DIVISION OF COMPUTER SCIENCE

An Explicitly Declared Delayed-Branch Mechanism for a
Superscalar Architecture '

Roger Collins
Gordon Steven

Technical Report No.197

May 1994

An Explicitly Declared Delayed-Branch Mechanism
for a Superscalar Architecture

Roger Collins
comrrc@herts.ac.uk

Gordon Steven
comqgbs@herts.ac.uk

Department of Computer Science, University of Hertfordshire
College Lane, Hatfield, Herts. AL10 9AB

One of the main obstacles to exploiting the fine-grained parallelism that is available in general-purpose code is the frequency
of branches that cause unpredictable changes in the control flow of a program at run-time. Whenever a branch is taken, a
performance penalty may be incurred as the processor waits for instructions to be fetched from the branch target stream.
RISC processors introduce a delayed-branch mechanism which defines branch delay slots into which code can be scheduled.
This strategy allows the processor to be kept busy executing useful instructions while the change of control flow takes place.
While the concept of delayed-branches can be readily extended to VLIW architectures, it is less clear how it should be
incorporated in a superscalar architecture. This paper proposes a general branch-delay mechanism which is suitable for a
range of code-compatible superscalar processors and which completely avoids the need to introduce NOPs into the code. This
technique was developed as an integral part of the HSP superscalar project. HSP is a superscalar architecture currently being
developed at the University of Hertfordshire with the aim of using compile-time instruction scheduling to achieve an order of

magnitude speed-up over traditional RISC architectures for a suite of non-numeric benchmark programs.
Keywords: delayed branch; superscalar; instruction-level parallelism; code scheduling; conditional branches.

1. Introduction

‘Whenever a branch instruction evaluates as taken, the
latency associated with accessing instructions from
the branch-target stream results in at least one wasted
processor cycle, known as the branch penalty. RISC
architectures make use of a delayed branch
mechanism to overcome this problem by giving the
processor early notice of any possible changes in
control flow. The branch is moved up in a basic
block of code to allow some of the instructions
following the branch to be executed during the
branch penalty cycles. Each branch, in effect, has
branch-delay slots appended to it into which the
compiler can schedule useful instructions.

This delayed-branch mechanism can be extended to
VLIW architectures, where each branch-delay slot is
enlarged to hold multiple short instructions that can
be executed concurrently, There are some serious
disadvantages in the VLIW approach as unused
portions of all long instruction words must be filled
with 'NOP' instructions if insufficient short
instructions can be found. This process can result in
a significant expansion in static code size. Also,
code that has been compiled for a particular VLIW
processor must be re-compiled if it is to run on a
different member of the processor family. This lack
of code compatibility across a range of
implementations is seen as a serious disadvantage by
machine users.

Superscalar processors take in sequential program
code where there is no explicit concept of parallel

instruction groups and rely instead on hardware for
dynamic instruction scheduling. To solve the branch
penalty problem, superscalars often use run-time
branch prediction. If delayed branches are to be
extended to superscalars, some mechanism must be
found that allows the scheduler to indicate to the
processor which instructions have been moved to fill
the conceptual branch delay slots.

2. The HSP Architecture

HSP (Hatfield Superscalar Processor) is a new
architecture currently being developed at the
University of Hertfordshire. Our intention is to
speed up program execution by using an Instruction
Scheduler to expose the instruction-level parallelism
at compile-time, rather than dynamic scheduling with
branch prediction at run-time. This strategy removes
the need for out-of-order issuing of instructions or
dynamic register renaming in the HSP processor.
The HSP processor can therefore be thought of as a
"minimal" superscalar design with simplified
hardware to implement strict in-order issuing of
instructions. The HSP architecture supports the use
of conditional execution where multiple "guard”
Boolean conditions can be attached to any
instruction. Such instructions are only executed if
their Boolean guards evaluate to "True" at run-time.

The HSP architecture fetches instructions from
memory into an Instruction Buffer. Parallel groups
of instructions are then issued from the Instruction
Buffer, via Instruction Decode Units, to the
processor's Functional Units, subject to data

dependencies and resource limitations. Individual
instructions are sent to one of a common pool of
Functional Units that is capable of processing the
instruction. The Functional Units then execute
instructions and write back result values to the
appropriate registers. Branch instructions are
processed by special Branch Units that can flush
instructions from the Buffer if a branch is taken.

