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Abstract

The thesis describes a novel design technique, called the Sociable class design method, which can
be used to improve the representation of one particular type of relationship between objects in object
oriented systems. A study, using several object oriented programming languages, has been carried out
to demonstrate the feasibility of implementing the design method. The proposed design method has
been used in the development of a full case study which was implemented in Eiffel v2.3. The constructs
used by the design method are intended to overcome some of the technical problems associated with
the reuse of software components,

Traceability is identified, from a study of various engineering environments, as important for im-
proving reusability of components in engineering. This thesis demonstrates that existing object ori-
ented development methods do not provide traceability of all types of identifiable relationships between
objects. The novel design method described improves the traceability of one of these types of relation-
ship.,

The proposed design technique is evaluated against other techniques which can be used to imple-
ment the same relationship. The evaluation indicates that the increased traceability provided by the
new method simplifies the design of both the components and the overall system, thereby improving
the reusability of the components and the extensibility of the system.,
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Chapter 1
Introduction

This chapter gives the background information o the research project. The aim of the project is de-
scribed in section 1.1. The importance of research in the general area of reuse of software is explained
in section 1.2, Section 1.3 outlines the structure of this report to give an overview of the research pro-
ject.

1.1 Aim of the project

The broad aim of the project was to carry out research into the possibility of enhancing software reuse
in object oriented development. This aim was achieved by research into the technical aspects of the
systems development process. Non technical aspects such as managerial issues were not investigated.
The technical area identified for detailed research was the development and use of software compon-
ents. A more specific aim was identified. This specific aim was to improve the reusability of software
components which can be developed in currently available object oriented programming languages.
This precludes the development of a new language or the addition of features to an existing language.
The work was carried out through a number of distinct phases. Phase one was an investigation
into the factors which affect reusability with the aim of selecting one factor for further detailed study.
For phase two of the project, traceability of information from the analysis documentation to the final
product was selected. The aim of this second phase was o identify aspects of the development process
where this [eature could be improved. The major finding was that information is lost during the design
phase causing a reduction in traceability ol information and leading to less reusable products. Phase
three was to devise a design method that successfully transfers the information identified during ana-
lysis to the implemented system thereby enhancing the reusability of software components. This led
to the development of the Sociable class technique. The feasibility of the method was tested in phase
four by implementing a sample of the constructs required in four object oriented languages. These con-
structs were used in the developmentand extension of small systems. The next phase of the project was
to evaluate the Sociable class technique against other design techniques which can be used to represent
the information. Finally, the design method was tested by the development of a complete case study.

1.2 The importance of reuse

Reuse of software components is a long held aim of the software industry. It is seen as one way to mitig-
ate the effects of the so-called software crisis. This term is used (o describe the inability of




application developers o keep up with the demand for new software. This demand might be met by
an increase in productivity which could be achieved by the efficient reuse of components.

There are many examples of studies highlighting the commonality of code between different Sys-
tems. For example, Jones [1] reported that studies into the code used in different systems had shown
that between forty and seventy percent of code could be found in more than one system. He suggested
that up to eighty five percent of code in those systems could be replaced by standard, generic code.
Another example was given by Meyer [2] when he identified the frequency with which table searching
algorithms are used in programs. Reuse of code in these two examples would lead to an improvement
in productivity. Of course, some reuse of code already occurs, for example, libraries of reusable al-
gorithms have been provided for many years. Recent studies have shown that reusing code results in
increased productivity. For example, Lim [3] reports studies which demonstrate that in some projects
the productivity of programmers, as measured by lines of code produced per month, increases by up to
57 percent.

The advent of object oriented languages has increased the size of the reusable component. One
ideal, quoted by Cox [4], is that systems should be developed

“from well-stocked catalogues of reusable software components” .

Software sysiem assembly would then be similar to the assembly of engineering products. It appears
that this ideal is not currently being met.

Hall [5] sees reuse as a means of improving productivity without compromising the quality of the
product. Whereas Basili [6] sees reuse as a way 1o improve software quality. Meyer [2] concurs with
this second view. He points out that reusing software results in less code being written. This should
allow more time to ensure correctness of the software. In addition, the testing and correction of errors
ina component is effectively continuing throughout the life-time of the system in which it is used. As
Lim states [3], the effect of the correction of errors in reused software is camulative and results in hi gher
quality components. Thus, reusing components after they have been successfully included in a system
should lead to improvements in quality.

Reuse of components can occur at any stage of the development process. Identification of reusable
components at an early stage of development will be more beneficial than identification during the later
stages. There are several reasons for this. For example, the entities identified at early stages of devel-
opment are less implementation dependent than the components of the actual product. Also, the early
identification of a reusable component may save the development costs for that partof the implemented
system,

The reuse potential of components varies. A small application independent component, such as a
list or windowing system, will be more reusable than an application specific component. However, as
Biggerstafl [7] points out, the cost savings gained by the reuse of larger units will be greater than those
gained by the reuse of smaller, more general products, such as lists and windowing systems,

It should be appreciated that reuse may incur costs. For instance, a generalised componentmay cost
more (o develop than a specialised one. A component intended for reuse will also need to be tested more
thoroughly than a single purpose component. The actual cost increase is not a constant value. The extra
cost is reported by Lim [3] (0 vary between 111 percent and 480 percent of developing non reusable
code. The increased cost of development should be offset against the reduced costs when reusing the
code. In the same report, Lim suggests thal the cost reduction of reusing code varies between 10 and
63 percent of the cost of developing new code. From these figures, code reuse appears to increase
productivity in the best case afler the first reuse of the component and in the worst case after reusing
the code eleven limes.
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The ability o reuse components is important in improving productivity and the quality of the final
product. The recent publication of papers extolling the virtues of reuse [3] and the benefits of systematic
reuse [8] suggest that the potential for reusing software components is not fully exploited. Further
research into this area is important in view of the fact that the demand for new systems exceeds the
number of new systems that the suppliers are capable of providing.

A more detailed investigation into software reuse was carried out during the early stages of the
rescarch project. The results of this investigation are reported in [9].

1.3 Overview of the thesis

Chapter 2 begins with a definition of the term reuse. The chapter then discusses factors which are con-
sidered essential for the development of reusable components and identifies which of these factors are
provided by object oriented development techniques. This discussion leads to the conclusion that the
ability to trace information through the system development process is fundamental to improving the
reusability of components.

The results of an investigation into the traceability of information in current object oriented devel-
opment processes are presented in chapter 3. This investigation found that the analysis process identi-
fies more types of information than can be represented in programming languages. The desi £n process
must convert the information in the analysis model into information which can be modelled by the
languages. This conversion reduces the traceability of information with the effect that some of the in-
formation is lost. The reduction in traceability is shown (o lead to several problems. In particular, it is
difficult to look at the implementation of a software component and know which parts of it represent
intrinsic properties of the componentand which are required to represent the other types of information
captured during analysis. This limits the potential for reusing the classes.

Chapter 4 proposes a design method, the Sociable class technique, which provides a mechanism for
explicitly representing one type of information which is currently lost during the design process. The
design method is assessed in a feasibility study. The traceability provided by the use of the Sociable
class technique is shown (o have the potential to reduce some of the problemé encountered whenreusing
components.

Chapter 5 evaluates the relative merits of the Sociable class technique and other methods which
can be used to represent the same information. Each method is initially assessed by considering the
traceability of information. The Sociable class technique was developed to improve the traceability of
information as a means of enhancing the reusability of components. The evaluation therefore begins
by comparing the traceability of information provided by each design method. The broad aim of the
project is to improve reusability. The reusability of components was shown, in chapter 2, to be affected
by several other factors. The effects on the other factors of using the design methods is also considered.
The evaluation showed that the Sociable class technique is potentially capable of providing a greater
improvement in the reusability of components than the other methods selected for the comparison.

Chapter 6 describes the development of a complete case study using the Sociable class technique.
The case study was chosen to demonstrate the use of a variety of different associations and was carried
out to verify that the design technique can be applied to a complex system.

Finally, chapter 7 assesses the importance of the Sociable class design technique for improving
the reuse of components and suggests further work which would be necessary to develop this design
technique (o a stage where it is viable for an industrial product. Other areas in which traceability could
be improved are also noted.




Chapter 2
Reuse and object oriented techniques

Itis claimed by Meyer [2] that object oriented development techniques increase the reusability of soft-
ware components. The increase in reusability is brought about by the use of features such as encapsu-
lation and information hiding. This chapter discusses these features and other factors which are con-
sidered important in enhancing the ability L0 reuse components. However, before discussing these
factors, it is necessary to define what is meant by the term reuse. This chapter begins in section 2.1
with a discussion of possible interpretations of reuse and identifies the definition used in this thesis.
Factors which affect the reusability of components are discussed in section 2.2. Section 2.3 selects
one of the features for further investigation. The feature selected is traceability of information. This is
shown to be a fundamental requirement when considering improvements in the production of reusable
components.

2.1 Definition of reuse

The most obvious definition of reuse is the one used by Wirfs-Brock et al. [10]. They state:

“Software is reused when it is used as part of software other than that for which it was
initially designed.”

Reuse also occurs when an existing system is enhanced to add new functionality, that is the code is re-
used in successive releases of a product. This type of reuse occurs in many systems and, as Sommerville
(11] and Lamb [12] point out, is often carried out under the guise of system maintenance. From this it
appears that enhancements 10 a syslem are seen as comparable Lo the correction of errors. Naur [13]
has shown that this type of reuse leads to loss of program structure and readability. There seem to be
two possible interpretations of the term reuse, that is, a component is reused when it is included in a
new system or in an extension to the system for which it was originally designed.

Further interpretations are possible. A component can be reused with or without modification.
Wirfs-Brock et al. classify reuse with enhancement or modification as refinement rather than reuse.

These different definitions of reuse affect the reusability of the component. If the definition of reuse
is restricted to mean reuse without change, the scope for reuse will be restricted but reliability should
be enhanced. Increased reliability would be expected because the amount of testing is effectively in-
creased as a result of the use of the component. If, on the other hand, the scope is extended to include
refinement as defined by Wirfs-Brock, then the increase in reliability is likely to be compromised but
reusability will be extended. Increased reusability should be expected because the changes to the com-
ponent will make it available for use in more systems.




The above delinitions are concerned with code reuse. Rubin [14] extends the potential for reuse to
include analyses, designs, implementations, test cases, and documentation. A similar broad definition
of reuse is used by the editors of Soltware Reusability [7]. The definition can be further extended to
include the reuse of personnel and processes [6, 2].

This thesis is concerned with improving the reusability of components. The investigation of reuse
is therefore restricted Lo the development and reuse of components. Thus, the areas examined are the
technical aspects ol development. The reuse of personnel and processes are not considered. Reuse, in
this defined context, will provide most benefil if the term is considered in the widest sense. In view of
this, the following definition is used.

Components are considered to be reused if they are used, with or without modifica-
tion, in either a new system or an extension of an existing system,

2.2 Factors affecting reusability

This section discusses factors which affect reusability. The factors have been identified by examining
reuse in traditional branches of engineering as well as software engineering. When reuse is defined to
mean using software components in systems other than those for which they were originally intended,
the situation equates to the use of “off the shell” parts in a raditional engineering environment. Factors
which allow such parts to be used are considered in this section.

The factors which have been identified are:

e Encapsulation and information hiding
e Understandability
e Compatibility

e Standardisation

Reliability

Design complexity

Extensibility

[

Product efficiency
e Traceability

More details of this work can be found in [9, 15, 16].

2.2.1 Encapsulation and information hiding

Encapsulation and information hiding are identified by Lamb [12] and Lenz [17] as important factors
in increasing the reusability of software products. These two features are used to control the amount of
information which must be understood by developers. Encapsulation is the grouping of closely related
functionality into a single component. The use of information hiding techniques means that the user
of the component only needs to know what it does and not how it works.

The description of what a component does defines the interface of the component. The interface
provides the only means of accessing components designed using encapsulation and information hid-
ing techniques. The user of such a component cannot make use of any implementation details which




may be known but are not revealed in the interface. This has the result of appearing to reduce the com-
plexity of a system which in turn makes the system easier (0 understand and develop. As Stovsky and
Weide [18] point out, traditional engincers construct new systems primarily from reusable components.
These components are chosen by their external behaviour, or interface, not by their implementation de-
tails. Lenz [17] further states that the provision of these features should allow software to be used as
building blocks thus permitting the software industry to emulate the electronics industry in the method
of construction,

The size of the encapsulated components is important. Rubin [14] suggests that reusability can be
improved by factorization to encapsulate the information in smaller units. This involves breaking a
large complex component into smaller, less complex components. Each of the smaller, less complex
components can be reused individually. These smaller units have increased reuse potential when com-
pared with the encapsulation of larger, more complex components. Thus, smaller components are more
reusable but, as mentioned in section 1.2, provide smaller cost savings.

Information hiding and encapsulation are both provided by object oriented development methods.
As Booch [19] explains, the object oriented approach o system development uses encapsulation to
simplify complex situations by viewing the required system as a group of interacting objects which
represent objects in the problem domain. A system built by following object oriented principles con-
sists of components known as objects. These components communicate via interfaces to perform the
required functions, in much the same way that a car consists of many parts all joined together to form
amode of transport. The encapsulation provided by objects is explained in more detail in chapter 3.

2.2.2  Understandability

It is necessary (o understand a component before it can be used. Both Biggerstaff [7] and Rubin [14]
agree that difficulty in understanding a component is a fundamental problem which limits its poten-
tial for reuse. Meyer [2] points out that it should be possible to understand each of the modules, or
components, from which a system is built without needing to understand the rest of the system. This
requires that the way in which components communicate should be explicit in the text describing the
components.

It is important (o be able to understand the complete system as well as the individual components.
The time taken (o understand a system increases the cost of both correcting errors and extending a
system. The problem of understandability is identified by Standish [20] who quotes Lientz et al. [21]
as showing that 50-90 percent of software maintenance time is spent in understanding the program.
Software maintenance itself can account for anything up to 90 percent of the life cycle costs.

Lamb [12] sees understandability as a goal of preliminary design. He states that the purpose of
preliminary design is to divide a system into modules which can be easily understood and which com-
municate in such a way as to make the whole system easy to understand. It is also stated that a system
is easier to understand if the modules used communicate with few others and provide features which
are closely related.

