DIVISION OF COMPUTER SCIENCE

Using Testing Semantics to Show Safety and Liveness in the
Development of CCS Specifications

Jean Baillie

Technical Report No.199

May 1994







Using Testing Semantics to Show Safety and Liveness in the
Development of CCS Specifications

Jean Baillie

1 Introduction

Where formal methods are used in industrial software engineering, it is primarily as notation or
language—an aid to the software engineer in thinking about and understanding the problem. What we
address in this paper is the question of whether the laws of CCS [10, 11] can be used to prove important
properties of a system, namely, safety and liveness. This begs questions about what precisely we mean
by safety and liveness and how we model these properties within the constraints of the calculus. Ideally
we should like to be able to prove an appropriate congruence between specification and design that
would enable us to conclude that a property holding for the specification will also hold for the design.
(We interpret ‘design’ to mean the refinement of a specification by decomposition.)

The problems created by 7 are well known; the difficulty of proving a design bisimilar to its specification
was demonstrated in [2], (amongst others). In that case study certain safety signals which formed part
of the design but were not part of the interface were therefore restricted in the expanded composite
system, their presence at the lower level being indicated by leading 7’s in the expansion. This precluded
bisimilarity with the specification and gave the impression of nondeterminism in what was arguably a
deterministic system. All 7’s look the same, even those which are the result of responsible signalling
and which, it may be argued, actually enable the required determinism.

Although bisimulation is the standard model of equivalence in CCS, we may also give CCS agents
testing semantics [5, 6], and indeed the testing equivalences and preorders are implemented in the
Concurrency Workbench[4]. This semantics has a pleasing intuition and an elegant theory and enables
us to demonstrate safety and liveness properties as these are associated with the congruences. (Testing
equivalence is the conjunction of may and must equivalences; may coincides with Hoare’s trace
model and, for convergent agents, must coincides with failures [7].)

We present a small case study which will be used as a vehicle for illustrating the ideas presented.
The example is that of a simple level crossing where all communications are synchronization signals;
no data is passed. This is for two main reasons: first, we wish to use the Concurrency Workbench
to test the behaviour of our specifications and, at the time of writing, parameter passing is not
implemented: second, a large, complex system is not needed to illustrate the issues; the problems we
will be addressing occur in quite simple examples. In addition, by considering a safety-critical system,
attention is focussed on the importance of safety and liveness.

We begin in section 2 by looking briefly at what we mean by safety and liveness before moving on to




our case study. In section 3 the system is specified at a very high level of abstraction then, in section
4, taken through several stages of refinement. Each refinement is compared with its predecessor (of
which it is a decomposition) for either equivalence or ordering, and the implications for safety and
liveness are discussed. The orderings are the testing preorders, reflexive and transitive relations whose
symmetric cases give the kernels of the preorders, that is, the associated equivalence classes. The
Concurrency Workbench is used to construct these relations.

2 Safety and liveness

Lamport [8] suggests that concurrent systems may be specified in terms of their safety and liveness
properties. Informally, safety is to do with the bad things a process may not do, and liveness with the
good things it must do.

We consider these properties of specifications as they may be interpreted in CCS (rather than in
temporal logic, as Lamport). There is no facility in CCS for defining, for example, invariant properties
of a process that will guarantee its safety throughout its execution, or for translating the temporal logic
assertion that a particular action must eventually occur, thereby guaranteeing liveness. Instead, we
shall discuss the safety of a process in terms of the sequences of actions in which it may engage—that
is, its traces—and liveness in terms of the sequences of actions in which it must engage.

2.1 Safety

What is meant by the safety of a system is very much context-dependent. In industrial process
control, for example, critical values of temperature and pressure may need to be included in the safety
specification. In the case of the level crossing, however, where safety amounts to ensuring that cars
and trains do not occupy the critical region of the crossing at the same time, we can model safety in
CCS as the prohibiting of unsafe traces. For example, we can specify a system in which the only
visible actions are « and b and where all sequences are safe except for those containing 2 or more a’s

together:

Spec def a.b.Spec + b.Spec

We can state that may equivalence between any design and this specification is a proof of this particular
safety property. If it has been shown that a specification contains no unsafe traces and also that a

design is may equivalent to that specification then we can be sure that the design also is safe. Clearly
C

any design D of which we can write D ~.,,,,, 5 pec will also be safe vis-a-vis Spec since D’s traces
will be a subset of those of S'pec; and since safety does not require that a process does anything at all
then theoretically, at least, this is satisfactory. To the software engineer, however—and certainly to his
customer—this is quite unsatisfactory; L may be safe, but it has few practical uses. We can think of
may equivalence as a maximal safety condition.




2.2 Liveness

In general, liveness is the property of a system whereby every action which is required to occur
does eventually do so. Given that in CCS we have no guarantee of faimess, we interpret this in its
negative sense: a system is defined to be live if it is not unnecessarily prevented from making progress.
Nondeterminism may block such progress; broadly, must semantics equates or orders processes on the
basis of nondeterminism (and divergence), making it an appropriate measure for the liveness property.