3. The HSP Branch Instruction

The HSP architecture provides a generalised delayed-
branch mechanism [1][2] where a count value is
encoded directly into each branch instruction. This
count value specifies the number of instructions,
following the branch instruction, that must always be
dispatched for execution, irrespective of the branch
evaluation at run-time. Instructions that are placed
within the scope of the branch count value are said to
be in the branch’s "branch-delay region", analogous
to the branch delay slots used in RISC architectures.
When processing a branch instruction, instructions
from the branch target stream are not fetched from
memory until all the branch-delay code is in the
Instruction Buffer or already being executed. Branch
instructions can themselves be promoted up into the
branch-delay region of an earlier branch, allowing a
processor with several Branch Units to handle
multiple branch instructions concurrently. Those
branches that evaluate as taken are then allowed to
take effect, one per machine cycle.

Initially, each branch instruction has empty
instruction groups appended to it to represent the
number of branch penalty cycles experienced at run-
time. The HSP Instruction Scheduler then moves
instruction groups into these empty branch penalty
groups. The branch count value is adjusted to take
account of the total number of instructions actually
moved into the branch's delay region. Sufficient
code must be promoted into the branch-delay region
to fully occupy the processor during the branch-cycle
as well as all of the branch-penalty cycles.

1 branch to target (7) ;

2 a:=b+c;

3 d :=50;

4 e:= 80;

5 fi=f-a; branch delay region
6 g=g-d;

7 a:=e-d;

8 c:=d+b;

9 h:i=a+g;

Figure 1a Scheduled sequential code

The example in Figure 1a shows the code used to fill
the delay region of an unconditional branch that has a
branch-penalty of one. The (7) shown at the end of
the branch instruction indicates the size of the
branch-delay region and is not a branch target
address. Figure 1b shows the numbered instructions
transformed into parallel execution groups inside the
HSP processor at run-time. Each group is limited in
size by data dependencies between instructions.

cycle instructions dispatched

1 1 2 3 4 branch cycle
2 5 6 7 8 penalty cycle
3 9

Figure 1b Parallel instruction groups

4. Scheduling Code for HSP

If code compatibility is to be maintained across a
range of processor implementations, no implicit
assumptions can be made during scheduling as to the
exact parallel capabilities of the target processors.
The delayed-branch instruction with its explicit
branch-delay region provides an essential mechanism
that allows code to be specifically scheduled for a
particular implementation, yet still be compatible
with other members of the processor's family. The
HSP Instruction Scheduler initially identifies groups
of instructions that can be executed concurrently.
Attempts are then made to increase the size of such
groups by moving code up in the program order. In
general, this code promotion may involve both code
duplication and register renaming.

For unconditional branches, suitable code can be
promoted from the branch target stream to fill the
branch-delay regions. However, with unpredictable
conditional branches the choice of which code stream
to favour for promotion is less clear. Superscalars
often use run-time branch prediction to determine
which branch-path to favour but suffer a performance
loss if the prediction fails. In HSP, some scheduling
algorithm, possibly based on a history of branch
behaviour during previous program runs, could be
used to determine at compile-time which branch path
to favour. If a conditional branch is thought to
evaluate as taken at run-time, code from the branch
target stream is promoted into the branch delay
region and guarded by the same Boolean condition
that is controlling evaluation of the branch itself. If
the conditional branch is unlikely to evaluate as taken
there is no need to promote any code at all into the
delay region as the processor will be assumed to
carry on fetching from the current program stream.
In both cases, a mispredicted branch instruction will

cause a loss of performance at run-time. In the HSP
Scheduler, code from both branch paths can be
promoted into the branch-delay region by using the
appropriate Boolean guards so that the processor has
access to both groups of code at run-time.

The HSP Instruction Scheduler will adapt Ebcioglu's
algorithm [3], developed for an unconventional
processor by researchers at IBM, for the more
conventional HSP architecture. The HSP algorithm
targets innermost program loops for particular code
optimisations, such as the software pipelining of loop
bodies. Software pipelining enables code from
different loop iterations to be overlapped. For simple
loops such action may reduce the duration of the loop
body to only one or two processor cycles. If we
consider an HSP processor with a branch penalty of
two cycles, the minimum length of any loop is forced
to be three cycles; one for the branch instruction and
two for the penalty cycles. If the natural length of a
scheduled loop is only two cycles, the effect of the
branch penalty is to extend the loop iteration interval
unnecessarily to three cycles. In such a case the
Scheduler will deliberately extend the branch delay
region beyond the implementational requirements of
the target processor. This extension allows a second
copy of the loop body to be included within the scope
of the branch. Boolean guards are appended where
necessary to ensure correct loop execution. This
scenario is illustrated in the example shown in Figure
2a. The symbols f and g represent any function that
can be encoded into a single HSP instruction and
serve to illustrate this example, rather than typify
program code.

for (i=0; i<n; i++)

x = f(y);
}y =g (x);