However, Naur [13] suggests thal it is almost impossible o understand a program written by some-
one else even with all the relevant documentation. He further suggests that even a well structured pro-
gram will not retain its structure if maintained by people not involved in its original design.

It seems gencrally agreed that the difficulties in understanding software increase the costs of main-
tenance and enhancement. Enhancementis included in the definition of reuse used in this thesis. Thus,
it seems clear that improving the understandability of components is fundamental to improving reuse.




2.2.3 Compatibility

Biggerstaff [7] points out that reusing components involves composing them 10 make new computa-
tional structures. In order for a group of components to be used together they must be compatible.

Berlin [22] has reported problems caused by incompatibility of components. These problems res-
ulted from the fact that code relating Lo decisions concerning error handling and validation of paramet-
ers was distributed throughout the hierarchy and not specified in one place. A decision to validate all
the required parameters together rather than one at a time, was shown to mean that apparently useful
classes required major re-working and re-coding before they could be used. This involved the break-
ing of encapsulation. These problems show that the design choice made concerning the way in which
errors are handled can lead to incompatibility of components. In some systems, the provision of a de-
fault value may be the best way to deal with an error produced by a missing or invalid parameter. In
another system the user may not wish to use the chosen default value and so is unable to use the class
without modification.

Compatibility of components must be ensured before a system can be assembled. Compatibility
should be considered when designing components for reuse.

2.2.4 Standardisation

Standardisation takes several forms. It ranges from the use of standard components to the use of stand-
ard methods and notations. This section examines two aspects of standardisation. These are compon-
ents and design models. More details can be found in [16].

e Components

Stovsky [18] states that in traditional engineering, standard parts are used as much as possible
both for reasons of cost and because their functionality and design characteristics have already
been tested. The cost of developing a special design for a small industrial motor is estimated, by
Leech [23], to be at least [ifty percent more than the cost of the standard machine. Leech also
suggests that if a non-standard design is needed it should be compatible with other standard parts,
thus emphasizing the requirement for compatibility between components.

Most components used in both the clectronics and manufacturing industries are readily available
‘off the shelf”. A new product consists mainly of ‘off the shelf” standard parts. These parts can
be used because they:

L. have a well defined standardised interface, for example, size and/or connections to the out-
side world,

2. work almost as efficiently as specially designed parts,

3. are carefully tested and certified.
The proportion of standard parts varies in the different branches of engineering. Electrical goods
contain more standard parts because of the relatively limited variety of those parts. Civil engin-
ecring is al the other end of the spectrum with standard processes rather than standard parts being
used.

e Design models

In order 1o allow designs to be effectively communicated between developers, models of the
products are developed. In traditional engineering these models can take the form of prototypes,




physical models or drawings. Different types of drawings are produced to serve different pur-
poses [24]. For inslance, separate diagrams are used (o show the structure of the product and the
control systems, that is the sequence of operations required.

Graphical standards for enginecring drawings were introduced in the 1950°s. All diagrams con-
form 1o these standards. The use of standards allows engineers from one branch of engineering
Lo understand diagrams produced by an engineer working in another branch. These standards do
not impose a certain style on the designer nor do they limit innovation, The first point is noted
by D’Ippolito and Plinta [25]. They highlight the fact that architectural designs can be produced
in many styles.

There are no such standards in software engineering. Biggerstaff [7] identifics this as a factor
decreasing the reuse of design information. Horowitz in [7] has noted similar problems with re-
cording the results of domain analysis. I is further suggested by Naur [13], that it is impossible
using current design drawings Lo record all the information required to allow a newcomer to a
system to understand it completely. Improvements in the area of representation of design in-
formation have been identified by the National Research Council [26], as necessary to prevent
the loss of key pieces of information.

Standardisation may alleviate some of the problems associated with incompatibility of components.
For example, a standard method for error handling would reduce the conflicts between components.
Standard design models may help developers identify components for reuse.

2.2.5 Reliability

Reliability is a key feature when using components. It is clear that unreliable components produce un-
reliable systems. Unreliable systems in any environment will not be used, unless there is no alternative.
Reliability of components and systems can be cnhanced by thorough testing.

Traditional engineers base new products on carefully tested and certified components. Pugh [27]
indicates that testing is included as part of the specification of each compenent and is not a separate
activity. In fact, D’Ippolito [25] states that a chemical production plant was built without any tests of
the design being necessary. This was possible because the models of all parts, that is the components,
interfaces and controls, were validated prior to inclusion. The only testing performed was to ensure that
the plant was an accurate implementation of the design. He also points out that engineers are now taught
to design the unit operations and the objects that provide them, such as pumps, instead of being taught
to design a particular kind of structure such as the chemical plant, He suggests that software engineers
should be able to proceed in the same fashion. However, this view of testing in traditional engineering
is not universal. Leech {23] states that it is almost certain that a product or its sub-assemblies will not
work when first tested. Many redesigns and re-Lests are said to be needed, leading Lo increased costs and
causing difficulties in initial cost estimation. The redesigns and re-tests of parts after initial completion
of the product suggest that the sub-assembly, interfaces and control models were not validated before
assembly in the (inal product.

Reliability in a software environmentis improved by using languages which are strongly typed and
by basing the system on modules which are thoroughly (ested before building and testing the complete
system. Strongly typed languages are type checked statically by the compiler. The use of such lan-
guages helps (o ensure that the system will not crash with a run time type error which could result in
loss of information but does not, of course, ensure that the system provides the desired functionality.

The use of encapsulation and information hiding improves reliability. Encapsulation and informa-
tion hiding ensure that the internal structure of a module cannot be accessed from outside the module.




The only access 1o the structure is via the [eatures provided by the interface. These modules can then be
used as pre-tested components with known behaviour. Components developed during object oriented
developmentare produced following the principles of encapsulation and information hiding. It should
therefore be possible to produce reliable reusable components from which to build a system.

2.2.6 Design complexity

A complex system is more difficult Lo understand than a simple system. It scems clear that a simple
design will be casier Lo understand than a complex design of the same system. Understandability has
already been identified as a factor which affects the extensibility of a system. In view of this, design
complexity will also affect the extensibility of a system.

In the traditional engineering ficld, Leech advises the use of the simplest workable design. He sug-
gests that the number of parts should be reduced and the product made as small as is compatible with
other requirements.

Metrics have been developed by Pugh [27] to calculate the efficiency of an engineering design, One
metric is called the complexity factor and takes into account the number of parts(Np), the number of
types of parts (Nt) and the number of interfaces (Ni).

complexity factor = &/Np« Nt «Ni

A design with a low complexity factor is assumed Lo be better than a design with a high complexity
factor,

An alternative metric is the design efficicncy which uses the minimum number of parts (NM) and
the time taken Lo assemble them (TM).

design efficiency =3« NM |TM

A higher value for design efficiency is assumed to be better than a low value. Thus a design with
more parts which can be assembled quickly is considered more efficient than a design with fewer parts
which take longer to assemble. The exact correlation between these two metrics is not known but a
high design efficiency is assumed Lo correlate with a low complexity factor.

There is no agreed list of good design characteristics in object oriented software. Wirfs-Brock et
al. [10] use simplicity as their cmpirical measure of design quality. They suggest several criteria on
which (o base a judgment of the design. A simple design will have:

1. fewer morc intelligent classes or components,

2. more subsystems encapsulating the application specific functionality,

3. few contracts per class—this corresponds o a smaller interface between components,

4. deep inherilance hierarchies—the use of inherilance is explained in sections 2.2.7 and 3.2.3.

However, the use of deep inheritance hierarchies can also be viewed as adding complexity. As Rubin
[14] points out, the use of inheritance leads to distributed definitions of classes. This makes each class
more complex and also more difficult to understand. Rumbaugh [28] gives no guidelines for selecting
a good design. He suggests that the design should be optimized to make the design more efficient. Op-
timizations include storing a derived value (o save the processor time required for recalculation every
time the value is needed. Thus, Rumbaugh bases the criteria for a good design on improved product
efficiency rather than reduced design complexity. Booch [19] suggests evaluating designs by compar-
ing facets such as computational efficiency, synchronization problems, independence from hardware
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and simplicity of implementation. Again these features are not readily measurable and combine both
design complexity and product efficiency. Lamb’s view on preliminary designs are relevant here. As
mentioned in section 2.2.2, his view is that systems should be composed of modules each of which
provides a closely related set of features and that these modules should communicate with as few oth-
ers as possible, that is they should have as small an interface as possible.

A law, called the Law of Demeter, has been developed [29] to help formalize the meaning of ‘good
style” for objectoriented programs. Itisa way of restricting and documenting the dependencies between
classes in order (o increase Lhe ease of modification of the classes. Adherence 1o this law is said to help
in the production ol a ‘good design’ and could be used to assess designs by checking if they follow the
law. Valid violations of the law are said (o exist. A law such as this is not a simple design metric such
as is available (o traditional engineers,

Itappears from the above discussion that the quality of a design is a difficult feature 1o quantify, One
possible metric is design complexity. Several factors appear to be important when considering design
complexity. These factors include the number of parts required, the size of the interfaces between the
parts and the number of types of parts used in the system,

2.2.7 Extensibility

It is stated, in section 2.1, that reuse is considered to include the use of a component in an extension
to, or an enhancement of, an existing system. The reason for this is that the expectations of software
systems are constantly changing. As Lamb [12] points out, the term maintenance is used in a software
development environment to include modifications and enhancements to the system as well correct-
ing [aults in the original system. Thus it appears that a requirement (o improve a system by increas-
ing its functionality should be anticipated and systems designed and documented accordingly. Rubin
[14] states that the ability (o produce systems which are adaptable to meet changing specifications is
a fundamental requirement of an effective development methodology. This implies that the process
ol extending or adapting a system should maintain the original good structure of the program and not
increase the design complexity unnecessarily. Naur [13] states that the structure of a program is often
lost during repeated maintenance due 1o a lack of understanding of the system which is brought about
by the inadequate mechanisms for explaining the development of the original system,

Some programming languages provide features which permit adaptations to be made. One such
feature is genericity. This feature allows a general component, such as a list, to be declared. Specific
lists, such as a list of customers, are then derived from this general list. This reduces the amount of
code 1o be wrilten and so reduces development time and cost.

Inanobjectoricnied developmentenvironment, inheritance is used to provide a means of producing
incremental changes. Inheritance allows a new software component (o be derived from an existing
one. The new component shares all the properties of original component but defines its own additional
properties. This sharing of propertics reduces duplication of information with the result that the time
required for testing is reduced. However, it is reported by Nino [30] that the method used to implement
inheritance in many objectoriented languages reduces the quality of encapsulation. Inheritance appears
to improve reusability by providing a mechanism for incremental changes 10 be made but may also
adversely affect reusability by weakening encapsulation,

Genericity and inheritance are important concepts for increasing the reusability of code. They are
explained in more detail in chapter 3.
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2.2.8 Product efficiency

Product efficiency is important because users of systems wish to have them work quickly and effi-
ciently. In traditional engineering, component efficiency can be measured. This is documented as the
performance characteristics of the component. The performance characteristics of each component
will, at least in part, determine the product elficiency.

In software systems, efficiency often means speed of execution. This can be assessed by measuring
the amount of processor time required to perform a function. Efficiency is affected by factors such as
the algorithms used and the requirement for the processor to check at runtime that the operations are
valid. This checking requires processor time and therefore reduces the speed of the system.

An alternative interpretation of software product efficiency is the amount of computer memory re-
quired to both store and run the system. Computer memory is becoming cheaper which reduces the
importance of this measure of efficiency.

In systems where speed of execution and size of code is critical, such as operating systems, code
reuse may not be seen as applicable. This is because a reusable component is likely to be more general
than a specially designed component. As Rubin [14] points out, a general component is unlikely (o be
the most efficient solution to a specific problem. However, the analysis and design may still be reusable.

The importance of product efficiency as measured by speed of execution depends on the type of
system being developed. Productefficiency is more important when developing operating systems and
real-time applications than when developing systems which require a large amount of user interaction
such as information retrieval systems.

2.2.9 Traceability

D’Ippolito [25] points out that it must be possible (o trace the requirements from the initial documents
through the models of the required system to the final product. This allows the user to have confidence
that the system provides the desired functionality. The final product in a traditional engineering envir-
onment closely matches the models. Any changes made during production must be recorded to allow
the same changes (o be made in subsequent products. This maintains the traceability of information
from the requirements to the implementation. The information required for construction and mainten-
ance is contained in standard documents.

The software engincer does not have the same incentives to keep documentation up to date be-
cause software can be reproduced easily. Software reproduction is a simply matter of copying the code
$0 there is no requirement to understand the structure of the system during manufacture. However, the
structure must be understood il errors are 10 be corrected. In order to correct an error, the part of the
code responsible for the affected functionality must be located. This process will be simplified if the
structure of the implemented system directly reflects the analysed requirements, For example, under-
standability will be improved if constructs, such as data, functions or interactions, which are identified
during analysis are clearly visible in the implementation. The improved understandability resulting
from increased traceability should reduce the time required to trace an error and therefore reduce the
costs incurred. The improved traceability should also help identify or even prevent any side effects
caused by the corrected code. Traceability of information should be an important consideration during
software development even if the system is designed (o remain unchanged.

Traceability is even more important when considering systems which are designed to be upgraded
or extended. The desired enhancements (o a system can be shown by adding extra information to the
analysis models. The same enhancements must be made (o the implemented system. In order to do this,
it is necessary 1o understand both the components which implement the current system and the way
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they interact. As mentioned before, the process of understanding the current system will be simplified
if all the information contained in the analysis models is traceable through the design and is visible in
the implementation of the system. The design and implementation may, of course, contain additional
information. Traceability of information requires that all the constructs visible in the analysis models
have direct counterparts in the implemented system. The availability of such constructs should also
facilitate the addition of the extra functionality. The process should involve the simple addition of the
desired behaviour,

Improving the traceability of information by the provision of separate implementation constructs
foreach type of information in the analysis model will help to ensure that encapsulationand information
hiding are fully provided. The types of information include both the entitics required in the system
and the relationships between those cntities. Encapsulation and information hiding will be improved
because one construct will encapsulate one piece of information. Identification of components for reuse
in other systems should be easier because each construct will encapsulate closely related information,
Improved traceability of constructs may also make it possible to maintain a program’s structure even
it maintenance is carried out by people other than the original developers. This would allow more
incremental increases in a system functionality while maintaining the predictability of the behaviour,
It should be remembered that Naur has identified problems due o the lack of adequate mechanisms
to explain the development history of a system. The lack of such mechanisms causes the structure
of a system (o deteriorate during maintenance procedures. Providing traceability of information by
representing cach type of information by a separate construct may provide an adequate mechanism for
explaining the development of a system.

