: Systems,Languages, and
Applications, 1990.

[23] D.J. Leech and B.T. Turner. Engineering Design for Profit. Ellis Horwood, 1985.

[24] E.Tjalve, MM. Andreasen, and F. Frackmann Schmidt. Engineering Graphic Modelling.
Newnes-Butterworths, London, 1979,

[25] R. D’Ippolito and C.Plinta. Software Development Using Models. In Proceedings Sth Interna-
tional Workshop on Software Specification and Design, 1989.

[26] Editorial. Scaling up: a research agenda for software engineering. Communications of the ACM,
33(3), 1990.

[27] S. Pugh. Total Design. Addison-Wesley Publishers Ltd., Wokingham, England, 1990.

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-oriented Modelling
and Design. Prentice-Hall International Editions, Englewood Cliffs, New Jersey, 1991.

[29] K.J. Leiberherr and I.M. Holland. Assuring Good Style for Object-Oriented Programs. /EEE
Software, September 1989.

[30] J. Nino. Object Oriented Modecls for Software Reusability. IEEE Proceedings- 1990 Southeast-
con, 1990.

[31] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Inc, Englewood Cliffs, New
Jersey, second edition, 1991.

[32] P. Coad and E. Yourdon. Object-Oriented Design. Prentice Hall, Inc, Englewood Cliffs, New
Jersey, 1991,

[33] Russel Winder. Developing C++ Software. John Wiley and Sons Ltd., Chichester, West Sussex.,
1991. ' .

[34] Margaret A. Ellis and Bjarne Stoustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, Reading,Massachusetts, 1990.

[35] Martin Reiser and Nicholas Wirth. Programming in Oberon. Addison-Wesley Publishing Com-
pany, New York, 1992,

[36] N. Wirth. The Programming Language Oberon. Software - Practice and Experience, 18, July
1988.

[37] Samuel P. Harbison, Modula-3 . Prentice Hall , Englewood Cliffs, New Jersey, 1992.

[38] Brian Henderson-Sellers and Julian M. Edwards. The Object-Oriented Systems Life Cycle. Com-
munications of the ACM, 33(8), September 1990,

[39] J. A, Mayes. Experience of using Coad and Yourdon Object-oriented Analysis and Design. TR
148, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, 1992.

[40] J.A.Mayes. The Responsibility Driven Object-oriented Design Method advocated by Wirfs-
Brock, Wilkerson and Weiner. TR 149, University of Hertfordshire, College Lane, Hatfield, Herts
AL109AB, 1992,

[41] N.Ingles. Object-Oriented Design Methods. Unpublished BSc Project Report,University of Hert-
fordshire, College Lane, Hatficld, Herts AL10 9AB, 1993.

[42] Marcus Schulz. Object-Oriented Development of an application using C++. Unpublished BSc
Project Report, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, 1994,

195

[43] I.D.Game. Comparison between Structured Methods and the Rumbaugh Object Modelling Tech-
nique. Unpublished MSc Report,University of Hertfordshire, College Lane, Hatfield, Herts AL10
9AB, 1994,

[44] Mehmet Aksit and Lodewijk Bergmans, Obstacles in Object-Oriented Software Development.
OOPSLA 92,1992,

[45] Richard Helm, Tan M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behavioural
compositions in object-oriented systems. Sigplan Notices, 25(10), October 1990.

[46] Audrey Mayes and Mary Buchanan. A comparison of Eiffel, C++ and Oberon-2. Technical Re-
port 191, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, 1994.

[47) Peter Wegner. Concepts and Paradigms of Object-Oriented Programming. OOPS Messenger ,
1(1), 1990.

[48] Colin Atkinson. Object Oriented Reuse, Concurrency and Distribution— An Ada based approach.
ACM Press , New York, 1991.

[49] Setrag Khoshafian and Razmik Abnous. Object Orientation: Concepts, Languages, Databases,
User Interfaces. Wiley, New York, 1990.

[501 H. Mossenbock and N. Wirth. Differences between Oberon and Oberon-2. Structured Program-
ming, 4 1991.

[51] B. Meyer. Eiffel: The Language. Prentice Hall, Hemel Hempstead, 1992,
[52] Michael Kilian. A Note on Type Composition and Reusability. OOPS Messenger, 2(3), 7 1991.

[53] Audrey Mayes and Mary Buchanan, The Oberon-2 Language and Environment. Technical Report
190, University of Hertfordshire, College Lane, Hatficld, Herts AL10 9AB, 1994,

[54] Laszlo Boszormenyi. A Comparison of Modula-3 and Oberon-2. Structured Programming, 14,
1993.

[55] Mary Buchanan, Overloading and Polymorphism in the interpretation of Inheritance in C++.
Technical Report 202, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB,
1994,

[56] William R. Cook, Walter L, Hill, and Perter S. Canning. Inheritance Is Not Subtyping. In Pro-
ceedings of the 17th ACM Symposium on Principles of Programming Languages, January 1990.

[57] N. Wirth. From Modula to Oberon. Sofiware - Practice and experience, 7 1988.

[58] Derek Colemanetal. Object-oriented development: The fusion method. Prentice Hall Inc, Engle-
wood Cliffs, New Jersey 07632, 1994,

[59] Sally Shlaer and Stephen J. Mellor. Object Lifecycles, Modelling the World in States. Yourdon
Press, Englewood Cliffs, New Jersey, 1992.

[60] J. Rumbaugh. Relations and semantic constructs in an object-oriented language. OOPSLA’87,
1987.

[61] J. Audrey Mayes, Bob Dickerson and Carol Britton. Implementing Associations between Ob-
jects. Microprocessing and Microprogrammming , 40, 1994,

[62] R.G.G. Cauell. Object data management: object-oriented and extended relational database sys-
tems. Addison-Wesley Publishing Company, Inc , Reasing, Massachusetts, 1994,

[63] G. Razek. Combining Objects and Relations. ACM SIGPLAN Notices, 27, December 1992,

[64] Harold Ossher and William Harrison. Combination of Inheritance Hierarchies. QOPSLA’92,
1992,

[65] A.Shah,J. Rumbaugh,]J. Hamel, and R. Borsari. DSM: an object relationship modelling language.
OOPSLA'89 as ACM Sigplan, 24, 11 1989,

[66] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. A Catalog of Object-Oricnted
Design Patterns. Unpublished IBM report, 1994,

[67] Danny Crookes. /ntroduction to Programming in Prolog . Prentice Hall International (UK) Ltd,
Hemel Hempstead, Hertfordshire. UK, 1988.

196