Figure 2a A simple program loop

In Figure 2a, a data dependency between the second
and first statements within the body of the for loop
prevents them from being executed in parallel. There
are also data dependencies between instructions in
successive loop iterations. Figure 2b shows a pseudo-
code representation of the simple for loop of Figure
2a. Figure 3 shows code after it has been scheduled
into parallel groups using a modified version of
Ebcioglu's algorithm [3] that has been extended to
model branch delay slots. The boundaries in Figures
3 and 4 that surround groups of instructions indicate
that these instructions can be executed concurrently.

exit code
(livex,y)

Figure 2b Control flow for simple loop

Notice that a loop prelude is generated as the loop is
software-pipelined by the Instruction Scheduler.

entry

exit code
(livex,y)

branch cycle

first branch delay cycle

X' = fiy);
ccl :=ccl'y

second branch delay cycle
Figure 3 Branch with two penalty cycles

The HSP Scheduler has successfully found code to
fill the branch cycle and to occupy the first branch
delay slot. The second branch delay slot remains
empty and the iteration interval for the loop is forced
to be three machine cycles. If the loop body is
replicated, the branch's delay region can be extended
to accommodate extra code, as shown in Figure 4.

False

exit code
(livex,y)

branch cycle

x' i=£y);

ccl :=ccl";

first delay cycle

Tecl
ccel’ 1= i<n;
=i+l

y = g(x");

second delay cycle

extra delay cycle

Last two groups guarded by Boolean condition Tccl

Figure 4 Extended program loop

Execution of the extra code is guarded by a Boolean
condition to ensure that the loop is exited correctly.
Each iteration of the extended loop will perform two
iterations of the original loop. For large values of »,
program execution time is now proportional to 2n , as
opposed to 3n for the code in Figure 3.

entry
1 ccl := n>0;
2 x' = f(y);
3 ii=1;
loop 4 if ccl branch to loop (12);

5 Teel cel:i=i<n;
6 Tcel i:=i+l;

7 Tecl =g(x");
8 Teccl }y(:=§$; &
9 Tecl x':=f(y);
10 Tcel ccl:=cel';
11 Teel ccl'i=i<n;
12 Teel i:=i+l;

13 Teel y:=g(x');
14 Tccl x:=x';

15 Teel x':= H
16 Tccl ccl :=f g)l",
exit code

Figure 5 Output code for the extended loop

The output code shown in Figure 5 has a branch
count value set to twelve, with all of the loop body
instructions guarded by the Boolean True ccl.

5. Discussion and Conclusions

The HSP delayed-branch mechanism enables code
scheduling at compile-time to reduce the adverse
effects of branches. The branch delay count allows
code to be scheduled for a particular processor,
whilst still retaining code compatibility across a
range of similar processors with differing hardware
resources. Code scheduled for a processor with an
instruction issue rate of 8 and a branch penalty of 2
will run correctly on a more basic processor with an
issue rate of 2 and a one-cycle branch penalty. Code
promoted into the branch-delay region from the two
branch paths is guarded by Boolean expressions to
ensure that the correct code is executed at run-time.
The HSP architecture allows code to be removed
from the Instruction Buffer if its execution rests on a
Boolean condition which is known to be false at run-
time. Code in the branch-delay region that relates to
the untaken branch path can be removed from the
Instruction Buffer before it is selected for dispatch,
thus improving the utilisation of processor resources.
As the HSP Scheduler examines both branch paths,
all code is considered for upward promotion in the
program order, not just code from the predicted path.

The ability to arbitrarily extend the branch delay
region beyond the requirements of the processor
allows the Scheduler to make optimisations in special
circumstances, e.g loop unrolling. Implementing the
HSP delayed branch instruction involves some cost
in terms of the bits required to encode the branch
count value, but typical branch instructions normally
have some spare bits available. However, without
such a count mechanism we would have to assume
implicitly some occupancy -value and pad-out
unfilled positions with NOPs, as in the VLIW
architecture. It is the explicitly declared branch
count that allows code to be scheduled for a specific
processor, yet still gives the code compatibility
across the range of processor implementations which
is considered so important by computer users.

References

[1] Collins, R. Developing a Simulator for the Hatfield
Superscalar Processor Division of Computer Science,
University of Hertfordshire, December 1993.

[2] Steven, G. B. The Hatfield Superscalar Architecture
Division of Computer Science, University of
Hertfordshire, 1994.

[3] Moon, S. M. and Ebcioglu, K. An Efficient Resource-
Constrained Global Scheduling Technique for
Superscalar and VLIW processors. 25th Annual
International Symposium on Microarchitecture,
Portland, Oregon, December 1992, pp 55-71.