The ability 1o trace a concept from the analysis model through to the design and implementation
is likely to involve a standard mechanism for representing the concept at each stage. Thus, providing
increased traceability might also improve standardisation which is another factor required to enhance
reusability.

It seems clear that improving the traceability of requirements from the initial specification through
to the implementation will improve the understandability of the components and enable their reuse.

2.3  Summary and Conclusion

This chapter has presented the background information to this research project. The term reuse is
defined, section 2.1, to mean use, with or without modifying the component, in an extension to
the existing system or in a different system.

All'the factors identified in section 2.2 are important when Lrying to improve the reusability of com-
ponents. Traceability of information is a factor which affects and is affected by many others. For ex-
ample, as stated in section 2.2.9, providing traceability of the different types of information through the
development cycle may provide improved encapsulation thereby simplifying the implemented system
with the result that it is easier 1o understand. Such traceability would be provided by the use of distinct
constructs for all types of information. Traceability may make the design appear less complex because
adeveloper will be able Lo identify the relationship between the implemented system and the analysed
requirements more easily.

Traceability is also related to standardisation. Improving traceability might lead to the develop-
ment of standard mechanisms for implementing the constructs identified during analysis. Improved
standardisation would have the added advantage of enabling users to understand the development of
the implementation more easily. It was suggested that improving traceability of constructs might im-
prove the extensibility of systems.
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It appears that providing traceability of information by the provision of distinct implementation
constructs to represent each type of information contained in the analysis models may lead to improve-
ments in other factors required to enhance reusability. Traceability of information was therefore chosen
for further investigation.

The next chapler, chapter 3, presents the results of an investigation into the traceability of inform-
ation in several approaches to object oriented development. The aim of the investigation is to identify
any shortfalls in traceability using current techniques. Such shortfalls can then be addressed with the
prospect ol improving reusability of components. The research presented in this thesis concentrates on
developing an object oriented design method which promotes the possibilitics of reusing the compon-
ents identified during analysis by improving traceability of information.
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Chapter 3

Traceability in object oriented
software development

Traceability of information [rom requirements analysis through to the final product has been identified,
inchapter 2, as a feature which should improve both the reusability of components and the extensibility
of systems. This chapter discusses the traceability of information through the process of object oriented
software development,

Traceability has been claimed to be one of the benefits of object oriented development. The use of
such an approach is said by Coad and Yourdon [31, 32] to allow the analysis results to be systematically
expanded into objectoriented design and programming. Rumbaugh et al. [28] also claim traceability of
information by stating that object oriented software development provides a scamless transition from
analysis to implementation involving the clarification of features rather than requiring modification of
work which has already been completed. This implies that it should be an casy task o trace informa-
tion through the development process and o identify the entities from the analysis model in the final
implementation, ‘

Traceability of information during object oriented development was investigated by examining a
development process which uses object oriented concepts throughout. Specifically, object oriented
analysis and design are followed by implementation using an object oriented programming language.
This process avoids any loss of traceability caused by changes in representation style such as might
be encountered if following object oriented analysis with implementation in a relational database or
structured programming language.

There are several dillcrent process models which can be used to describe the software development
process. These are discussed in section 3.1 both 1o provide a basis for the selection of specific develop-
ment methods and to define the approach adopted for the investigation into traceability of information.

The development methods chosen are the object oriented analysis and design strategy suggested by
Coad and Yourdon [31, 32], the Responsibility Driven Approach (RDA) [10] and the Object Modelling
Technique (OMT) [28]. These methods are described in section 3.2. The types of information identified
and modelled by the analysis methods are discussed in section 3.3.

Section 3.1 shows that a major [unction of the design phase is to map the results of analysis on
to implementation constructs. This means that before the design process can begin, it is necessary to
understand the features of the implementation medium. The investigation into traccability during the
development process Ltherefore continues, in section 3.4, with a description of the main features of four
object oriented programming languages. The languages described are Eiffel v2.3 [2], C++ [33, 34],
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Oberon-2 35, 36] and Modula-3 [37]. The different constructs and relationships provided by the
languages arc discussed in section 3.5.

Having ascertained both the types of information identified and modelled during analysis and the
constructs and relationships available in a selection of programming languages, it is possible to con-
sider the design phase of development. The description of the development process continues in sec-
tion 3.6. That section compares the entities identified during analysis with those available in the pro-
gramming languages to identify any differences which must be overcome during the design phase. The
section also describes common design methods which are used to convert the information contained
in the analysis models into implementation constructs. Section 3.7 discusses the consequences of the
changes in the representation of information which are necessary during the design process. Section
3.8 discusses the traceability of constructs during object oriented development. Section 3.9 summar-
izes the findings.

3.1 The development process

This section describes two models ol the development process. The reusability of the artifacts pro-
duced by methods following cach ol the process models is assessed in order 10 identify the type of
development process to consider for this rescarch. Having identified the type of development process
it is possible Lo define the method used for the investigation into traceability of information.

The process of system development can be described by several different models. Two of the mod-
els are the waterfall model [11] and the fountain model [38] as shown in fi gure 3.1, The waterfall model
has been used to describe many different approaches to structured development. The fountain model
was proposed by Hendersen-Sellers and Edwards as a process model for object oriented system devel-
opment,

The phases of the process models are broadly similar, Both process models begin with the definition
of the requirements of the system and the required software. The processes continue with the design of
the system followed by coding, implementation and testing. Finally the system is installed for use. A
minor difference between the models is that the fountain model shows more phases for the individual
parts of the requirements analysis than the waterfall model,

There are, however, two major differences between the two models. The first difference is that
the phases of the fountain model overlap whereas the phases in the waterfall model are shown as dis-
tinct stages with iterations between the phases. The authors of the fountain model stress the value of
this overlap between the stages. For example, beginning the implementation before the design is com-
plete is said o result in a more robust and more flexible design. The second major difference is that
Hendersen-Sellers and Edwards suggest the use of the same programming environment throughout the
fountain development process. This is said to resultin a system that is easier Lo maintain and extend. It
also allows classes available [rom previous systems to be considered for inclusion in the present system
at an carly stage.

The use of a method following the fountain process model, whilst offering the advantages men-
tioned above, has the disadvantage of merging the implementation with the rest of the development
process. The use of specific features of the implementation medium, such as uncommon features of
the language chosen, will be incorporated into the analysis and design models. These models may not
therefore be language independent. This will probably mean that the anal ysis and/or design resulls can-
not be reused either for implementing the system in a different language or for using a different style
ol implementation, thereby restricting the reusability of the results. It was stated in section 1.2 that the
greatest benefit of reusing components is obtained by their identification at early stages of development
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because these are more independent of the constraints of the final implementation medium. It appears
that the use of development methods which follow the fountain process model restricts the reuse of
analysis results. Therefore, methods which use the fountain approach, such as the method proposed by
Booch [19], are not considered in this discussion,

The three different approaches discussed in this chapter follow the waterfall process model and
complete the analysis and design stages prior o considering the actual implementation language. All
the approaches assume that a natural language problem definition of the required system is available
and thus begin part of the way through the life-cycle with analysis. The analysis phase is discussed in
section 3.2,

The software design phase of development in the waterfall model involves deciding the style, such
as object oriented or functional, in which the system will be implemented. The software design phase
also determines the full specification of the required software in the chosen style without being com-
mitted to the use of a specific implementation language. Software design therefore involves mapping
the results of analysis on (o the implementation constructs which are available in the chosen style of
implementation. An understanding of the general features of these languages is required before the pro-
cess of object oriented design can be fully understood. The features of object oriented languages are
described in section 3.4, Implementation constructs are discussed in section 3.5 prior to a discussion
of design issues in section 3.6.

3.2 Analysis methods

This section presents the results of the first phase of the investigation into traceability of information
during object oriented development. This phase requires the types of information identified and mod-
elled during analysis to be ascertained. The analysis process produces models of the requirements to
aid the understanding of the required system and provide a basis for the design and implementation of
the required system.

The methods being discussed are the object oriented analysis and design strategy suggested by Coad
and Yourdon [31, 32], the Responsibility Driven Approach (RDA) [10] and the Objéct Modelling Tech-
nique (OMT) [28]. All the methods begin with a natural language definition of the required system,
Each method uses a different strategy and produces different models. This section identifies both the
strategies used to produce the models and the way in which the information is modelled.

In order to produce a useful discussion, analysis has been defined as a process which identifies:

o classes and objects including the data associated with and behaviour required of objects,
e relationships between objects and between classes 1o provide the required functionality,
e subsystems,

This definition of analysis combines different phases in each of the methods examined. The defini-
tion has been chosen because it results in a specification of the required system being produced. The
discussion begins in section 3.2.1 with a description of the different approaches adopted by the three
methods. Sections 3.2.2 to 3.2.4 discuss the identification of each of the above constructs. The types
of information identified during analysis are discussed in section 3.3.

3.2.1 Approaches used

Coad and Yourdon definc object oriented developmentas including the use of objects and classes, clas-
sification, inheritance and communication with messages, They describe object oriented analysis as
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combining features from semantic data modelling, object oriented programming and knowledge based
systems [31]. Analysis is said to be the study of the problem and application domain. The initial phase
of their method is heavily biased towards the stored dala and the operational procedures which are an
inherent part of that domain, The functionality of the application being developed is considered in their
design stage which defines four separate views of the application producing four separate models. The
models produced show:

o the problem domain,

e the user interface,

o the task management,

¢ the data management component.

Each model uses the same notation to show the classes involved, their structure and interactions. Class
specifications are also produced.

The Responsibility Driven Approach views a system as a group of objects which represent the roles
required to provide the desired functionality. Each object is required to provide some services and may
require information or services [rom other objects. Classes providing the services are called servers
and classes using the services are called clients. The list of services which can be requested by a client
form a contract between the client and the server classes. The relationships between classes are called
collaborations. The system is developed in terms of the Client-Server model. The method discussed
here was developed by Wirfs-Brock et al. [10] and deals with all aspects of the required system during
all stages of development. The models produced are :

e hierarchy graphs to show the inheritance hierarchy of the classes,
o collaboration graphs o show the way the objects interact to provide the functionality required,
o the specification of the classes, subsystems and collaborations.

The OMT method, in common with the RDA, analyses the required system and not the problem domain
but also suggests using domain knowledge while identifying classes. Three models are produced to
show different aspects of the required system. These are:

o the object model to show the static structures or classes involved in a system, the relationships
between the structures and the operations performed by the objects.

e the dynamic model to describe the changes which occur over time in the system.
o the functional model to show how the data flows through the system.

A different notation is used for each model. These models must be combined before the class specific-
ations can be produced.

It can be seen from the above descriptions that the three methods adopt different approaches (o the
modelling and production of the specification of the required system.

3.2.2 Classes and Objects

This section discusses the first stage of the analysis process as defined in section 3.2, that is the identific-
ation of classes and objects. In order to gain a good understanding of the classes and objects identified
during analysis this discussion compares the meaning given (o the terms class and object, the means of
identification of classes and objects, the notation used and the behaviour required of objects.
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. Meaning of the terms

The Coad and Yourdon view of objects is that they encapsulate attribute values and exclusive ser-
vices. Objects represent an abstraction of something in the problem space, reflecting the ability
and requirement of the system (o store information about it and/or interact with it. The Respons-
ibility Driven Approach defines objects as specifying the roles and responsibilities of each object.
The responsibilities can involve the requirement to store knowledge, that is data, or behaviour,
In the Object Modelling Technique, objects are viewed as combining data and behaviour. Thus
all the methods view objects as combining data and processing.

Classes in all the methods describe groups of objects with the same attributes and behaviour and
also describe how to create new objects of the class. The classes do not involve any notion of
defining a set of objects or operations on the group of objects produced. Collection classes, such
as ‘sets of customers’, are not usually identified during analysis.

. Identification

The Coad and Yourdon strategy identifics the initial classes and objects by studying the problem
domain—the problem statement and any other information which can be found which is relevant
to the problem domain. The guidelines for this process suggest looking for: things and events
remembered, other systems, devices or Llerminators the system will react with, structures, roles
played, operational procedures. The objects should: require remembrance, provide services re-
quired by the system, have more than one attribute, not be purely derived data. The attributes
of classes are simple values. The classes and objects required in the models showing the user
interface, lask management and the data management component of the system are identified by
treating each aspect of the system as the problem domain.

In the RDA approach, the classes are found by examining the requirements specification docu-
ment and making a list of all the nouns and noun phrases, taking care that the phrasing of the doc-
ument does not disguise nouns as verbs. The list is reduced by removing duplicates and altern-
ative names for the same things and obvious nonsense, The remaining nouns and noun phrases
are then examined (o make sure that they fall into one of the following categories.

e physical objects such as a display screen,
e conceplual entities such as a PIN on a card,
e exlernal interfaces such as the user interface,

e values of atiributes such as float or real for the value of an attribute length.

The candidate classes are then examined for groups with common attributes. These are used to
define preliminary inheritance hierarchics. The final list is then transferred on o cards or other
storage medium, Each card contains the name of one class and a sentence describing the purpose
of that class.

The OMT method identifies and selects classes from the problem statement in a similar fashion
to the RDA but suggests the use of knowledge of the application domain to aid the process. The
names and descriptions of the classes are entered in a data dictionary instead of on cards. The
attributes of classes are simple values not objects.

All the methods identify classes which are functional in nature and provide the processing re-
quired by the system. The books describing both the OMT method and the RDA use an automatic
teller machine as an example system. They idenlify transaction as a class. This class controls the
accesses Lo account objects. The objects of this class, in the RDA, do not require storage. A new
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instance of transaction is created when required. The objects are transient objects representing
the invocation of a function. They can also be called functional objects. The Coad and Yourdon
approach identifies this type of class during the analysis of the task management component.
This suggests that objects must have data associated with them but do not necessarily require
storage.

