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Abstract

This paper addresses three main issues. Firstly, the combination of formal specifica-
tion languages to model proposed systems. For this paper we introduce the dual specification
of a case study system using the formal languages LOTOS [1,11,13] and the Z notation [17]
to capture the behaviour of the complete system, including the modelling of data abstraction,
information hiding and modularisation. Secondly, the production of an industrial-strength
specification using a mechanical, automated CASE tool to verify the syntax of the formal spec-
ification. It is hoped that specifications which are verified mechanically will be more widely
acceptable to industry because of the consistency enforced by the CASE tools used to check
them. Finally, the transition from formal specification to implementation using the dual formal
specification approach introduced in this paper.

We show how a formal specification can be developed and then verified using a me-
chanical syntax/type checking tool running on a desktop PC, Logica’s CASE tool Formaliser
[7,12]. We use a small case study as the foundation for a dual formal language approach to
solving a systems development problem. A LOTOS specification is used to capture the concur-
rent behaviour of the system’s components whereas we use the Z notation to capture the struc-
ture of the data for each process. Certain issues arise regarding the relationship between system
invariants and process behaviour which are not fully covered by LOTOS but are added by the
Z model. :
Our choice of formal languages to specify the case study problem enables us to mech-
anise the verification of the syntax of either the LOTOS specification (using a LOTOS inter-
preter [8,14]) or the Z specification using Formaliser.In this paper we concentrate on the use
of Formaliser to verify the Z specificaticn of the case study system.

Besides the use of a software tool to check the Z we also consider a broader central
theme concerning data abstraction and information hiding and how this might best be achieved
using both LOTOS and Z. It is widely accepted that the solution to a problem can be simpli-
fied by breaking that problem up into parts and solving them with small discrete steps. In
computer systems design and specification we can reduce complexity by modularisation and
abstraction. The ideas discussed in this section of the paper are used as the foundation for an
implementation of the case study system using the object-oriented programming language C++
[18]. We show how information hiding via data abstraction can be achieved in Z, using
schema inclusion and schema calculus (and captured by Formaliser’s multiple-document cross-
referencing). We also show how LOTOS uses a hierarchy of process encapsulations together
with the hiding of communicating gates to achieve information hiding and encapsulation.

The combination of both formal languages presents a more complete picture of the
proposed system to potential implementors, which we believe removes much of the ambiguity
surrounding a specification written in just one formal language with just one perspective.







1 Introduction

In this paper we show how a dual language approach to the formal specification of a case
study system effectively captures the requirements of that system. We also aim to keep the com-
plexity of the specification (and therefore the system) down to a minimum. Experience has
shown that the complexity attached to many of the problems that we as computer scientists solve
can be reduced. Our approach to solving many problems is the same, regardless of the problem;
we break the problem down into manageable parts and then work towards a solution. One obvi-
ous improvement with this modular technique is the reduction of complexity and the increased
maintainability of the systems that we produce. At each stage we would seek to justify our find-
ings and verify our work. Using mechanical checking tools we can speed up the process of pro-
ducing system specifications that are internally consistent and therefore acceptable to both aca-
demics and industry alike.

Our study introduces both a LOTOS and Z specification of the same system. We show
how the specification languages together capture the behaviour and structure of the individual
processes that make up the system. LOTOS [1,2,5,11,13] was chosen to capture the system’s
concurrent behaviour because of its industrial-based background; having been spawned by ISO
for use with network and distributed systems protocol specification [11]. We require a formal
specification language that can give us the power to model the relationships between the temporal
interaction of processes in our system such that the behaviour of those processes can be ob-
served external to the system; that is time ordered communications between processes.

Because of LOTOS’ use of ACT-ONE [4] to model data (using strict algebraic notation)
we require the use of another language to capture the data model of our system more completely
than LOTOS. We chose Z as our second language because it can capture the data structure of
the system’s processes and the manipulation of that data. The low level structure of each process
is modelled more completely by Z than LOTOS and this level of detail justifies its inclusion in
our dual specification strategy.

Both of our chosen formal languages have already been proved in industry. LOTOS
being extensively used by ISO/OSI for network/distributed systems protocol specification [12]
and Z by IBM for its CICS [3] product development. The use of both languages by industry
gave us confidence that they are already known to industry, together with the fact that both lan-
guages have verification tools provided for them [8,9,13,15]. We felt that the interpretation of the
specification and the transition from specification to implementation from academic to industrial
environments would be simplified because of the familiarity of both LOTOS and Z in both of
these working environments.

To illustrate how formal specifications can be checked mechanically we use a software
tool produced by Logica Cambridge Limited, called Formaliser [7,12], which can represent the
specification on a desktop PC. The formal text is verified and diagnostic errors are produced to
aid the specifier in tracking down problems. Explanations regarding the semantics of the formal
language specification become simpler and more readily understood. Mechanical checking leads
to an increased confidence in the internal correctness of the specification, both as a model of the
system and as a basis for implementation.

The structure of this paper is as follows:

» Section 2 describes the case study system used throughout this paper.

« Section 3 describes how the different formal models capture different aspects of the sys-
tem according to characteristics of the formal languages.