The liveness condition will be stated in terms of the required behaviour (that is, successful must
testing) of a specification under restriction; the question we shall ask in order to establish liveness is
whether, when certain actions are prevented from occurring, progress must be made by the remaining
visible actions. Nondeterminism may preclude this. For example, the process

P uPyrbP

is not live with respect to «; if we restrict by b the leading 7 may still prevent «. It is, though, live with
respect to b.

If a specification can be shown to possess a particular liveness property—that is to say, it is not
unnecessarily prevented from behaving in a required manner—and must equivalence can be shown
to hold between that (possibly restricted) specification and a (similarly restricted) design, then that
design will enjoy the same liveness property.

3 The Specification

The level crossing is viewed as a shared resource to which cars and trains have mutually exclusive
access. It admits one car or one train at a time (i.e., the car or train must leave the crossing before any-
thing else is admitted). The signals car_app, train_app are sent by approaching vehicles; car_cross,
train_cross are sent by vehicles which have been allowed to cross or, in other words, are inside a
mutual exclusion zone. Note that in this model, trains always have priority; cars may be held up to
allow a train (or trains) to cross, but never the other way around. This specification implicitly states
the safety condition, namely, that cars and trains cannot interleave on the crossing.

def . .
Spec = car_app.(car_cross .Spec+ train_app.train_cross .Spec’)

_|_

. 0 . /
train_app.(train_cross .Spec + car_app.train_cross .Spec')

def . .
Spec’ = car_cross.Spec + train_app.train_cross.Spec

Making the substitution ¢ for car_app, d for car_cross, u for train_app and v for train_cross, we




have
Spec = ¢.(d.Spec+ u.v.Spec’)
+
u.(v.Spec+ c.v.Spec’)

Spec’ 2 d.Spec+ u.v.Spec

Figure 1: The Level Crossing: Spec

The safety condition may be defined in terms of legal and illegal traces; for example, cduv, wved,
cuvd, ucvd are all legal traces. The last two may be interpreted to mean that if a car is seen to approach
the crossing either immediately before or immediately after a train has been observed, the train must
be allowed to proceed before the car. Theoretically, any number of trains may be permitted through
the crossing, causing the car to wait indefinitely: cuv(uv)*d and ucv(uv)*d are all legal traces. This
may be unlikely in practice but is nevertheless safe behaviour. Examples of illegal traces are cudv
and wucdv; the implication of each of these is that a car has been allowed to enter the mutual exclusion
zone before the train has sent the signal that it has left.

We also require that in the absence of a train, the crossing behaves like a road and similarly, in the
absence of cars, like a track. That is to say, we wish that

Spec\ {u,v} = Road where Road 4/ ¢.d.Road

and
Spec\ {c,d} = Track where Track I wv.Track

We find that Spec \ {u,v} = c.d .Spec\ {u, v} and that Spec\ {c,d} = u.v.5pec\ {c,d}, whichis
what is required. This is the liveness property.

4 The Design

4.1 First Refinement

We first define two agents, a road Light and a R_Sensor; the light shows green if no train is
approaching, i.c., it also acts implicitly as a train sensor. The gone signal is received when the car




has crossed safely. (This would seem to imply that the train is physically stopped if a car gets stuck,
though we need not be concerned with that at this level of abstraction.)

Lightl def green.gone.Lightl + w.v.Lightl

R_Sensor < c.green.d.gone.R_Sensor
Then

R Lightl|R_Sensor \ {gone, green}

The expansion law gives

Rl = c.(1.d.R1+uwv.R1Y)
+
w. (v R1 + c.v.R1))
Rl = 7.d.Rl1+4+uw.R1}

Figure 2: First refinement: R1

The Concurrency Workbench gives R1 =, , O pec; this guarantees that R1 cannot admit illegal traces
such as ucdv or cudv (allowing cars to interleave trains) so safety is assured. This equivalence is
essential; we need to be sure that the implementation allows no illegal traces. In addition, by insisting

on =,,,, We preclude a chain degenerating to the undefined process L (denoted by 2 in [6] and @
in the Concurrency Workbench),

We also find that
R1\A{u,v} =~

must Cde \ {u7 1)}
and

R1\{c,d} =

must

wo.R1\ {c,d}

that is, the liveness property is preserved.




4.2 Second Refinement

An agent T'rain is introduced such that T'rain | Light2 is a decomposition of Lightl. Train sends
the visible signals « and v to the environment, and the hidden signals sensin and sensout to the agent
Light2.

. def - .
T'I"G;Z’IZ = gensin.u.v.sensout.Train

Light2 def green.gone.Light2 + sensin.sensout.Light2
with TL2 = Train | Light2 \ {sensin, sensout}, thatis, T'L2 is a refinement of Lightl

green

R_Sensor

Figure 3: Second refinement: R2

C
We find that T'L2 Smay Lightl and that TL2 o Lightl.