. Behaviour

The Coad and Yourdon strategy and the OMT method both use state diagrams to help identify
the required behaviour. The information gained is noted directly on the model of the relevant
object in the Coad and Yourdon method but is noted on the dynamic model in OMT and has to
be combined with the object model at a later stage.

In the RDA method, the behaviour is defined by the object’s responsibilities which encompass
both the knowledge maintained by an object and the functions it can perform. The requirements
specification is the starting point for the identification of responsibilities. This time, verbs and
verb phrases are extracted. The purpose recorded for each class is also useful. The relationships
between classes are also used to help identify responsibilities. These responsibilities are then
allocated to classes. The following guidelines are given.

e Stale the responsibilities as generally as possible.
¢ Distribute the intelligence evenly,

e Put all the information about one thing in one place.

Keep the behaviour with the related information.

Share responsibilities among related classes.

The attributes of a class are not modelled directly. Only the type of the attribute is considered
to be important, for example whether the attribute is an integer or string. The attributes required
by a class can be added as a responsibility for the class to know something, for example

Class: Account

Responsibility : Know the account balance.

. Notation

Figure 3.2 shows the notation used to model the classes and objects in the system. It can be
seen that the notation used by the three methods is different which reduces the possibility of
developers understanding the models produced by the different approaches.

This discussion shows some arcas of commonality and difference between the methods concerning
the identification of classes and objects. The classes and objects identified by the different methods all
represent groups of objects with the same types of attributes and the same behaviour. The classes rep-
resent both structures present in the physical system and the functions to be performed by the system.
The main differences are the techniques used to identify the classes and the notation used in the models.

Relationships between classes and objects identified and modelled

This section discusses the second stage of the analysis process—that is the identification of relation-
ships between objects and between classes. These relationships are used (o define many aspects of
the objects, such as the structure of objects, the static connections between objects and the processing
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Figure 3.2: Class and object notation
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dependencies which are needed to provide the system behaviour. Different types of relationship are
identified and modelled by the different methods. Both the OMT method and the RDA method sug-
gest identifying relationships by examining the verbs on the problem statement. Coad and Yourdon
give little help with identifying relationships other than defining the different possibilitics. The rela-
tionships between objects and between classes are discussed under the headings:

e structural relationships,
e non structural static connections,

e processing dependencies.

1. Structural relationships

There are two types of structural relationship. One type is where one class is a specialised type
of one or more other classes. This is sometimes known as the is-a or the inheritance relationship.
It is modelled in all three methods. The other type of relationship is where one object is com-
posed ol objects [rom other classes, an is-part-of relationship. These are slatic relationships and
both are therefore noted on the object model in the OMT method. In the responsibility driven
approach, the inheritance relationship is shown on the hierarchy graphs and the is-part-of rela-
tionship on the collaborations graph. Both types of structural relationship can be found on any
of the Coad and Yourdon models,

o The inherilance relationship.

This relationship is identified in the same way by all three methods. However, different
terminology is used. Coad and Yourdon use the term Generalization-Specialization (Gen-
Spec). The RDA uses the term superclass-subclass relationship. The OMT method uses
the term generalisation,

Inheritance is used where an is-a or an is-a-kind-of relationship exists between objects. For
example, a car is a special type of vehicle. All methods recommend that the base class only
conlains data and operations required by all its subclasses. The structures produced can
be either hierarchical, involving inheritance from a single class, or lattice like, involving
inheritance from more than one class. All the methods suggest that where classes fulfill
the same responsibility, such as display, a common abstract superclass is introduced from
which the classes inherit the responsibility. This results in increased multiple inheritance.
The three methods use different notation to model the relationships. This is shown in Fig-
ure 3.3. The OMT and Coad and Yourdon notations are similar in that the class hierarchies
are shown as levels of specialisation. These levels could be taken (o indicate more com-
patibility between classes on the same level than is intended. The RDA notation shows no
connection between subclasses excepl that they have the same superclass. The OMT nota-
tion makes no distinction between abstract classes which have no direct instances, such as
the display responsibility mentioned above, and concrete classes which do have direct in-
stances. The distinction must be made by adding the word {abstract} after an operation
name. Figure 3.3 shows that the other two methods make the distinction.

o The is-part-of relationship.

All three methods identify this type of relationship. Wirfs-Brock identifies two types of
whole-partrelationship. One of these is a composite class in which all the classes involved
collaborate to provide the required functions. The other form of whole-part relationship is
between a container and its contents. In this type of relationship there is usually very little,

22




|
|

Generalization

Generalization abstract class
( 0o objects shown)
Specilization ) Specialization )
(Specialization )
|

|

1) Coad and Yourdon notation

atstract concrete.
class | class |
abstrast concrete concrele
class | class 2 class 3
i) RDA notation

Operations may be listed

/ as abstracl Superclass
&

Objects may belong to more than one subclass
Objects belong Lo one subclass only

] il

Subclass- Sutlass-2 Subclass-] Subclass-2

iif) OMT notation

Figure 3.3: Inheritance notation

23




N
Whole class name 1 Assembly
Class

lN fL N
2., »
Lazl Part2 Part 1 Part2
=
/ A

class name 2

(i) Coad and Yourdon (i) RDA (iii) OMT

Figure 3.4: Is-part-of notation

if any, collaboration between the whole and its parts. Both types of whole-part relationship
are modelled as a collaboration between the objects involved. The notation includes the
number of the contract, group of services, which is used by the object.

Coad and Yourdon call objects involved in this relationship a Whole-Part structure. It is
used Lo denote a contlainer and its contents, a collection and its members or a class formed
from many parts.

The OMT method identifies the is-part-of relationship as one type of association between
objects (the other type of association is discussed in the next section). This type of asso-
ciation represents a physical connection between the object instances. Distinct notation is
used to signify this type of association on the object model.

The notation used by each method is shown in figure 3.4. It can be seen from figures 3.3
and 3.4 that the OMT notation for the is-a relationship and the Coad and Yourdon notation
for the is-part-of relationship are very similar,

2. Non-structural static relationships

Non-structural static relationships can involve objects from one or more classes. This type of
relationship is modelled by Coad and Yourdon as instance connections. These are lines which
show which classes participate in a relationship and the number of objects of each class involved.

The OMT method identifies non structural static connections as a second form of association.
These associations represent a conceptual connection between objects. They are modelled as
lines between the classes involved in the association. The lines are labelled to indicate the name
of the association. The line representing the association describes a group of connections between
specific objects. These associations are said 1o model a concept which is meaningful when read
in either direction. Examination of the models in the OMT text suggests that this type of rela-
Llionship is very common,

The multiplicity of the relationship is also noted. Link attributes are also identified. These rep-
resenta property of the association. For instance an association between a person and a company
might have the properties job title and salary.

Qualifiers can also be added to associations. These are attributes, the value of which usually iden-
tifies uniquely a particular instance of a class. For example, the value of the bank code attribute
might uniquely identify a bank compuler,

The RDA method models all relationships of this type as collaborations.

An example of the notation used by each method is shown in figure 3.5. It can be seen that the
OMT notation contains more information than the other notations.
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Figure 3.5: Static association notation

These non-structural relationships are clearly different from structural relationships because they
do not model inherent properties. Non-structural relationships are formed between specific in-
stances of the class. This is evident from the name instance connection used by the Coad and
Yourdon method and the description of these connections as conceptual connections between
object instances in the OMT method.

3. Processing dependencies

These relationships are used Lo show how the objects interact to provide the required system
behaviour., They are dynamic links between objects. The RDA approach identifies these rela-
tionships as collaborations. Coad and Yourdon use message connections to indicale processing
dependencies between objects. These are shown on each model of the system. The system re-
quirements are defined by identifying user task scenarios. In OMT the required system beha-
viour is modelled on the dynamic and functional model. Scenarios are used to identify external
events. The information in these models has to be combined with the object models to produce
the process specifications.

The notation used to model processing dependencies is shown in figure 3.6. It can be seen that
there is little correlation between the models produced by the different methods.

This section has shown that the methods identify different relationships between classes. The RDA
method identifies many different relationships but models only two. These are collaborations and the
inheritance relationship. The other two methods identify and model four different relationships. These
relationships are the inheritance relationship, is-part-of, non-structural static relationships and processing
dependencies. The three methods use different notations to represent the relationships.

3.2.4 Subsystems

This section discusses the final stage of the analysis process defined earlier. The final stage is the iden-
tification of subsystems. Subsystems are considered here 1o be units into which the system can be di-
vided. They are identified for two purposes. They can aid understanding of the system and allow parts
of the system to be developed separately. They are conceptual entities introduced to make the system
casier Lo understand,

Coad and Yourdon divide the system into four components. These are the problem domain, human
interaction, task management and data storage components, The task management and data storage
components represent functional groupings. They also divide cach component into subjects. The four
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components represent different aspects of the functionality required by the system. The subjects rep-
resent classes grouped together by structural criteria. The classes at the top of Whole-Part structures
become subjects containing the rest of the classes. Further simplification can be obtained by grouping
subjects into subdomains of the problem domain,

The RDA approach defines a subsystem as a group of classes which work together to fulfill a set
of closely related responsibilities, for example, a printing subsystem. These closely related responsib-
ilities provide a small interface Lo the subsystem. The subsystems are identified and named after the
classes and their collaborations have been identified. However, if the system is large, subsystems may
be identified and named before classes are identified,

OMT suggests dividing the object model into modules. Modules are groups of classes and the re-
lationships between them. The groups should represent a logical subset of classes, thereby producing a
small interface to the module. OMT identifics subsystems after the three models have been produced.
A subsystem in OMT is a group of classes which combine (o perform a group of related services or
functions. A subsystem should have a clearly defined interface with the other classes and subsystems
involved in the application. Subsystems are used as a way of dividing the system (o allow parts to be
developed separately.

All the methods divide the required system into smaller units called subsystems. Subsystems in the
RDA method are delined by functional criteria but in the Coad and Yourdon and OMT methods both
structural and functional criteria are used.

3.3 Information modelled during analysis

This section discusses the types of information which are identified and modelled during analysis. The
types of information define the starting point for the design process. The types of information are iden-
tiied by discussing both the information given in the previous section and results from personal and
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collaborative research into the use of the methods. The personal experience was gained by using the
Coad and Yourdon and RDA methods Lo develop a kitchen garden planning system. This work is re-
ported in [39] and [40]. The collaborative research involved the development of three systems using
OMT [41, 42, 43]. Finally this section specifies the relationships as they are defined for this thesis.

All the methods begin with a problem delinition of the required system. They all identify classes as
groups of objects with the same attributes and behaviour. The methods used for identifying objects are
different but all result in the identification of both structural and functional objects. All the methods
grouped the objects inlo subsysiems as a means of dividing the system into manageable components.
This suggests that classes defining groups of objects which combine data and operations are not a suf-
ficiently powerful means of managing the complexity of a system.

During the analysis process, some difficulties were encountered in distinguishing whether a particu-
lar objectrequired a new subclass to be defined or whether it was just an instance of the class. Examples
of this occurred whilst using of the OMT method. The developers of all three systems identified inher-
itance relationships in their initial analysis models. Subsequently some of the inheritance relationships
were changed. In some cases an attribute called type was introduced to the base class and in other cases
variantrecords were used. For example, the development of a kitchen garden planner [41] required the
user 1o be able o add various types of crop to a data store. Some of these types of crop required sowin g
in a seed bed or greenhouse and then transplanting into the garden. These types were originally iden-
tificd as subclasses of a class Crop. However, they were subsequently changed to be one class, Crop,
with a variant field o contain the extra information required by some crops. The result was that a type
parameter was required by the procedure which created the new crop objects and ‘CASE’ statements
were needed (o chose the correct code. This reduced the extensibility of the system and required all
types of crops (o be known when the system was written. The book describing the OMT method [28,
page164] which the students were using as a guide also includes a type identifier in the Account class
rather than using subclasses for each type. Possibly, this lead to the problems.

Other difficulties were also encountered. The use of the Coad and Yourdon approach [39] led to the
development of a model in which the required processing was distributed throughout the classes. The
distribution of processing caused the problem domain model to look complex with all the classes bein g
tightly coupled. This tight coupling might have been caused by including the reporting and processing
requirements as part of the problem domain component rather than as the task management compon-
ent. The classes developed afler following this approach had limited reuse potential because they were
tightly coupled.

The Coad and Yourdon method suggests examining the whole of the problem domain rather than
restricting the scope of the development (o the required system. It is suggested by Aksit and Bergmans
[44] that such methods can result in the identification of an excessive number of classes making devel-
opment difficult. This was not found o be the case when following the Coad and Yourdon method for
the system chosen [39]. This was, however, a relatively small application domain. Development of the
same system using the RDA method [40], which examines the whole of the required system including
user interface and storage requirements, did result in an overwhelming number of classes. This sug-
gests that the system should have been divided into subsystems before development began. Suilable
subsystems might be stored data, user interaction, external devices and the required output. However,
Aksit and Bergmans [44] suggest that dividing the required system into subsystems before develop-
ment might not result in the optimal choice of subsystem boundaries. The control of the amount of
information to be understood when analysing a system appears to be a difficult problem,

ILis clear from the section 3.2,3 that there is a variation in the number and types of relationships
identified and modelled by cach of the analysis methods. The responsibility driven approach identifies

27




many differentrelationships but models them in terms of the inheritance and client-server relationships.
This converts many different relationships into two relationships. The information portrayed by the
different relationships has therefore been lost and cannot be traced from the requirements definition
into the implementation.

The different methods identify different relationships between objects and adopt different names
for the relationships when they do correspond. In order to allow discussion of concepts it is necessary
to define the meaning of the relationships used in this thesis. The following list provides this definition.
The list includes relationships not identificd by the above methods but which appear o be important.

e iS_a

An object is a special kind of something clse. An extension of a class is defined to give special-
isation. This is modelled by all methods as the inheritance relationship.

e consists of

The relationship defines the structure of a complex class, such as:

1. a house consists of one or many rooms,

2. acar consists of wheels, engine, seats elc..

The objects defined by these classes are composed of other objects. The addition of extra rela-
tionships of this type changes the structure of the objects produced. For example, the addition
of a sun-roof to a car changes the structure of the car,

This relationship is modelled by Coad and Yourdon as a Whole-Part structure, by the RDA as a
collaboration and by OMT as a special type of association.

e contains

An object contains other objects. Examples of such objects include lists and arrays which are
usually identified during design and implementation, They might be used (o hold the contents of
structures such as a car boot, or the furniture in a room. There is little if any interaction between
the container and the contents. An emply container is a realistic notion.