» Section 4 describes the composition of the separate processes in the system, together
with alternative views of process composition imposed by the different formal languages
and any changes in the system’s behaviour as a result of that composition.

» Section 5 describes the interaction between processes, including the concurrent aspects
of the system and how each formal language copes with concurrency.

» Section 6 discusses the ideas behind data abstraction and information hiding. We show




how both LOTOS and Z model these two areas of abstraction.

« Section 7 concentrates on the segmentation of the system by grouping processes togeth-
er in order to capture the system’s required behaviour as well as provide the data encapsu-
lation and information hiding discussed in section 6.

» Section 8 describes using Formaliser to verify the Z specification of the case study sys-
tem. The advantages surrounding the use of a CASE tool to aid the specifier in the pro-
duction of a specification are then discussed. We also present evaluation criteria for me-
chanical checking tools and show how these are met by Formaliser.

» Section 9 shows how a smooth transition from specification to implementation can be
achieved as a consequence of our dual specification approach. We show how each formal
language can be interpreted to give a faithful implementation of the required system.

« Section 10: Conclusions are drawn from this dual specification approach. We discuss
the benefits of using two formal specification languages to model systems, together with
the merits arising from the use of mechanical checking tools to verify those specifications.

2 The case study system

Our case study originates from a simple problem which is often given to undergraduate
students as part of a formal specification course. It is a greenhouse control system (GHCS) con-
taining six components all working in parallel. The informal specification of each component is
as follows:

Sprayer (Sp): It can be turned ‘on’ or ‘off’ by either accepting communications from the
environment or the Hygrometer. If the Sprayer is left ‘on’ for too long then it will timeout
and turn itself ‘off’.

Hygrometer (Hy): The Hygrometer process accepts humidity readings from the environ-
ment. It uses these readings to determine whether to tell the Sprayer to turn ‘on’ or ‘off’
and the Window Controller whether to ‘open’ or ‘close’. It can also accept user specified
minimum and maximum settings to determine the humidity range.

Window Controller (WC): The Window Controller accepts communications from either
the Hygrometer or the Heater and the environment which tell it whether to ‘open’ or
‘close’. It has a static minimum and maximum range which it cannot move beyond. If an
attempt is made to adjust the window beyond this preset range then a signal is sent to ac-
tivate the Alarm, thus warning the environment of a problem.

Thermometer (Th): The Thermometer accepts temperature readings from the environment.
Similar in operation to the Hygrometer. The temperature readings are used to determine
whether to tell the Window Controller to ‘open’ or ‘close’ and the Heater to ‘turn up’ or
‘turn down’. This process also has minimum and maximum temperature settings to use
when validating the current temperature.

Heater (He): The Heater accepts communications from the Thermometer which tell it to
‘turn up’ or ‘turn down’. It has a preset range which it cannot be set beyond. Attempts to
adjust the Heater beyond its preset limits will result in a signal being sent to the Alarm,
warning the environment of a problem.

Alarm (Al): The Alarm accepts communications from the Window Controller and the
Heater processes. Upon receipt of a signal the alarm will sound. It can be reset by the en-
vironment or will timeout and turn itself ‘off’. However, the Alarm cannot be activated
from the environment, only via some internal communication.

We can represent the lines of communication between these six processes as follows:




Figure 1

The simplified diagram of the complete system in Figure 1 omits the exact details of the
communications as it only shows how the processes connect to each other and their environ-
ment. It does not show the nature of those connections.

3 Modelling the system with complementary formal languages

Using two formal specification techniques we can build two different views of the green-
house control system (GHCS). For the LOTOS view of the GHCS we can identify those parts
of the system that perform actions typically modelled by a concurrent specification language.
The communications that take place between the GHCS components and the behaviour of each
individual component are the areas of the model that are captured by LOTOS. However, LOTOS
cannot give us a complete picture of the system on its own; particularly in view of the data struc-
tures associated with each system component and system invariants ranging over the whole sys-
tem. Therefore, we use the Z notation [18] to model the data and invariants in the GHCS and
capture any requirements which LOTOS is unable to model.

We adopt a similar approach for specifying the GHCS in the complementary formal lan-
guages used in this paper. We can identify individual GHCS components easily due to the nature
of the system; each component being quite independent. The modular approach that we adopt for
system design and specification is evident in the specification of the GHCS in both of the cho-
sen formal specification languages. For example, the GHCS components can be specified sim-
ply in LOTOS as separate processes thus: :

process Sprayer[SpGates|(s:State) : noexit :=

process Hygrometer[HyGates J(min: Humid, max: Humid) : noexit :=
process Window[WCGates](cw:Level) : noexit :=

process Thermometer[ThGates](min: Temp,max:Temp) : noexit :=
process Heater[HeGates](ch:Level) : noexit :=

process Alarm[AlGates](s:State) : noexit :=

Figure 2

where each process can reference operations belonging to other processes in the system if those
operations appear as part of the gate list (e.g: as an element of the set SpGates). The thread of
control within the system woven by these referenced operations gives us the diagram seen earlier
in Figure 1. The parameters [XGates] specifying available points of entry into the process and




(p: Q) specifying some state variable p of type Q used to capture the current state of the process
(LOTOS stores the process’ state dynamically, unlike the static data modelled in Z).