So, then, if we define
rR2% T2 | R_Sensor \ {green, gone}

we find, from the concurrency workbench, that

R2=_ Rl

~may

that is, R2 is safe. The liveness property is weakened, however, i.e.,

R2\ {c,d} =~ Track

must

but
C

R2\ {u,v} ~ppuse Road

This implies that even in the absence of trains, cars might still be prevented from using the crossing.
Though this might not agree with our intuition about our design it is unavoidable in the CCS model
because of aleading 7 in the composition. In the absence of cars, though, the crossing is live for trains.




4.3 Third refinement

We now add an agent C'ontrol such that C'ontrol | Light3 is a decomposition of Light2. Control
receives the signals sensin, sensout from the Train. Where no train is approaching, ok is sent by
Control to Light3 signalling that it is safe to show green, and the signal gone is now sent (by
R_Sensor) to C'ontrol and not to Light3.

def —- .
Control ok.okt.gone.Control + sensin.sensout.Control

Light3 ok green.okt. Light3

Figure 4: Third refinement: R3

Then .
L3 Control | Light3 \ {ok, okt}
and .
T3 c13 | Train\ {sensin, sensout}
We define

Rr3Y TL3|R_Sensor \ {green, gone}

From the Concurrency Workbench we have

R3= R2

may

that is, R3 is safe, but the liveness property has been weakened still further. We now find that

C C
R3\ {c,d} mppusiIrack and R3\ {u, v} ~ s Road




Equality has been lost through internal nondeterminism,
Summarizing, the orderings are

R3 R2= Rl= Spec

~may may ~may

and
C

R3\{c,d} ~pustR2\{c,d} = Ri\{c¢,d} =~

maust

Track

must

and
C C

R3\ {u,v} ~ppust B2\ {1, 0} ~past BRI\ {1, v} =, Road

5 Conclusion

The safety property (mmay equivalence with S'pec) has been relatively easy to maintain throughout the
refinement process; liveness—characterized by must equivalence with either Road or T'rack—has
not.

Where may equivalence with the top level specification is provable we can say with confidence that
the model is safe—or at least, as safe as its specification. But the liveness condition is weakened
(within the limits of the expressive power of the calculus) by intemnal nondeterminism. This does
not reflect our intuition about the behaviours of the systems we have designed; whilst we may have
confidence in our designs, their safety, liveness and so on, there is no way around the fact that once
actions have been restricted in a CCS expansion, the only indicator of their existence is 7 and all 7’s
look the same; in the design, the restricted actions may be enabling liveness, whereas after expansion
they may seem to be precluding it. A '

Whilst this case study does not formally prove the contention that must equivalence between specific-
ations and implementations cannot generally be established, it is nonetheless clear that the problem is
a general one; only by cither contrivance or luck can it be eliminated in any particular case. Leading
7’s in expanded systems are the rule rather than the exception, so any attempt to prove an equivalence
stronger than may between a full behavioural specification and its behavioural implementation is
likely to run into the same problem.

There are a number of possible ways forward; one of these might be through partial specifications [1],
possibly expressed as a set of modal formulae, stating required properties of the system and identifying
proof obligations (a full modal specification only gives an alternative bisimulation semantics). An
alternative approach is to build a degree of nondeterminism into the specification, intended (in this case
study) to mean that we don’t mind whether cars or trains use the crossing first, though the semantics of
unstable agents together with the fact that it is not possible to restrict the scope of 7 make the required
behaviour difficult to model.

The work of Glenn Bruns in collaboration with Praxis Sytems plc [3] is also relevant. In that
paper, Modal Process Logic [9] was used to verify properties of a failure recovery protocol using
the notions of admissable and necessary transitions; an implementation is deemed to be a refinement
of a specification if every necessary action of the specification is matched by a necessary action of




the implementation, and every admissable action of the implementation is matched by an admissable
action of the specification. It may be that properties of safety and liveness of an implementation
vis-d-vis a specification can be captured in this way; this is a subject for future work.

References

[1] E.J. Baillie. Towards a Satisfaction Relation between CCS Specifications and their Refinements.
PhD thesis, University of Hertfordshire, 1992.

[2] Jean Baillie. A CCS case study: a safety-critical system. Software Engineering Journal, 6(4),
1991.

[3] Glenn Bruns. Applying process refinement to a safety-relevant system. Technical Report ECS-
LFCS-94-287, LFCS, Department of Computer Science, University of Edinburgh, 1994,

[4] Rance Cleaveland, Joachim Parrow, and Bemhard Steffen. The concurrency workbench. In
Automatic Verification methods for Finite State Systems, pages 24-37, 1989.

[5] R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical Computer
Science, 34:83-133, 1984,

[6] Matthew Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[7] C.AR. Hoare. Communicating Sequential Processes. Prentice—Hall International, 1985.

[8] Leslie Lamport. Specifying concurrent program modules. ACM Transactions on Programming
languages and systems, 5(2):190-222, 1983,

[9] Kim G. Larsen and Bent Thomsen. A modal process logic. In Third Aﬁnual Symposium onLogic
in Computer Science, 1988.

[10] R. Milner. A Calculus of Communicating systems. Springer Verlag, 1980. LNCS 92.

[11] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.