This relationship is modelled by Coad and Yourdon as a Whole-Part structure, by the RDA as a
collaboration and by OMT as an association.

® uses

This represents a functional or processing dependency. An object requires access to another ob-
ject to request information to be supplied or Lo request processing (o be carried out. For example,
a report object might require access (o0 many objects to produce the required information. The
state of the server object is not changed by the request.

This relationship is modelled by Coad and Yourdon as a message connection, by the RDA as a
collaboration and by OMT as a flow of data from a data store on the functional model.

|
|
]
?
!
|
1

: e conceptual association

This represents a logical relationship between objects which has significance over a period of
time. For example, the relationship ‘a person owns a car’ is a conceptual association. The actual
structure of the person and the car are not changed by the addition of the conceptual association.
This type of relationship is relevant because of the application not by the nature of the objects
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involved. This contrasts with a relationship, such as ‘a car has wheels’, which is a structural
relationship and should identified as a ‘consists of* relationship.

The actual instances involved in this association are significant. For example, assuming the re-
lationship ‘a person owns a bank account’, it is important that a person withdraws money from
an account of their own. This type of relationship occurs between specific instances of objects
rather than between classes of object.

These relationships are shown as instance connections by Coad and Yourdon, as collaborations
by RDA and as associations by OMT. It appears [rom the example models in the texts describing
the methods that many of the relationships come into this category.

temporary association

These are also logical relationships between objects. They differ from the above in that the actual
instances involved are not significant over time, for example, in a petrol filling station the actual
instances of a car receiving petrol and the pump involved cease 10 be important after the petrol
has been delivered (o the car lank. These relationships are shown as message connections by
Coad and Yourdon, collaborations by the RDA method and on the functional model by the OMT
method.

instantiates

This relationship is required when one class is responsible for creating an instance of another
class. For example, a class will be responsible for starting a transaction in a system used to con-
trol an automatic teller machine [10]. The class responsible for the instantiation might be a func-
tional class rather than a class requiring storage of data. This relationship is not identified by any
of the methods but has a different meaning from any of the other relationships.

dependency

This relationship is required when several objects cooperate to maintain a value or to perform a
process. For example, a minimum balance in an account (A) could be maintained by transferring
funds from another account (B). This method would be invoked on the basis of the balance in
account A and cause a change in the value of the attribute balance in account B. This relationship
is not identified by any of the methods but B. Helm et al. [45] recognise the importance of this
type of relationship and have worked on the problems associated wilh its specification.

This relationship is not modelled by any of the methods.

property of

Properties are single valued attributes, such as colour or length which do not have operations
defined on them. The definitions of classes and objects, section 3.2.2, require both data and oper-
ations (o be present. Properties do not have operations associated with them so this relationship
is not considered Lo be a relationship between objects or between classes. The three methods
model properties as attributes of classes.

This section has highlighted some similarities and differences between the three analysis methods
reviewed in the first phase of the investigation into traceability of information. For example, they all
model the required system as a group of interacting classes. The classes identified by all the methods
represent groups of similar objects. The methods also identified a variety of relationships between the
classes and between the objects defined by the classes. A major difference between the methods is
the way interactions between classes of objects are recorded. It was shown that the RDA approach
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models all relationships as either collaborations or inheritance relationships, The Coad and Yourdon
approach models relationships as instance connection, message connections, is-part-of or inheritance
structures. The OMT method models associations, is-part-of and inheritance structures on the object
model and processing dependencies on the functional and dynamic models. It has also been shown
that the three methods do not model all the possible relationships between classes and objects. The
information modelled consists of the definition of classes of objects involved in the system, various
types of relationships between these classes and the objects they represent, and the grouping of these
classes into subsystems. Such types of information form the input to the design phase.

3.4 Object oriented languages

This section presents the information gathered during the second phase of the investigation into the
traceability of information during system development. This second phasc involved identifying the
features available in the chosen implementation medium. Such information about the implementation
medium is required before the design process can begin because, as stated in section 3.1, one of the
{unctions of design is o map the analysis results onto implementation constructs. The development
process under consideration involves implementation using an object oriented programming language.
The characteristic features of four such languages are examined in order (0 identify arcas of common-
ality and difference between them. Four procedural, class based object oriented languages have been
selected for this investigation. They are Eiffel v2.3 [2], C++ [33, 34], Oberon-2 [35, 36] and Modula-3
[37]. Itshould be remembered that this chapter is investigating traceability of information in the context
of improving the reusability of software so language features which affect other aspects of reusability
of software are taken into account.

The essential features of object oriented languages are identified in section 3.4.1 together with other
language features considered essential for producing reusable code. The following sections discuss
the provision of the features identified. Section 3.4.2 discusses different aspects of the way in which
encapsulation is provided. Section 3.4.3 describes the implementation of inheritance and some of the
associated problems. Section 3.4.4 discusses polymorphism and dynamic binding and the implications
of their use. The data types which form part of the languages are discussed in section 3.4.5. The in-
formation in this section includes the work reported in [46). The types of constructs which are available
for representing different types ol information are discussed in section 3.5.

3.4.1 Key features of the languages

A commonly quoted definition of object oriented programming languages is given by Wegner [47].
The features required are:

e cncapsulation based upon objects which belong (o a class,
e inheritance—a means of deriving new classes, subclasses, by extending existing ones.

Objects, as delined by Atkinson [48], are entities which have a unique identifier and combine data
and operations. The operations [orm part of the object.

Classes can be considered to be implementations of abstract data types [2, 48, 49]. The operations
defined by the abstract data type form the interface of the class. A class may also require services from
other classes so is more than a simple abstract data type. A class which provides services is called a
server class. A class using the services provided by another class is called a client. The relationship
between a client class and a server class is known as the client-server relationship. Classes are used
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| Language | existing class new class

Eiffel ancestor descendant

C++ base derived

Oberon-2 | base type extended type
Modula-3 | supertype or ancestor | subtype or descendant

Table 3.1: Inheritance terminology

as templates [rom which a set of structurally equivalent objects are produced. Classes therefore define
objects which are involved in client-server relationships.

The languages use different terminology when referring to classes and objects. In C++ and Eiffel,
the term class is used to mean the language construct used (o define abstract data types. The Oberon-2
term for a class is either a record type with procedure variables or type-bound procedures, or a pointer
type bound 1o such a record type. The rationale for using the term ‘record’ is that programmers can
readily understand the concept [50]. Modula-3 uses the term object type for a class. Opaque object
types provide the required encapsulation. Future references to Modula-3 objects refer to those gener-
ated from opaque object types. All the languages use the term object o mean an instance of a ‘class’.
The terms class and object are used in the subsequent discussion.

The only form of encapsulation required by object oriented languages is based upon classes and
objects. Eiffel is a pure object oriented language and provides encapsulation based upon classes and
objects only. The file is the unit of encapsulation. This means that there must be one class per file
and one file per class. The other languages, C++, Oberon-2 and Modula-3, are developed from non
object oriented procedural languages by the addition of object oriented features. C++ developed as a
superset of C. Both Oberon-2 and Modula-3 are developed from Modula-2. As a consequence of their
development, these languages allow encapsulation to be based on the file structure of the underlying
operating system. This means that in all these languages it is possible to declare more than one class
in a file and also to declare functions or procedures which do not form partof a class.

Inheritance provides a means to build new classes as extensions of existing ones. Table 3.4.1 shows
the ‘lerminology used by the different languages. The Eiffel terminology is used in the following dis-
cussion,

As well as providing the above [catures, the chosen languages provide static type checking. This
feature helps to ensure that systems cannot fail due to a run time type error thus adding to the reliabil-
ity of systems. Static type checking is considered essential in the context of reusable software because
only reliable software can be safely reused. The prevention of type errors at run-time improves reliab-
ility. The system can also execute more efficiently because there is no overhead due (o dynamic type
checking. These two features were identified in chapter 2 as important in the production of reusable
software components,

There are other similarities between the type conformance and Lype checking systems of Oberon-2,
Eiffel, Modula-3 and C++. These include:

e type conformance based on the inheritance hierarchy.
In simple terms this means that a derived class conforms to its base class. For example, assuming
that class Customer is derived from class Person, class Customer conforms to Person.,

e Lype conformance governs assignment compatibility.

For example, objects of class Customer can be assigned (o objects of class Person. An object of
class Customer can be used wherever an object of class Person is expected. The extra features
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defined by class Customer cannol be accessed via the object of class Person. Modula-3 also
allows assignment to be made where the assignment may be legal dynamically. For example, the
compiler allows a person object (o be statically assigned (o a customer object if the Customer
class is derived from the Person class. Dynamic checks are performed (o ensure the correct type
is assigned.

¢ type checking as a purely syntactic mechanism.

There is no automatic semantic checking so it is possible to redefine a procedure (o perform a
totally different function using the same parameler types. However, Eiffel does allow the pro-
grammer (o force some semantic checking. The keyword ensure can be used to implement
post conditions. The use of post conditions prevents an add feature being redefined to multiply
for instance. For example, an Account class might be declared with a feature addFunds as shown
below.

Class ACCOUNT

feature
addFunds (f : MONEY)
ensure balance = oldbalance + f;
end;

The addFunds feature cannot be refined by a descendant class to multiply the amounts instead
of adding the value £ 10 the balance.

The use of inheritance combined with the assignment rules above results in the possibility that each
object can belong o more than one class. In general, the class of an object defines its type so the ability
to belong 1o more than one class gives rise Lo the possibility that each instance variable can have more
than one type. It will belong to its own type and the type of all of its base classes. Instance variables
are said o be polymorphic. Each subclass can also provide its own implementation of an operation.
For example, a Person class may define a print method which is overridden by a descendant class,
Customer. It is possible that an object of type Person may have an object ol class Customer assigned
0 it. The dynamic type of the variable is not the same as its static type. The result is that the required
code may not be known until the prins call is exccuted and the actual type of the calling object is known.
This requires dynamic binding of code. Dynamic binding and polymorphism arc both key conceplts of
object oriented programming,

There are three key features in object oriented languages. These are encapsulation based upon
classes and objects, inheritance and polymorphism allied with dynamic binding. A further important
feature of the languages is the types of dala structures which are provided because the data structures
available affect the information that can be represented. The rest of this section describes the provision
of the key features of object oriented languages and the data types provided by the languages.

3.4.2  Encapsulation based upon classes and objects

Encapsulation is the grouping of related information into one place. As Rumbaugh states [28], in object
oricnted languages, encapsulation is used (o mean both the grouping of data with the operations that
can be applied Lo the data and the use of information hiding to control access (o the features. Classes
are the templates from which objects are produced and are used to provide cncapsulation in object-
oriented software production. The class is also the basic unit from which object oriented systems are
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constructed. The features of a class which can be accessed by other objects form the interface (o that
class.

The languages differ in the way the parts of an object are named. Oberon-2 refers (o the fields
and procedures of an object. C++ uses the term member (o cover all parts of the object. Modula-3
refers Lo the data and methods of an object. Eiffel refers 1o all parts of a class as [catures. The features
can be either attributes or routines. The attributes of a class become the ficlds of objects. The Eiffel
terminology is used for the following discussion which covers four aspects of encapsulation. These are
the declaration of classes, the interfaces provided by classes, the mechanisms for providing routines and
the mechanisms used to declare and access objects.

o Class declaration

In the Eiffel language, one class is declared in one file but the other languages allow more than
one class (0 be declared in one file. In C++ and Oberon, one class must be implemented in one
file but Modula-3 also allows the implementation of one class to be spread over several files.

Eiffel and Oberon-2 classes must be declared with the interface and implementation in one file.
The use of one file is said 1o be quicker for the programmer and easier for the compiler which does
not have to check consistency between the interface definition and the implementation modules.
Another effect of using one file for both interface and implementation is that the interface can be
altered simply by changing the export status of features. This does not encourage the completion
of the design of a system before implementation begins. The interface of a module is bound to
the implementation which makes it more difficult to change the data structures used to store the
objects. Both languages provide tools Lo extract the interface from the implementation.

The C++ language allows a programmer o declare the interface in a separate file from the imple-
mentation of the class. The interface can be declared in a header file which must contain details
of the data structure. It is also possible to declare the interface and implementation in one file.

Modula-3 classes, opaque object types, require separale interface and implementation files to be
used. The interface file contains the declaration of the public features of the class and declares the
class from which it is derived, if applicable. The implementation module defines the features of
the class which are not exported and also defines procedures which are assigned to the methods
of the class. The separation of interface and implementation allows several implementations of
the same interface (o be available. The required implementation is linked to the system when the
execulable code is produced.

e Class interfaces

The parts of a class which are exported form the interface to that class. All the languages under
consideration apply the same general rule (o govern the export of features. They declare that all
parts of the class will be hidden, or private, unless declared specifically as exported. This rule
adds (o the security of code. (Eiffel v3.0 has changed this rule. The default, in Eiffel v3.0, is that
features are available to all classes unless access is explicitly restricted [51]. Future references
t Eiffel refer 1o v2.3.) The details of the export policy in each language are different. It must be
remembered that encapsulation is provided by declaring an interface which defines that inform-
ation which is available 10 client classes and hides other information as well as implementation
details. Access to features which do not form the interface of a class breaks this encapsulation,
The class is no longer a black box and fails to provide information hiding which is one of the
factors identified as important in permitting reuse of software, see section 2.2.1,
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The Oberon-2 policy is the simplest. A class has only one interface. All users of a class are
treated equally. There is no special arrangement for a class inheriting from another class. This
means that it is impossible for a derived class to break the encapsulation of its parent class. Two
grades of export can be specified by the programmer. These are read-only export and read/write
export.

Modula-3 allows one class (o have several public interfaces by permilting several public super-
types of the same class to be declared. However, it is not possible to restrict the use of an interface
to any group of classes. A subclass can access any of the features of its base class, thus there is
no information hiding between base class and subclasses.

C++ and Eiffel allow classes Lo provide different interfaces to different classes. These interfaces
are created by using a number of facilities,

1. General access by any class
Client classes are allowed access 10 any features labelled as public in C++, or listed as ex-
ported in Eiffel. Eiffel features which are listed as exported can be accessed by classes
which are derived from class ANY. All Eiffel classes are descended from class ANY so
gain access Lo those features exported. Eiffel automatically enforces that exported attrib-
utes are read only and routines are executable.