We need to keep encapsulating the state of each process because LOTOS has its data
model founded on an algebraic specification language, namely ACT-ONE [4]. This implies that
we cannot specify the storage of some static state inside a process. We cannot model formally
the static data (or state) of a process in LOTOS, like the data contained within a record structure
of a programming language; that is the function of the Z specification. Consequently, the repre-
sentation of a process’ state is continually referenced when calling the process and is not actual-
ly stored anywhere — the state of the process is totally dynamic. Alternative views concerning
the formal modelling of data in communicating systems do exist [2], but this topic is beyond the
scope of this paper. Examples of encapsulating the current state of a process can be seen
throughout the LOTOS specification of the GHCS in the appendices.

For the Z formal specification we specify each GHCS process as a collection of Z
schemas. Each schema contains the data structure (or state) of the process. The invariants on the
process reinforce the algebraic invariants previously specified in LOTOS. We would specify the
Hygrometer in LOTOS as: ’

HyGates def {SetMinHumid,SetMaxHumid, ReadHumid,sprayOn,sprayOff,open,close]

process Hygrometer[HyGates J(min: Humid, max: Humid) : noexit :=
SetMinHumid ? h: Humid; 4
([h le max] — Hygrometer[HyGates J(h,max)

[]
[h gt max] — Hygrometer[HyGates ](min,max))

[]
SetMaxHumid ? h: Humid;
([h ge min] — Hygrometer[HyGates](min,h)

{]
[h It min] — Hygrometer{HyGates](min,max))

[]
ReadHumid ? h:Humid;
([h It min] — sprayOn;close; Hygrometer[ HyGates J(min,max)
[]
[h gt max] — sprayOff:open; Hygrometer[HyGates [(min,max)

[]
[h ge min and h le max] — Hygrometer[HyGates |(min,max})
endproc (* Hygrometer *)
Figure 3

and the Z equivalent as a collection of schemas, starting with the definition of some constants,
Boolean type redefinitions and the base state schema.

minReading
maxReading
on == True
off == False

Reading == {n:N | minReading <n < maxReading}

[ Hygrometer
minHumid : Reading
maxHumid : Reading

minHumid < maxHumid
maxHumid = minHumid

Figure 4

The basic structure of the Hygrometer (Figure 4) will be used during the implementation
stages to form a class structure for the object-oriented implementation. Each entry in the basic




declarations part of the schema (above the central dividing line) denoting a field in the class
structure. The remaining schemas required to complete the Hygrometer specification can be seen
below (Figure 5). These schemas provide us with the ability to modify, reference and initialise
the state of the Hygrometer process respectively.

— AHygrometer
Hygrometer
Hygrometer’

— ZHygrometer
AHygrometer

minHumid’ = minHumid
maxHumid’ = maxHumid

[ initHygrometer —
Hygrometer’

minHumid = minReading
maxHumid = maxReading

Figure 5

The initialisation of the Hygrometer process (schema initHygrometer) only occurs once
and dictates the state of the Hygrometer when the system becomes ‘live’. We can view this pro-
cess initialisation as a one-off statement in the main body of the executable code (in terms of the
system’s implementation).

One area that we must be wary of when using two quite distinct formal languages, such
as LOTOS and Z, is to remember which model we are currently using. Although both models
cover the same system they show different views of that system. To avoid confusion we have
found that it is good practice to view each model separately when considering the whole system
and jointly only when viewing the separate processes. Ideally the Z model is used when con-
structing the basic structure of each process as it shows more detail about the data structures at
this foundation level. As the specification (or implementation) grows the LOTOS behavioural
model is brought into view. It should never be the case that any part of the specification contra-
dicts the complementary specification’s model of the system. If a contradiction in either data
model, data manipulation or behavioural model presents itself during development then an error
in the basic design of the system has been found. We could argue that herein lies another reason
for a dual approach to system’s design and specification; yet another safety net to catch errors in
the specification of the system.

To summarise, as long as we are aware of which view of the system we are currently
looking at, in terms of which formal model is being reviewed, then the problems associated with
digesting too much formalism and therefore too much complexity are reduced. We feel that the
benefits of using two formal languages to capture a system outweigh the potential pitfalls associ-
ated with a single formal specification approach.

4 Process Composition

The case study system has six separately identifiable processes which can be brought to-
gether to form the whole GHCS. In some systems the boundaries between processes can be
more difficult to define. It could be possible for one large process to perform the tasks of several
smaller ones. However, should this monolithic organisation prove to be the case then we have
lost much of the flexibility that modularity provides. The divide-and-conquer strategy that we




adopt to solve many problems steers us away from such large structures. With our LOTOS and
Z specifications we seek to provide flexibility and maintainability together with a formal model
of the system. The format of both LOTOS and Z specifications provide us with a means of mod-
ularising the specification, via separate process and schema definitions.

In LOTOS, the different uses of three composition operators (lll — interleaved, I[x]l —
selective parallel and Il — full synchronisation) will effect the behaviour of the overall system de-
pending on how those operators are combined together. Both the interleaving and full synchroni-
sation operators can be defined in terms of the selective parallel operator using the following
equivalences, noting that the alphabet o of a process pN (shown as apN) is the set of actions that
process pN can engage in:

opl = {all,al2} and op2 = {a2l,a22}

e pl ll p2 =pl l[opluop2]l p2

o pl Il p2 =pl |[¢]| p2 where ¢ denotes the empty set.

Full synchronisation is equivalent to selective parallel composition if the gate-list x is the
set of all actions defined for both composed processes. Process interleaving is equivalent to se-
lective parallel composition if the gate-list x is the empty set; i.e: no synchronisation occurs, leav-
ing the composed processes to proceed independently.

Multiple communications across process can be achieved in LOTOS by using common
gate names between more than one process. Synchronisation between two processes can then be
extended to multi-process communication (synchronisation) by composing several processes to-
gether using selective parallel composition, as shown below:

((p1 \[x]t p2) \[x]1 p3) \[x]! p4

where the processes p/ and p2 synchronise together, then with p3 and finally with p4. The sys-
tem will not progress until they all synchronise together but we can view the expression as oc-
curring in the order dictated by the brackets.

The Z notation does not provide us with a means of scheduling processes that are co-
joined, but this composition is not important as part of the Z model. For the complementary Z
specification we do not have to worry about alternative behaviour based on the order of composi-
tion operators. In Z we can simply use schema reference inside the actual schema that we wish to
partner with other processes in the system. Figure 6 is an example of schema inclusion, bringing
parts of the GHCS system together:

—  Hygrometer
AHygrometer
SprayerProcess
WindowControllerProcess

sprayOn! : B
sprayOff! : B

((ReadHumid? A current? < minHumid) = sprayOn! = True A ...

Figure 6

where the Hygrometer process uses operations supplied by both the Sprayer process and
WindowController process. Show diagrammatically as:




sprayOn
|

sprayOff

Figure 7

which shows the hidden communications sprayOn! — sprayOn? and sprayOff! — sprayOff?
within the SpHy segment. Any components wanting to use the Sprayer/Hygrometer pairing
would simply include a reference to SpHy in their schema’s basic declarations section.

5 Capturing Concurrent Behaviour

In our GHCS model an expression like (pI I[x]| p2) I[x]l p3 would deadlock the
Hygrometer and the Thermometer, together with the Heater and Alarm which all share the
Window Controller resource. Deadlock would occur if all of these processes fail to synchronis-
ing on the same action. Processes pl/p2 could progress but they in turn would have to wait on
process p3 to synchronise before the whole system could progress.

Our aim throughout has been to keep processes in certain parts of the system from hav-
ing influence over processes in other non-related parts of the system. A higher-level view of the
system reveals distinct segments in the structure of the GHCS.

e Segment 1 (SpHy) = Sprayer/Hygrometer

» Segment 2 (ThHe) = Thermometer/Heater

o Segment 3 (STWin) = SpHy/ThHe/Window Controller
o Segment 4 (GHCS) = STWin/Alarm

shown diagrammatically as:

= SpHy

= ThHe

= STWin

= GHCS

Figure 8

Both the SpHy and ThHe segments communicate with the Window Controller to form
the STWin segment. The SpHy and ThHe segments are not permitted to communicate with each
other because they are required to share the Window Controller resource and consequently use
the same lines of communication; namely open and close. We enforce this mutual exclusion
using the interleaving operator (lll) to compose SpHy and ThHe segments together.

In Z this exclusion is not necessary because there are no timing constraints to worry
about. The Z concentrates on the fact that a communication occurs to some remote operation and
not when that communication occurs in the temporal model. Here we see the different views of
the GHCS captured by our two distinct formal models.

In LOTOS the composition is quite straight forward provided that we fully understand
the behaviour of the system according to our combination of the composition operators.
However, in Z the order of events cannot be dictated by the order of the included schemas in a




segment schema, such as SpHy. The Z model is concerned with what processes are connected to-
gether, not the nature of those connections. Our Z specification does not need to know about the
scheduling of the processes in terms of concurrency.

6 Information Hiding and Abstraction

In LOTOS and Z there are ways of hiding internal actions from separate processes in the
system and from the environment (the outside world). LOTOS provides the hide operator to re-
strict the observation of process gates. For each action that is hidden from the environment an in-
ternal i-action occurs. The example below shows the syntax of the hide operator.

process System[a,b,c] : exit :=
hide a in
a;b;c;SystemA a,b,c]
endproc
Figure 9

The sequence of actions that System performs will resemble the action trace <i — b —
¢>, where i is the hidden action. By restricting certain actions we can enforce the behaviour of
our system to keep the environment from gaining access and influencing the processes within. In
LOTOS a combination of action hiding, selective parallel composition and interleaving will keep
the processes separate. Therefore maintaining the encapsulation and modularity that we require
to capture the required behaviour of the system. This encapsulation allows us more freedom
when specifying complex systems.