2. Access by some classes only

In C++, classes or functions can be declared as friends of the class being defined. These
friend classes or functions can access any feature of the C++ class whether public, protected
or private (hidden). Descendants of the class declaring the friendship do not inherit the
friends. Friends must be declared at every level in the inheritance hierarchy.

Friends are usually used either (o allow list manager type classes (o access the parts of the
list elements or (o output user defined classes. An alternative way to output user defined
classes is to declare global functions which overload the input and output operators. The
[riend relationship can be used to form a tight group of objects to simulate a complex type
in the application domain. Another use for the friend mechanism is to increase the per-
formance of the system [52]. This is not a good use because all the classes benefiting from
access Lo the function or type will not be known in advance.

Eiffel allows a programmer (o restrict access 1o exported features. Individual class features
can be exported (o another class or group of classes and their descendants, Any feature
from the named class can access the individual feature. This is known as selective export.
Inheritance can be used to change the export status of the features and thus allows more
classes to be added Lo the specified list.
Both these mechanisms are restricted (o use when the class is being developed. Unanti-
cipated friends cannot be added except by either re-opening the class or using inheritance,
Re-opening a class is possible only if the source code is supplied and may affect existing
clients if the re-opened class has been used as a server in an existing system,

3. Descendant access
In Eiffel descendant classes gain access Lo all features of the parent class. Class invariants
arc inherited 1o help prevent the misuse of inheritance by breaking the encapsulation. C++
provides greater control over access Lo features descendant classes. Descendant classes can
access the public or protected fields of a class but not the private fields.
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o Implementation of routines

Routines are the means provided for accessing the state of an object or asking the object to per-
forma computation. Eiffel, Modula-3 and C++ provide one mechanism for implementing routines.
These are the routines that are part of the class implementation.

Eiffel and C++ routines are declared in the class implementation which declares the signature
of the routine, that is, the paramelers, their types and return type, if any. C++ roulines may be
declaredas virtual. Thisis required o allow the redefinition of fealures in descendant classes
and will be explained in the next section,

Modula-3 routines arc declared as methods in the class interface. The method declaration defines
the parameters required by the method. These methods are implemented by procedures defined
in the implementation module. A procedure is assigned to each method. The signature of the
procedure implementing the method differs from the signature of the method, The procedure
has an extra parameter which is an instance of the type itself or one of its ancestor types. This
extra parameter must be the first one in the list of paramelters. The other parameters must be the
same types as those in the method delinition.

Oberon-2 provides three different mechanisms. The mechanisms are type-bound procedures,
procedure types and message records. Type-bound procedures are very similar to the routines
in Eiffel and C++. Procedure types provide similar functionality to type-bound procedures but
are more complex 1o implement [53]. Message records are not type checked as fully as the other
means of implementing routines because the compiler cannot check that a particular message is
understood by an object. The lack of static type checking means that message records cannot
be shown (0 produce reliable, reusable software so are not considered 1o be a viable means of
implementing the basic routines provided by an object. Future references to Oberon-2 routines
refer to type-bound procedures.

All the languages therefore provide mechanisms for fully type checked routines to be imple-
mented. A routine may require extra information such as the amount of money (o be added to
an account. This information is passed in the form of parameters to the routine.

o Declaration and access of objects
In order 10 be able 1o declare an instance of an object, the declaring class must become a client
of the class, the server class, which defines the required object. In Eiffel, this involves the de-
claration of a variable of the required type and the inclusion of the directory containin g the class
in the system universe, In both Oberon-2 and Modula-3, the module which declares the class
must be imported into the client module. An object of the required class can then be declared
by qualifying the module name with the class name, for example, p: Person. person where
Person is the module name and  person is the class name. A C++ file can become a client of
a class by including the file which declares the class in its header.
In Modula-3, objects can only be declared as pointers to the structure not the structure itself, It
is possible in the other three languages (o provide objects as either pointers or actual instances of
the class. In all of the languages, objects declared as pointers have the value NIL or VOID until
an actual object is assigned Lo it. This can be done either by assigning an existing object Lo the
pointer or calling the function Lo create anew object. Objects declared as actual instances become
part of the class in which they are declared, This means that they are not separate structures and
so cannot be part of another object. Figure 3.7 shows the difference between the two forms of
object. The mechanisms for providing the different forms of objects vary.
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Figure 3.7: Pointers and expanded objects

InEiffel, either the class definition or the client module controls which type of object is produced.
The default behaviour is that the declaration of an instance results in the allocation of a pointer.
In order 10 assign an actual instance to the pointer, a Create procedure must be invoked. If an
actual instance of a class is required, the client module can declare the instance as  expanded.
For example, an actual instance of type Person could be declaredas p : expanded Person;
Alternatively the class declaration could begin with the keyword expanded, in which case all
instances of the class will automatically be actual objects and not pointers.

In the C++ language, it is the client module which controls the production of objects. The pro-
grammer can declare either an instance or a pointer (0 an instance of a class.

In Oberon-2, a class can be declared either as a record with attached procedures or as a pointer to
a record structure with attached procedures. The programmer declares instances as appropriate.

The features of objects are accessed by dereferencing the object. In C++, a —, for example
object—feature, is used to dereference a pointer variable and the dot operator, for example
object.feature, is used [or dereferencing an actual object. The other languages all use the
dot operator to access features,

In all the languages, it is reccommended that objects should be declared as pointers not actual
instances of the class. There are two main reasons for this:

1. Notall the objects required in a system have 1o be declared statically. They can be created
dynamically during system exccution. The number of each type of object which will be
created during the life of the system is not known at compile lime making it impossible for
the compiler to allocate the required amount of space in memory. Therefore objects, or in-
stance variables, are usually declared as pointers or references, as these have a known size,
rather than the structures themselves, Space can then be allocated dynamically as required.

2. The effect of carrying out an assignment depends on whether the variables being assigned
are actlual instances or pointers [53].
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Figure 3.9: Assignment of Pointers

When the structures involved in the assignment, are actual instances, the values of the fields
are copied as shown in Figure 3.8.
The variable ¢ is an instance of class Customer so contains one more field than p which is
an instance of class Person. The extra field cannot be copied and so is ‘lost’ in the assign-
ment to p. The original variable, ¢, still conlains the value, .
Pointer variables conlain the address of the actual structure. It is the address value that is
changed by the assignment statement. If the assignment p : = c refers (o pointer types,
any extra {ields are not lost.
This is shown in figure 3.9. The extra fields are notaccessible via the base variable because
the language has static Llype checking. The variable p is declared 1o be of type Person. This
means that its static type is Person. Consider the following statement sequence:

VAR

p : Person;
c : Customer;

n : REAL;
BEGIN
p i=c (¥a valid assignmentx)

n := p.overdraftCeiling; (* invalid - type Person does not
contain this fieldx)
END.

The sequence is invalid because p has a static type Person so, during compilation, it does
not have a field called overdraftCeiling. The assignment stalement p := c results in
p pointing to a variable of type Customer giving p the dynamic type Customer. There-
fore, at run time, the variable p has the extra field of its extended type. However, all the
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languages provide mechanisms to access these fields. These mechanisms are discussed in
section 3.4.4,

Eiffel, Oberon-2 and C++ objects can only be produced as direct instances of the classes in the
system. The result is all objects created from a class have the same structure and behaviour.
Modula-3 allows different objects created from one class declaration to have different behaviour.
This is possible because of the way classes are implemented. It was stated earlier that the im-
plementation module assigns procedures 1o the method fields of a class. When an instance of
a class is created, it is possible to assign different procedures Lo the method fields and change
the behaviour of the object. The object is not considered to be an instance of the class of which
it is declared. The object is not the same Lype as other objects crealed from the original class
declaration, Itis said to be an anonymous subtype of the original type.

This description of the encapsulation provided by the languages has shown that there are some areas
ol commonality and some where there are significant differences. The similaritics are that the class con-
structs define both the structure and behaviour of the objects generated from them. All the languages
provide information hiding and allow access to the object only via features declared in the interface.
There are differences in the way the classes are declared. Oberon-2 and Eiffel classes are declared and
implemented in one file. C++ classes can have separate definition and implementation files. Modula-3
must have separate definition and implementation files. Another difference is in the number of inter-
faces 10 a class. Oberon-2 classes have only one interface. Modula-3 classes can have more than one
interface which are available 1o all classes. Eiffel and C++ allow a class to present different interfaces
to different classes, A further significant difference is that the Eiffel, C++ and Oberon-2 languages al-
low objects to be declared as pointers to structures or as actual instances whereas in Modula-3 objects
can only be declared as pointers. It is suggested that objects should be declared as pointers to allow
dynamic allocation of space and to avoid problems with assignments. Modula-3 has one further feature
which is not provided by the other languages. This is the ability to declare objects which have different
behaviour from that defined by the class from which they are produced. These objects are not direct
instances of any class. ’ ‘

3.4.3 Inheritance

This section describes the second of the key [catures of object oriented languages, that is inheritance.
Inheritance can take various forms. The form of inheritance provided by the four selected languages
is described first. The section continues with a description of the changes which can be made to the
exportstatus of the features which form the interface of the inherited class. The ability to redefine and
redeclare inherited features is then discussed. The next part describes the use of abstract classes. The
linal part of this section identifies some of the type checking implications when using inheritance.

e Forms of inheritance

Inheritance provides ameans Lo build new classes as extensions of existing ones. In simple terms,
the new class has all the [eatures of the existing class plus any new ones it defines. A descendant
class can itself be used as a base class for new descendant classes. The inheritance relationship
is transitive, Thus, a class is the ancestor of all classes derived from any of its descendants, or
descendants of its descendants,

Languages, such as C++ and Eiffel, which allow classes to have more than one direct parent are
said to support multiple inheritance. Eilfel permits the same class to be inherited repeatedly but
C++ insists that a class can only be named once in its list of inherited classes. The languages
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both have mechanisms for resolving any name clashes that occur due o multiple inheritance.
Languages, such as Modula-3 and Oberon-2, which restrict classes (o one direct parent are said
to support single inheritance, Multiple inheritance gives the programmer greater flexibility than
single inheritance when properties from existing classes are being combined. However, the res-
ulting classes are more difficult to understand because the definition of the features is distributed
between many classes,

The four languages have different policies governing access to the inherited features. This access
was described in section 3.4.2,

Interface changes

[Lis possible in both C++ and Eiffel to change the export status of inherited features. In C++,
class features can be inherited using the keyword public. The export status of the inherited
features remains the same as in the superclass. If the keyword, public, is not specified, another
keyword, private, is assumed which results in all the features being privale in the derived class.
Eiffel allows the export status of inherited features to be changed from private to public or pub-
lic to private. The ability to change the export status of inherited features is provided (o increase
reusability but means that a subtype relationship may not hold for derived classes in C++ and
Eiffel. Oberon-2, and Modula-3 have a strict interpretation of inheritance. A derived class must
export all the (eatures exported by the base class. The restrictions on the redefinition of proced-
ures and the export list enable the subtype relationship to hold for all derived classes.

Redefinition and redeclaration

Before discussing redefinition and redeclaration, it is necessary to define clearly the meaning of
the terms. Several definitions of the terms are possible. Meyer [51] defines redefinition as chan-
ging the implementation, signature (the formal parameters and result type) or specification of an
inherited feature. He defines redeclaration as a more general concept including both redefini-
tion and the implementation of a deferred feature inherited from an abstract class. Boszormenyi
[54] uses the following definitions. Redefinition is defined as changing the implementation of
a function but keeping the signature and the specification the same. Redeclaration is defined as
changing the implementation, signaturc and specification. Bészérmenyi’s definitions are used
because they allow the different aspects of the languages 1o be discussed more casily.

- Redefinition.

Redefinition of inherited features is permitted in all four languages. In Oberon-2, any type-
bound procedure may be redefined by providing the new implementation in the module
declaring the class. Modula-3 methods are redefined by assigning a different procedure to
them in the implementation module.

Eiffel requires that the feature to be redefined is listed in the Redef ine section of the class
declaration. In C++, only functions declared as virtual in the base class can be redefined.
Oberon-2, Modula-3 and C++ allow access 1o the ancestor’s version of the function. In
Oberon-2, this is achieved by appending an uparrow,”, 1o the procedure call. Modula-3
provides two methods for accessing the ancestor’s implementation of a function. Either
the predefined function NARROW can be used or the method call can be prefixed by the type
of the ancestor class. In C++, the ancestor’s code is accessed by using the scope resolution
operalor, : :, which tells the system Lo use the version in the named class. In Eiffel, repeated
inheritance muslt be used 1o obtain two copies. One of the copies is renamed and the other
redefined, the renamed copy is used to access the ancestor’s version.
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Eiffel permits functions 1o be redelined as attributes in descendant classes. Autributes can-
not be redelined as functions.
— Redeclaration
Eiffel, Modula-3 and C++ permit the redeclaration of functions but Oberon-2 does not.
1. Eiffel
In Eiffel, any features being redeclared must be listed in the Redef ine section of the
class declaration. There are strict rules governing changes Lo the signatures and spe-
cification of functions. Any change of type in a signature must be to a type which
conforms wilh the original type, that is to a subtype of the type declared in the ori-
ginal version. This is known as covariance.
Changes o the specification of a routine involve changing the pre- and post-conditions.
Pre-and post-conditions are implemented by using the assertion mechanisms provided
by the language. The rules governing changes o pre- and post-conditions state that
preconditions can be weakened but not strenglhened and post conditions must be
strengthened not weakened.
Autributes can also be redeclared in Eiffel. The same rule applies that the new type
must conform to the old Lype.
The Eiffel rules governing redeclaration are designed to enable the redeclared feature
Lo be used wherever the original form is expected.
2. C++
C++ provides redeclaration by permitting a restricted form of function overloading.
This means that a single name can be used for several different functions within the
same scope. These functions must differ in both the parameter Lypes required and re-
turn type, if any. The overloading of functions does not involve the virtual mechanism
and so does not provide polymorphism. The new function ‘hides’ the implementation
declared by the base class. It is possible for the derived class 10 access the original
implementation by ensuring that the code is obtained from the superclass part of the
object. This involves cither the use of the scope resolution operator, : :, or the assign-
ment of the object (o a superclass variable. An explanation of redeclaration in C++ is
provided by Buchanan [55].
3. Modula-3
In Modula-3, a function can be redeclared by declaring a new method with the same
name in the interface of the class. This new method can have a different signature
from the ancestlors method. This declaration hides the ancestor’s version and appears
to be similar to the C++ implementation of redeclaration. The descendant class can
access Lhe ancestor’s version in the same way as accessing a redefined function; that
is, either by calling the predefined function NARROW or by prefixing the method call
with the type of the ancestor class.