With our Z version of the GHCS specification the hiding of internal communications be-
tween segments inside the system cannot be performed as they are in LOTOS because there is
no distinction between different operations used to modify the same part of the state. For exam-
ple, the use of either sprayOn! and SetSprayOn! would not be distinguished by the system as ei-
ther will imply some modification to the Sprayer state. LOTOS has the problem of different
gates being linked to the same parts of the state so it must differentiate between them by hiding
the internal gates and allowing the external gates to be observed (e.g: SetSprayOn is observable
whereas sprayOn is hidden). If we restrict a schema by some process’ field then neither the sys-
tem or its environment will have access to that part of the process’ structure. Ideally we would
simply restrict the hidden operations to stop them being accessed outside a segment, as shown
below:

SpHy
SprayerProcess \ {sprayOn?, sprayOff?}
HygrometerProcess \ {sprayOn!, sprayOff!}

Figure 10

7 Building the System

The separate segments that make up the modular GHCS can be brought together via pro-
cess composition (LOTOS) and schema inclusion and schema calculus (Z). For LOTOS we re-
quire the following definitions for the gate lists per process to help in the simplification of the
specification:

spGates def { SetSprayOn,SetSprayOff,sprayOn,sprayOff]
hyGates def { SetMinH umid,SetMaxHumid, ReadHumid, sprayOn,sprayOff,open, close)
wcGates def {SetWindow,open,close,on]




thGates def {SetMinTemp, SetMaxTemp,ReadTemp,inc,dec,open,close}
heGates def {SetHeat,inc,dec,on}
alGates def {on,SetAlarmOff}

and then introduce the shorthand notation for use with the LOTOS specification of the parame-
ter lists for each of the segments,

spState def {sprayer}

hyState def { minHumid,maxHumid)
wcState Jgf {window}

thState d_e} {minTemp,maxTemp}
heState dj_ef {heater}

alState def {alarm}

The Sprayer and Hygrometer processes both need to synchronise on common actions.
We compose them using selective parallel composition and then encapsulate them with the hide
operator. This encloses the segment SpHy and stops any influence on the communications that
take place within the segment via the gates sprayOn and sprayOff. Below, in Figure 11 are
LOTOS and Z versions of the SpHy segment, together with a diagram showing a representation
of the segment:

e process SpHy[spGates UhyGates](spState:State, hyState: Humid) : noexit :=
hide sprayOn,sprayOffin

Sprayer[spGates](spState) \[sprayOn,sprayOff]\ Hygrometer{hyGates](hyState)
endproc

SpHy
SprayerProcess \ {sprayOn?, sprayOff?}
HygrometerProcess \ {sprayOn!, sprayOff!}

SetSprayOn™]

SetSprayOff—

\ s 277
e "/ sprayOff

open
close

Figure 11

The segment ThHe encapsulates the Thermometer and Hygrometer processes in much
the same way as that of SpHy:

o process ThHe[thGates UheGates](thState: Temp, heState:Level) : noexit ;=
hide inc,dec in

 Thermometer[thGates](thSate) |[inc,dec]| Heater[heGates](heState)
endproc

ThHe
ThermometerProcess \ {inc!,dec!)
HeaterProcess \ {inc?,dec?}




open close

SetMinTemp— 0
SetMaxTemp—y
ReadTemp =]

SetHeat
Figure 12

At alevel above the SpHy and ThHe segments, is the ST Win segment which brings these
two low-level components together whilst maintaining their individuality. Parallel composition is
used to achieve this requirement. We not want to broadcast any information about the internal
workings of SpHy or ThHe. For example, the gates sprayOn, sprayOff, inc and dec which are
defined in SpHy and ThHe. They are hidden from STWin and cannot be accessed by it.

We use interleaving to enforce a strict separation between SpHy and ThHe because they
contain common gates and would consequently have to wait on each other, forcing delays and
possibly deadlock. We can selectively compose SpHy and ThHe with Window Controller so that
they can talk to Window Controller, but not both at the same time and not to each other.

o process STWin[spGates,hyGates,thGates,heGates,wcGates]|
(spState:State,hyState: Humid, thState: Temp, heState: Level,wcState: Level) : noexit :=
hide open,close in
(SpHy[spGates UhyGates](spState:State, hyState: Humid) 11|
ThHe[thGates\UheGates ](thState: Temp,heState:Level)) |[open,close]l

Window[wcGates J(wcState)
endproc

STWin
SpHy\ {open!, close!}
ThHe \ {open!, close!}
WindowControllerProcess \ {open?, close?}

ReadHumid
SetMinHumid SetMaxHumid

SetSprayOn

on
SetSprayO,

SetMinTemp.
SetMaxTemp
ReadTemp

SetHeat
Figure 13




We can complete the GHCS by including the Alarm process and hiding the communica-
tions with it so that the environment cannot influence the activation of the Alarm. The complete
modularised specification follows, together with a diagrammatic representation of the system.

e process GHCS[spGates,hyGates,thGates,heGates,wcGates,alGates]
(spState:State,hyState: Humid, thState: Temp, heState: Level,wcState: Level,
alState:State) : noexit :=
hide on in
STWin[spGates,hyGates,thGates,heGates,wcGates]
(spState:State, hyState: Humid, thState: Temp, heState: Level,wcState: Level)

[on]l
Alarm[alGatesJ(alState)
endproc
GHCS
STWin\ {on!}
AlarmProcess \ {on?}
ReadHumid
SetMinHumi SetMaxHumid
SetWgndow
. e
SetSprayOn sprayOn
Hy
SetSprayOfff sprayOff N J close
c{} Op n
i . close .
SetMinTem - 7 =\ Al | SetAlarmOff
SetMaxTem - \ Th ‘on
ReadTemp |
‘ . in dec
‘*é He
SetHeat
Figure 14

We have built the GHCS specification to be flexible in terms of modularisation. By
using the language constructs to separate each process we have kept the system partitioned and
free from unnecessary complexity. The restrictions on the Z equivalent schemas for each seg-
ment perform the same task as the hide operator in LOTOS; the abstraction of the segments op-
eration so that unauthorised references cannot occur.

8 Verifiable ‘Industry-Strength’ Z using Formaliser

After we have produced our specifications we would like to assure ourselves that what we
have written is consistent and syntactically correct. In this section we concentrate on the verifica-
tion of the Z specification of the GHCS using Formaliser [7,12] and discuss the benefits that
such a tool can bring to the specification process.

One of the problems with formal specifications is that an internal inconsistency in the
specification will allow any property to be proved as a theorem. Consider the following example:




We can complete the GHCS by including the Alarm process and hiding the communica-
tions with it so that the environment cannot influence the activation of the Alarm. The complete
modularised specification follows, together with a diagrammatic representation of the system.

« process GHCS[spGates,hyGates,thGates,heGates,wcGates,alGates ]
(spState:State,hyState: Humid, thState: Temp, heState: Level, wcState: Level,
alState:State) : noexit :=
hide on in
STWin[spGates,hyGates,thGates,heGates,wcGates]
(spState. State,hyState: Humid, thState: Temp, heState: Level,wcState: Level)

I[on]!
Alarm[alGates](alState)

endproc

GHCS

STWin\{on!}

AlarmProcess\ {on?}

ReadHumid
SetMinHumid SetMaxHumid

SetWindow

SetSprayOri

SetSprayO

SetMinTem,
SetMaxTem
ReadTemp

SetAlarmOff

SetHeat
Figure 14

We have built the GHCS specification to be flexible in terms of modularisation. By
using the language constructs to separate each process we have kept the system partitioned and
free from unnecessary complexity. The restrictions on the Z equivalent schemas for each seg-
ment perform the same task as the hide operator in LOTOS; the abstraction of the segments op-
eration so that unauthorised references cannot occur.

8 Verifiable ‘Industry-Strength’ 7 using Formaliser

After we have produced our specifications we would like to assure ourselves that what we
have written is consistent and syntactically correct. In this section we concentrate on the verifica-
tion of the Z specification of the GHCS using Formaliser [7,12] and discuss the benefits that
such a tool can bring to the specification process.

One of the problems with formal specifications is that an internal inconsistency in the
specification will allow any property to be proved as a theorem. Consider the following example:




value = open A —open - system will terminate A nuclear reactor is safe

Consistency in a formal specification can be difficult to prove, but inconsistency renders
the specification useless as we cannot trust any conclusions that we derive. Formal specifications
are notoriously difficult to produce and maintain, so if they are to be used in earnest, tools are re-
quired that will help to overcome these problems, leaving the specifier free to concentrate on the
important aspects of the specification. This section establishes metrics for the evaluation of for-
mal language checking tools. We then evaluate Formaliser in the light of these metrics.

Formaliser is an interactive software tool which can check the internal consistency and
syntax of formal specifications written in the Z notation [17]. It is produced by Logica
Cambridge Limited (U.K) as a CASE tool for software engineers [7,12]. The latest version of
Formaliser runs under Windows 3.1 on IBM compatible PC's and is therefore easily accessible,
both to academics and those working in industry. It makes use of the standard Windows envi-
ronment and only permits valid commands to be entered via pull-down menus, thereby enforcing
a strict control on the user. '

Each Z expression, using a specific grammar, forms part of a parse tree structure which
is displayed to the user in the standard Z schema format. A typical Formaliser screen layout is
shown in the following diagram:

Figure 15

Unlike some other formal language checking tools [9] Formaliser can check the syntax
of Z specifications using the complete Z notation, rather than a subset of the notation. External
documents that make up the complete specification can be referenced by linking them together.
For the GHCS we use this referencing to enforce the encapsulation of GHCS processes to form
groups of process (segments), such as SpHy and ThHe (see Figures 11 to 14). Any changes to
the specification's documents will be included in the checking process — internal consistency
across the whole specification is therefore guaranteed.

Formaliser has two ways of catching errors that might appear in formal specifications.