In all four languages it is possible Lo redefine procedural [eatures o make the functionality ap-
plicable to the descendant class. 1t is also possible, via different mechanisms, to access the ver-
sion of the feature defined by the base class. Eiffel, C++ and Modula-3 allow any procedural
feature 10 be redeclared with a different signature. Oberon-2 does not permit redeclaration of
features. Eiffel is the only one of the languages in which it is possible to maintain the semantics
ol an operation when it is redefined or redeclared. This is achieved by the use of pre- and post-
conditions.
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e Abstract classes

An abstract class specifies behaviour but does not provide a complete implementation. The com-
plete implementation must be supplicd by the subclasses. The implementation of an abstract
class therelore involves writing a subclass which includes the code required (o implement the
[eature. Each language has its own mechanism for providing this facility.

In Oberon-2, abstract behaviour can be specified by declaring type-bound procedures without
implementing the function required.

In C++, pure virtual functions are used. These functions are declared with the return value of 0.

In Eiffel, the keyword deferred is used to replace the body of the feature. The derived class is
responsible for supplying the code to implement the behaviour.

An abstract class in Modula-3 is defined by declaring the class with methods but not assigning
a procedure o the method. The method is assigned the value NIL by the compiler,

The languages also vary in the way abstract classes can be used. In Eiffel and C++, the static
Lype checking rules ensure that it is impossible to create instances of deferred classes. However,
variables of deferred classes can be declared and have subclass objects assigned to them which
allows polymorphic functions to be called. In Oberon-2, it is possible Lo create instances of ab-
stract classes. The effect of calling a feature which has not been fully implemented is undefined.
It is therefore suggested that the predefined procedure HALT is called in such features, Modula-3
also allows objects of abstract classes Lo be created but provides run-time checks to trap the error
if a method with the value NIL, that is without an implementation, is called.

All the languages allow abstract classes (o be declared but the amountof support given to prevent
the improper usc of such classes varies.

Type checking implications
The assignment rules of the languages rely on there being a supertype-subtype relationship

between ancestor classes and descendant classes. This suggests that the interfaces of descendant
classes should include the interface of the ancestor class.

Oberon-2 allows only single inheritance and has strict redefinition rules which ensure that sub-
classes are subtypes. This makes type checking and type conformance a simple concept for the
compiler Lo enforce. In situations where cach subtype must be distinguished, for example when
retrieving clements from a helerogeneous list, the programmer must use other features of the lan-
guage Lo provide dynamic type checking. The features used are Lype guards and type tests both
of which are explained later in this section.

Eiffel allows the developer to make a wider range of changes to inherited classes. In summary,
Eiffel allows the types of attributes, parameters and return types Lo be redeclared providing the
new paramelers conform (o, that is are instances of subclasses of, the original parameters. Eif-
fel also allows the derived class Lo hide [catures which were exported in the base class, thereby
improving the possibility of code reuse by using inheritance to implement an is-like relationship
such as a Queue is-like a list with limited add and remove functions. This hiding of features and
redefinition of the signature of featurcs destroys the subtype relationship between the classes.
The assignment rules above may lead o an instance of a Queue being assigned Lo an instance
of a list in which case all the list features will be available. Eiffel version 3 intends to introduce
system validity checks in order to prevent such invalid access to features.
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C++ has two modes of inheriting, public and private. The compiler enforces the rule that
a class derived by public inheritance cannot hide any of the public fields of its ancestors. This
should maintain the subtype relationship between the classes. However, redeclaration of a fea-
ture as deflined above makes the base version of the feature inaccessible via the derived variable
thus destroying the subtype relationship. The use of private inheritance allows features to be hid-
den. There is no longer a subtype relationship between the two classes. The C++ Lype checking
syslem ensures that the two types no longer conform.

Modula-3 inheritance is similar 1o C++ public inheritance. This language also allows redeclar-
ation of features and destroys the subtype relationship.

From the above it can be seen that Oberon-2 has adopted a simplistic approach to typing resulting
in a greater burden of type checking being placed on the developer. Eiffel allows flexibility for
the developer of new classes but has not yet developed a type system Lo deal with the problems
that have arisen, C++ also provides flexibility but has mechanisms (o allow the developer to
control the type hierarchy. The result is a conceptually simpler static type checking mechanism
in C++ than in Eilfel. Modula-3 provides dynamic as well as static type checking which may
deal with any problems caused by the destruction of the subtype relationship.

The differences between superclass-subclass and supertype-subtype relationships are documented,
by Cook [56], as causing problems for type checking systems but it is beyond the scope of this
thesis to discuss the issue further.

The languages vary in the type of inheritance supported. Eiffel and C++ support multiple inher-
itance but Modula-3 and Oberon-2 support single inheritance. Eiffel, C++ and Modula-3 allow more
changes to be made to the inherited features than Oberon-2. Consequently, they require more complex
type checking systems.

3.4.4  Polymorphism and dynamic binding

This section discusses the remaining key features of object oriented lan guages. These two features are
described together because the benefits obtained by the provision of both features increases the useful-
ness of the concepts. The two concepts are also more important when considering objects which are
declared as pointers rather than actual instances so, in this section, an object is assumed to be imple-
mented as a pointer Lo a variable.

Polymorphism was defined earlier, in section 3.4.1, as the ability of an object to belong to more
than one class. This is not the only interpretation of polymorphism. The term can also be applied to
the ability to call different code depending on the class of the receiving object. The need for this abil-
ity arises because of the binding of operations (o classes. This allows any number of classes to define
operations of the same name, a print procedure for example. Each procedure is uniquely identifiable
because it refers 10 a feature of a class. Many objects can then respond Lo the same message. If all
the objects are unrelated types the correct code can be chosen statically, However, redefinition of class
procedures allows subclasses o declare their own version of the code which is suitable for their in-
stances. The instances of a subclass may be assigned to a superclass variable. In this case, the type
of the receiving object will not be known until run-time and dynamic binding is required o allow the
correct code to be chosen,

Polymorphism provides the ability to assign an instance of a subclass (0 a superclass variable res-
ulting in the possibility that an object may contain more fields than are accessible via the variable in
which it is stored. It is desirable that these extra fields should be made accessible. This requires that a
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variable is reassigned from a superclass variable 1o a subclass variable. This must be carried out in a
type sale way il a system’s behaviour is to be both predictable and reliable. This requires mechanisms
to access the dynamic type of an object o ensure that the correct assignment is made.

This section first describes the way in which polymorphism and dynamic binding are provided and
then describes ways (o access the dynamic type of an object in order o provide assignment from a
superclass instance Lo a subclass instance.

e The provision of polymorphism and dynamic binding

All the languages allow assignment of an instance of a subclass to a superclass variable. They
also allow features (o be redefined. The way in which code is bound to procedures varies. In Eif-
fel, all procedure calls are bound dynamically. The other three languages allow the programmer
to chose dynamic or static binding to take advantage of the greater run-time efficiency provided
by static binding. Static binding is the normal situation in C++. In order for C++ procedures
to be bound dynamically, they must be declared as virtual. In Oberon-2, normal procedures
are bound statically but type-bound procedures and procedure variables are bound dynamically.
Modula-3 methods are all dynamically bound. If static binding is required this can be obtained
by declaring a procedure in the interface of the class instead of declaring a method.

o Accessing the dynamic type of an object

This section explains in more detail the requirement 1o access the dynamic type of an object and
then explains the mechanisms available in each of the four languages. The assignment rules al-
low a variable of a subclass to be assigned 10 a variable of its superclass. The superclass variable
then contains more information than is available (o the programmer. For instance, an object of
class Customer may be assigned Lo an object of class Person. Any extra ficlds, such as a cus-
tomer number, can be accessed via a polymorphic procedure such as print but not via an object
of class Person.

A polymorphic procedure redefines a base class routine to provide class dependent behaviour,
The redefined routines are then called as required because of the dynamic binding of code, Dy-
namic binding works well for a routine, such as print, which can be defined in a base class.
However, dynamic binding cannot be used 1o access behaviour known to be present in the ac-
tual object but not provided when the base class was implemented. For example, a system may
contain a list with elements of class Person. The list could also be used to store elements of
subclasses of Person such as Customer. It might then be necessary (0 retrieve an instance of
class Customer from the list of Person instances. This involves assigning a variable which
was declared as a superclass variable (o a subclass variable. Such an assignment is the opposite
way round to normal assignment rules bul is permitted in Modula-3 and checked dynamically by
the system. Eiffel, C++ and Oberon-2 assignment rules do not normally permit the assignment.
However, it is possible 1o make such assignments in all those languages.

The Eilfel language provides the reverse assignment attempt. This is most commonly
used when accessing persistent data. The syntax of the call is

customer 7= people_list.get(i);

where customer is of class Customer, people_listisa listconlaining variables conforming
o class Person, get (i) is the feature which retrieves the i-th element from the list.
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If the i-th element was the required class it is assigned 1o the variable customer. If not, the value
of the variable is void. This mechanism is possible because Eiffel objects contain information
about their class.

Eilfel provides two other methods of accessing the dynamic type for use where a large number
of types may be found.

L. Thelibrary class INTERNAL provides a feature dynamic_type which returns an INTEGER.
The class INTERNAL is designed (o be used as an ancestor class for classes which inter-
face with other languages or database management systems. The use of these features is
discouraged because they permit access to the internal representation of an object which
breaks the encapsulation.

2. Eiffel classes are descendants of the class ANY. This base class provides generally useful
facilities. One of the features is conforms_to which makes it possible to ascertain inform-
ation about the dynamic type of an entity at run-time. However, a procedure call such as
p.conforms_to(c) returning true docs not permit access Lo any cxtra [eatures present
in ¢ through variable p.

The C++ language does not provide a mechanism which corresponds to the Eiffel
reverse assignment attempt because objectsin C++ do notcontin information about their
class. Similar functionality can be oblained by using pointer casting. This uses the type cast
mechanism available in C. Assuming the declarations:

person *p;
customer *c;

thecall ¢ = (customer *)p converts a person variable o a customer variable.

This mechanism allows unconstrained changes between any types which can lead 1o many prob-
lems. :

In some circumslances, such as retrieving clements from a heterogeneous list, it might be desir-
able o apply some constraint (o the conversions available by determining the dynamic type of
the elements. However, as C++ does not provide a procedure to allow the actual type of the ob-
ject 1o be ascertained, it must be writlen by the programmer, One method involves the addition
of a tag field to the object structure, This Lag field is declared as a static feature which ensures
that all objects of the same class contain the same data. The contents of this field can be tested
belore carrying out the pointer conversion,

Oberon-2 provides type tests and type guards to permit access (o fields of a subclass variable
through a supertype object. Type tests and type guards are used to check the dynamic type of a
pointer variable or a formal VAR parameter of a record type. A type test takes the form

p IS Customer

and asserts that p has the dynamic type Customer or an extension of type Customer. After this
type test, iL is possible to access the ficlds added by type Customer or 1o assign a base type vari-
able o an extended type variable. If, at run time, p does not have the dynamic type Customer,
the result is undefined, so the type test should be part of an IF statement. For example:

IF p IS Customer THEN
n := p.customerNumber;
END(*IF%);
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Type Lests used in conjunction with an IF ... THEN ...ELSE stalement provide the similar func-
tionality to the Eiffcl reverse assignment attempt

A type guard also performs a similar function. The required dynamic type is named in round
brackels aller the variable name. For example,

n := p(Customer).customerNumber;

The two dynamic type checking mechanisms described above apply to small regions of the pro-
gram. A regional type guard is also provided to make the code clearer to read. For example,

WITH
p : Person DO (* some lines of code specific to
Person variablesx)
I p : Customer DO (* some lines of code specific
to Customer variablesx)
ELSE (* code to deal with unexpected type.*)

END

However, the form of the type test and type guards allow their use with known subtypes only.
The programmer mustknow the name of all possible types in order (o use them in the IF or WITH
statements. This mechanism cannot be used to distinguish between unknown subtypes and so
restricts the ability Lo write general code.

Modula-3 provides TYPECODE and TYPECASE functions as well as dynamic type checking of as-
signments, The TYPECODE is a built-in function which returns an integer which uniquely iden-
tifies the type of an object. This can be used to distinguish between different subtypes. The
TYPECASE [unction can be used in the same way as the Oberon-2 regional type guard.

From the above, it can be seen that it is possible o access the dynamic type of objects in all these
languages. All the mechanisms work with objects but not with ficlds of an object. For example,
a class Person might declare an address field of class string, A Person object could have an in-
stance ol a subclass of class string assigned to its address field. This subclass might provide extra
string handling facilities. These extra features cannot be accessed through the Person variable.

The four chosen languages provide similar functionality with regard o polymorphism and dynamic
binding. They all provide the ability (o bind code 1o procedure calls at run-time. In C++, Modula-3 and
Oberon-2, the programmer must choose the correct method of implementation (o permit dynamic bind-
ing. Itis also possible in all the languages Lo access the dynamic type of an object and allow assignment
against the normal assignment rules. Eiffel and Modula-3 provide built-in features 1o permit this type
ol access and assignment between a superclass and any of its subclasses. Oberon-2 provides features
to access only the features of known subclasses. In C++, it is necessary to add tag fields to objects in
order to provide the ability to assign a value from a superclass variable (0 a subclass variable,

3.4.5 Data types provided

This section is the final part of the investigation into the features provided by the selected object ori-
ented programming languages. It identifies the data types provided by each language. Oberon-2, Eif-
fel, Modula-3 and C++ all provide simple types as types not objects. The support for generic types,
cnumerated types and subranges varies.
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e Basic Lypes

Basic types, such as character, integer and real are implemented as instances of the type not as
pointers Lo instances of the type. C++ is the only one of the languages not Lo provide a type
Boolean but uses the integers 1 and 0 to represent true and lalse in Boolean expressions.

e Structured types

Arrays and records are structured types. C++, Modula-3 and Oberon-2 provide arrays as basic
language elements whereas Eiffel uses the generic Lype mechanism. Records are not available
in Eiffel because they require access [catures and therefore become a class. They are available
in the other three languages.

o Generic types

Generic types arc commonly used Lo define data structures such as sels, lists and trees. The ab-
stract structure of one of these data types is common Lo all instances of the type. Many operations
on these types, for example add and delete, do not depend on the types of the actual elements
contained. ILis these operations that are specified in the generic type. Generic Lypes are imple-
mented as parameterized classes. The parameters for these classes represent lypes. Actual Lypes,
such as lists ol integers, are produced by providing actual parameters for the formal parameters.
This process is called instantiation.