1. Text which is typed directly into the tool is parsed immediately — on-the-fly. Any syn-

tax errors are displayed in an error window, requiring the user to remove the errors before
being allowed to proceed.




checking. The Z grammar is used to determine the validity of the selected expressions,
where the syntax and types of variables are checked for consistency — a diagnostic error
window being displayed if there are any problems, as seen below:

2. Type errors are identified when parts of the specification are selected for on-board

Figure 16

The selected text in Figure 16 would pass the syntactic check on text entry because the
expression conforms to the Z notation’s syntax. However, once the schema is complete and a
full check is performed Formaliser would catch the type mismatch error and display the follow -
ing information in a diagnostic error window:

Figure 17




Any errors found in the specification will be relayed back to the user so that the appro-
priate action can be taken. The solution to the previous example would be to declare k? as a
power set of type Key and resubmit the schema for checking.

In order to evaluate Formaliser as a formal language checking tool, to aid the software
engineer, we need to ensure that it meets a pre-defined set of criteria, such as those found in
Fisher (1991) [6]. These criteria are listed below, together with brief evaluations of the relevant
aspects of Formaliser:

1. Produce quantitative and verifiable designs.

The production of quantitative and verifiable designs is central to Formaliser's own de-
sign. The on-the-fly and on-board checking facilities stop any inconsistencies and errors
from creeping into the specification's text. By referencing the complete Z notation, togeth-
er with local and external definitions, confidence can be established that the specification
is internally consistent and free from error.

2. Simplify and decompose requirements and designs into manageable components.

The multi-document editing that Formaliser provides can help with the decomposition of
the specification into manageable components. Details from one specification document
can be copied into any other document and logically linked together using the
“Inclusion” statement at the start of any Formaliser document.

3. Support change by being adaptable.

Change and modifications to the specification are provided for by Formaliser's built-in
editor. The cross-referencing of any additions to the specification is provided by the link-
ing facilities within Formaliser.

4. Save time and money. Aid the production of cheaper and more efficient formal specifica-
tions.

The overall speed of production of Z specifications can be increased thanks to
Formaliser's checking facilities. The savings in time and money are further enhanced by
the automatic transformation of the specification's text into a LaTeX source file, for the
production of high quality hard copies.

From our own experiences with this and previous systems we have found that it is con-
siderably easier to write consistent Z specifications using Formaliser to check our work for er-
rors. As with many institutions, there are few experts available to check our work at short notice.
We have used Formaliser to overcome the problem of finding syntactic and type related errors
in our initial work. Moreover, some further issues surrounding the difficulties with producing
formal specifications are also addressed by Formaliser — such as availability and accessibility.
The user-friendly interface and availability on IBM compatible PC's makes it easily accessible
and therefore provides more people with the chance to use a formal language checking tool in the
production of their specifications.

9 Implementation in C++

, As a consequence of producing two formal specifications and mechanically checking

them we can proceed with the implementation of the specified system with the knowledge that

many areas of ambiguity and assumption have been removed due to the increased formalism. We

have introduced the idea of the dual formal specification of a system, rather than the single view
modelled by just one language.

At the implementation stage we can begin to see how each formal language can help in

the development of a working system. The identification of potential objects or abstract data




types has already been performed. For example, the separate processes within the GHCS are
idea candidates for classes in the object-oriented programming language C++ [18]. We can de-
fine the structure of these classes using the state schemas provided by our Z specification of the
system. Any relationships between the classes can then be derived from the composition of the
processes in LOTOS and schema inclusion or schema calculus in Z. The initial stage in the de-
velopment (having defined the classes to be modelled by the software) is to use the Z specifica-
tion to structure each class and provide functions to operate upon that class. Consider the follow-
ing class definitions written in C++:

// define Hygrometer first to resolve forward referencing error.
class Hygrometer;

class Sprayer

{
private:
Boolean sprayerState;

public:
void sprayOn(void);
};

class Hygrometer
{
friend void Sprayer::sprayOn(Hygrometer *hyPtr);

private:
short minHumid;
short maxHumid;

public:
void SetMinHumid (short min);

}:

The relationship between the Sprayer and Hygrometer is defined as friend to enable
the Hygrometer to access only those functions of another class that are listed. We can use either
specification to tell us about the relationships between processes. However, the Z provides us
with a clearer picture of the internal structure of each class and the LOTOS with a view of how
the classes interact. For the operations required by each process we use the LOTOS to identify
the names and functionality of the operations. Because of the close resemblance between
LOTOS and a structured programming language the transition between the specification and the
source code is minimal. Consider the following LOTOS and C++ extracts for the behaviour of
the SetMinHumid function for the Hygrometer process :

hyGates def {SetMinHumid, SetMaxHumid,ReadHumid,sprayOn,sprayOff,open,close}

process Hygrometer[hyGates](min: Humid,max: Humid) : noexit :=
SetMinHumid ? h:Humid;
([h le max] — Hygrometer[hyGates ](h,max)

[h gt mw{]] — Hygrometer[hyGates J(min,max))
endproc ( * Hygrometer *)
Hygrometer: : SetMinHumid (void)
f short min=minHumid;
cout << “Please enter new Minimum Humidity: ";

scanf ("&d", &min) ;
cout << "\n";




if(min <= maxHumid)
minHumid = min;
} // end-SetMinHumid

The structure of the C++ code follows closely the LOTOS structure. Each of the re-
maining processes and their operations can be encoded by using the LOTOS specification as a
guide. The relationships between classes (processes) using the friend facility and the subse-
quent implementation of the process operations directly from the LOTOS all point towards a
smooth transition from specification to implementation.