Eiffel supports genericity. A generic class in this language is compiled using the formal gen-
eric paramelers. The same code is used for all instantiations of the generic type. It is possible to
implement both unconstrained genericity, where any type of class can be used as an actual para-
meler for the type, and constrained genericity where only specified types or their descendants
may be used.

Some implementations of C-++ provide generic types by using classes which are called templates.
Other implementations provide a package, generic.h, which enables generic types to be declared
[33].

Modula-3 allows programmers to rename imported modules. This lacility has been extended
to allow generic types o be implemented. A generic class defines the template for a class in
a pair of generic modules. The interface module defines a list ol interfaces called the formal
imports. The formal imports must be replaced in an instantiation of a generic module by the
required module names, When a new instantiation of a generic class is required, a new interface
and implementation are produced by supplying actual interface names for the formal imports.
New code is generated for each new instantiation. Constrained gencricily is not supported but
the instantiation will not compile if the actual generic parameters do not provide the réquired
operations.

Oberon provides the type SET but this type can only be used with integers. It is claimed that
Oberon-2 can be used to implement other generic types [35]. The suggested implementation of
a FIFO queuc relies on the “generic” elements being subtypes of the declared type. In the ex-
ample 35, page 210], the declared type of element is an empty record, of type Node. All possible
elements Lo be included in the list must be descended from this type, Node. The type conform-
ance rules ensure that all the nodes will be compatible with the FIFO queue. Any instance of
this type could be completely heterogeneous. In systems where it is desirable o declare more

than one data structure, cach of which must contain specific types only, the programmer must
use type guards, The type guards could be used in one of several ways. Two methods are:
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- use a type guard every Llime an element is added Lo the queue or removed from it.

— implement the FIFO using type-bound procedures and redefine each procedure to include
a type guard.

e Enumerated Lypes

Neither Oberon-2 nor Eiffel provide the facilities required to declare enumerated types. They
were omitted from Oberon-2 because “ they defy extensibility over module boundaries” and had
been observed o have “ led to a type explosion that contributed . . .to program verbosity” [57].
It is possible Lo implement enumerated types in Oberon-2 by using numeric constants or arrays.
Meyer [2] declares that enumerated types are rarely necded and uses integer constants to imple-
ment them in Eiffel. C++ provides the enum construction tool to implement enumerated types.
However, the underlying implementation uses integers which makes it possible to perform mean-
ingless operations such as adding two members of the enumeration. Modula-3 provides enu-
merations as ordinal types. Binary relational operators are also provided Lo work on enumerated
types. The use of < and > means that it is possible 0 compare values [rom enumerations of col-
ours. For example, it is possible 1o test if red > blue. This kind of comparison will not always
be meaningful. Enumerated types are a useful abstraction but are not satisfactorily provided by
any of the languages under consideration,

o Subranges
InEiffel, Oberon-2 and C++, subranges of ordinal types can be implemented by declaring classes
to represent the required range of values. The programmer must supply the code to check that
values fall within the desired range,
Modula-3 allows the declaration of subranges of any ordinal type. Dynamic type checks detect
errors in assignments,

The languages supply a range of data types. It is possible to provide generic types, enumerated
types and subranges in all the languages either by using built in constructs or by combining other lan-
guage features o mimic the required type.

3.5 Informationrepresented in object oriented programming lan-
guages

The previous section described the similarities and differences between the constructs and features
common to the selected object oriented languages. This section discusses the types of information
which are modelled by the chosen object oriented programming languages. The types of relationship
which are provided are also discussed. This information is necessary to permit the definition of the end
point of the design process.

Object oriented languages provide encapsulation based on the class construct. Classes define all
the features of the objects generated [rom them, Thus, the classes define both the structure of objects
and the relationships between objects. It can be seen from the description in section 3.4 that object
oriented languages provide two basic relationships between classes. These are the inheritance and the
client-server relationships.
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e Inheritance
This is a transitive relationship between classes. All instances of a class share the same structure
and operations. Modula-3 allows anonymous subclasses (o be declared in a program. These
subclasses have the same structure but different behaviour from the declared class.
The features of an inherited class can be changed by derived classes. The result is that inherit-
ance can be used Lo implement an is-a relationship, an is-like relationship or to gain access o

features Lo improve code reuse. Inheritance in object oriented programming is not a mechanism
for subtyping.

e Client-server

]
i

Classes gain access Lo the [catures provided by other classes by declaring instances of the class.
The relationship between the two classes is called the client-server relationship. This is a trans-
itive relationship, A class is considered (o be client of another class if it, itself, or one of its
ancestors is a client of that class. The server class features are visible Lo the client class but not
vice-versa. There are four variations of the client-server relationship. The relationship is defined
by the client class but the first three of the variations define relationships between individual ob-
jects. The client-server relationship is used (o implement relationships between classes and re-
lationships between objects.
1. Simple client
There are Lwo ways in which a class may become a simple client of another class:

— A variable, in the form of a pointer (o an instance, of the server class is declared in the
client class. This ability is provided by all the languages discussed above. The client
class gains access to all the exported features of the server class.

- An inslance of a class is required as a formal parameter L0 a routine.

2. Expanded client
: An actual instance, not a pointer L0 an instance, of the server class is declared in the client
class. This relationship is provided by Eiffel, C++ and Oberon-2 but not by Modula-3.
' Instances of the client class have an instance of the server as part of their structure.

3. Privileged client

This relationship allows a class to provide different interfaces Lo differentclasses of clients.

It is only provided by C++ and Eiffel. Each has a different mechanism,
j Selective export is used in Eiffel. A feature can be made available to specific classes and
their descendants that is sclectively exported to those classes.
1? The fricnd mechanism is used in C++. The declaration of a friend allows the named class or
| [unction access (o any of the features of the class whether public or private. This contrasts
| with Eiffel where the selective exports give the privileged class access to specific features

only.
| 4. Generic client
This relationship is provided by C++, Eiffel and Modula-3 butnot by Oberon-2. A generic
class is declared as requiring a class as a formal parameter. Inside the generic class, an
instance ol the formal parameter is declared. The generic class is therefore a client of the
class of the formally declared parameter. When the class is instantiated with an actual class,
the instance of the formal parameter is replaced by an instance of the actual class. The
instanliation is then a client of the class of the actual parameter,
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In order 10 use a class, all the classes on which it depends must be included in the system. This
means that all the ancestor classes of a class must be present. They are required o provide all the
inherited structure and functionality. As well as being dependent on its ancestor classes, a class is de-
pendent on its server classes. This means that a class cannot be compiled unless all its server classes
and its ancestors are included in the system. Thus, classes related by cither the inheritance or client-
server relationships are bound together. Classes which depend on many other classes are more difficult
to reuse than classes which depend on fewer classes. This is because all the classes must be identified
and included in the new system. The new system may then be larger than necessary and may have
reduced performance characteristics.

From the above discussion, it is clear that object oriented systems consist of objects which are com-
pletely defined by Lheir class definitions. The classes define both the structure of the objects and the
relationships in which each object can be involved. There are two main relationships between classes
allowing two types of information (o be represented. This contrasts with the eight relationships between
classes identilied by the analysis process, as shown in section 3.3, Classes and the two relationships
between them represent the form the output from the design phase must take.

Fewer types of information can be represented by distinet constructs in languages than are identified
by the analysis process. The design process must convert the many types of information identified
during analysis into the two types which can be represented in programming languages. The changes
which are necessary (o ranslate analysis information into language constructs are described in the next
scetion,

3.6 Design Issues—from analysis to implementation

This section begins the final phase in the investigation into traceability of information from analysis to
implementation. Itexamines onc function of design which is to map analysis results on 1o programming
language constructs. Analysis was defined in scction 3.2 as the identification of:

e classes and objects including the data associated with and behaviour required of objects,
o relationships between objects and between classes Lo provide the required functionality,
e subsystems.

This section examines how each of these constructs can be implemented using the constructs and
relationships identified in section 3.5. This process identifies the traceability of each of the types of
information identified. The elfcets of the changes required o translate the information identified during
analysis into programmable constructs is evaluated in section 3.7,

3.6.1 Classes and Objects

The main concept used during object oriented development is that of the class. The analysis meth-
ods and the programming languages view classes as defining groups ol objects which combine struc-
ture and behaviour. Classes are used as templates for objects. It is not necessary in either part of the
development cycle [or an object 1o require storage. Classes can therefore define functional objects.
The similarity in the meaning of classes and objects allows designers to carry the constructs through
from analysis to implementation. The class and object constructs are therelore traceable from analysis
through to the implementation.
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3.6.2 Relationships

Itis clear from sections 3.3 and 3.5 that more relationships are identified during analysis than are avail-
able in programming languages. In addition, the meanings of the relationships provided by program-
ming languages arc not necessarily the same as those identified by the same name during analysis.
Mechanisms must therefore be devised which map object oriented analysis relationships to object ori-
ented programming language relationships.

This section describes some mechanisms suggested by different authors for implementing the re-
lationships defined in section 3.3, The traceability of each type of information is noted in this section.
The effects of the changes required are discussed in section 3.7.

o is-a

The is-a relationship represents a specialisation relationship. This relationship is modelled by
the inheritance relationship. This relationship is implemented by the inheritance mechanism in
programming languages. The analysis methods stress that inheritance should be used where a
subtype relationship exists. Inheritance as provided by the languages investigated does not al-
ways result in sublyping,

All the analysis methods identified and modelled multiple inheritance. Multiple inheritance can
arise for several reasons. For instance, a class may be the base class for more than one hierarchy.
These hicrarchies may then combine o form one class as shown in figure 3.10 (i) which is taken
{from the OMT text [28]. Aliernatively a class may inherit from two unrelated classes as shown
in figure 3.11(i) adapted from the book describing the Fusion technique [58].

As was reported in section 3.4.3, mulliple inheritance is not necessarily available in a program-
ming language. It might therefore be necessary 1o reduce multiple inheritance to single inher-
itance during the design the system. Several mechanisms are suggested for bringing about this
conversion by the authors of the RDA and OMT methods [10, 28].

1. The most relevant ancestor is chosen 1o become the sole ancestor [28]. In this case, the
features from the other branch of the hierarchy are added to each descendant 3.10(ii).

2. The most relevant anceslor class is chosen to become the sole ancestor [10]. The code
which would have been inherited [rom the other classes is copiced into the new class.

3. the client-server relationship can be used to represent both branches in the hicrarchy. [28].
This is shown in figure 3.11(i0).

&

The most relevantancestor class is chosen to become the sole ancestor [10, 28]. An instance
of each of the other ancestors is declared as an attribute of the new class. This is shown in
figure 3.11(iii).

The first two mechanisms involve the duplication of code which could lead to confusion. The
third and fourth mechanisms involve converting the is-a relationship Lo a client-server relation-
ship. '
The is-a relationship is common to both analysis and implementation but does not necessarily
have the same form or meaning. The traceability of this relationship is questionable.

e consists of
This relationship is used to define the structure of a complex object.

This relationship is usually implemented by the client-server relationship. The composite class
becomes cither a simple client or an expanded client of the classes representing its parts, If the
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composite class consists of more than one instance of another class, the composite class may
declare a list (or equivalent) structure of the part. The composite class becomes a generic client
as well as a simple or expanded client.

Another way to implement this relationship is o use inheritance. For instance a car is an as-
sembly of engine, body, seals etc.. A car class could be produced by inheriting from the classes
representing its component parts. This use of inheritance is discouraged by many development
methods. OMT [28] [or example, points out that this use of inheritance can lead to incorrect be-
haviourand recommends the use of inheritance [or the is-a relationship only. However, the Eiffel
libraries use inheritance Lo increase code reuse without regard for the is-a relationship. This use
olinheritance is possible because Eiffel allows developers to change the export status of features.

Eilfel and C++ provide a third mechanism for the implementation of the consists of relationship.
The selective export feature in Eiffel and the friend concept in C++ can be used Lo build complex
structures.
This relationship is not implemented by a unique construct so is not identifiable in the imple-
mentation.

contains

This relationship models the relationship between a container and its contents and is implemen-
ted by the client-server relationship. The containing class declares an instance of a generic class,
or its equivalent, and so becomes a client of the generic class. The generic class is instantiated
with a class representing the required contents and is a client of the contents class. The contain-
ing class is therefore a client of both the generic class and the contents class.

Generic classes are also used 1o contain stored data so this representation of the contains rela-
tionship is not unique. The traceability of the contains relationship cannot be guaranteed.
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e uses

This relationship models a processing dependency between objects. It is implemented by the
client-server relationship. The client class is usually declared as a simple client of the server

class which supplies the required functionality. For instance, if class A requires class B to carry
out some processing, class A would declare an instance of class B. Allernatively the client class
can be named as a privileged client by the server. The uses relationship has been converted into
a client-server relationship so the information cannot be traced.

e conceptual association

This relationship is defined as a logical relationship between objects. The identity of the ob-
jects involved is significant. The associations modelled by the OMT and Shlaer and Mellor [59]
methods are two directional as shown by figure 3.12. This relationship is implemented by the

|
3
|
|
f
e

client-server relationship.” Various methods of conversion [28, 59] can be used depending on
factors such as the visibility and the cardinality of the relationship required. A simple banking
system, shown in figure 3.13, is used 10 demonstrate some possible representations of a one-to-
one relationship between two objects.

The models shown in figures 3.12 and 3.13 imply that the relationship is important in both dir-
ections. This is not necessarily the case. It is possible that an association will be more important
i in one direction than the other. For example, it could be decided that for the simplified banking
application, it is more important o access the person via the account than the other way round,
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