Notice how we used the Z early on in the implementation stages to derive class struc-
tures. The use of Z at the low-level design of the code underlined the main contribution that Z
gave us as part of our development strategy. The LOTOS specification then proved to be useful
during the development of the behavioural model. The hard work throughout the whole course of
our system’s development was done at the start of the cycle; during the specification stages. The
dual specification approach that we have adopted forces us to be more rigorous during the speci-
fication stages. However, the scope of the two specifications leave us relatively few issues to re-
solve in order to implement the design. Subsequent maintenance of the system is also reduced as
a direct result of this early work as the modularity of the code enhances our ability to single out
problem areas and modify them without disturbing other parts of the system.

10 Conclusions

The work carried out as part of the research for this paper has given us a new insight into
a different approach to specifying computer systems using formal languages. The use of two
languages, chosen for their acceptability to industry and formal expressive power, gives us the
ability to address issues surrounding vague areas in a system’s specification. In the past, using
just one formal language, certain assumptions had to be made to cope with the lack of formalism
in key areas of a system’s design. In this paper the GHCS would have a partial model of the
structure of each process if LOTOS were the only formal specification language available to the
software development team. A decision about the structure of the processes may be left until the
last possible moment because of the lack of any strict guidelines regarding the internal workings
of each system process. We feel that this vagueness and possible ambiguity should be removed
from the development process at the very start of a system’s design. By maintaining a tight grip
on all aspects of design and specification we can ensure that errors in development do not occur
as a direct result of a lack of formalism attached to certain parts of a system.

Together with our choice of formal languages we must also ensure that support is avail-
able to check the validity of the languages. Our example case study was modelled using two lan-
guages which are well supported by software tools supplied for mechanical verification. We have
concentrated on the Z notation [17] and Formaliser tool [7,12] but the LOTOS language also
has software tool support [8,14]. Further work in this area could be based on the evaluation of
tools used to support LOTOS, as opposed to those for Z.

The benefits of using software tools to check formal specifications are obvious to those
of us who struggle through pages of unfamiliar Z specifications in order to find errors with the
syntax/scope and types. With Formaliser we can begin to see how the production of correct and
consistent specifications can become possible. Syntactically incorrect expressions cannot be
submitted to the specification because of the on-the-fly parser. Type inconsistencies can also be
spotted by the on-board checking facilities. Therefore, contradictions in the specification can be
traced. One important point to remember is that Formaliser cannot be held responsible for the
completeness of the specification or ensure that it meets the user’s requirements — these areas
are still the responsibility of the specifier. Productivity of the software engineers who use
Formaliser can be improved because constant checking of the Z by hand does not have to be
carried out. The consistency and syntactic correctness of our specification has already been
checked. As long as we have confidence in the tool then there is no need to repeat the checking
process. With tools such as Formaliser and its LOTOS equivalents software engineers can have
more confidence that their specifications do not contain contradictions and that conclusions
drawn from the specifications can be trusted, thus yielding better results. For more information




the reader is referred to Formaliser's user guide [12], and a recent evaluation report [19].

The transition from specification to implementation can be made easier if the specifica-
tion adopts a certain style or layout similar to the final source code. LOTOS has such a recog-
nised style and programmers who use LOTOS specifications can easily recognise areas of the
specification that will immediately translate into a programming language. Although the Z nota-
tion is not directly related to programming languages, it does have the power to express complex
data structures used in implementation. The exact implementation of those structures does re-
quire some degree of knowledge as to the best way to interpret certain parts of the specification
but informed programming choices can be made based on a knowledge of both the specification
and implementation languages. The more complete the formal model of a system is then the bet-
ter the implementation that will come from that model.

The different perspectives of a proposed system that are provided by a dual specification
approach help us to provide a system that meets the requirements of the user better than partial-
model specifications, simply because more of the system has been captured formally and cannot
be improvised. Fewer gaps exist in the formal model and therefore ambiguity and assumption
cannot weaken the structure of the specification. The combination of alternative formal approach-
es and checking tools provide us with a solid foundation from which to develop future systems.
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Appendix A

A.1 Basic Declarations and Redefinitions

The following basic declarations are used throughout the text of the specification. These
types can be regarded as constants which only need be defined once at the top of the
specification.

Boolean ::= True|False
minReading == 0
mazReading == 100
Reading == {z : N|minReading < z < mazReading}
minLevel ==
mazLevel ==
Level == {y : N|minLevel < y < mazLevel}

A.2 Sprayer process state definitions

The Sprayer process state definition only stores the process’ state which can be modified
via the operations defined in the SprayerProcess schema.

Sprayer
[' sprayState : B

ASprayer
Sprayer
Sprayer’

__ESprayer
ASprayer

sprayState’ = sprayState

An initial state for the Sprayer is off (or False). This initialisation is only called once
during the lifetime of the system.
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—initSprayer
Sprayer’

sprayState’ = False

The behaviour of the Sprayeris defined in the following schema. The predicates for
Sprayer state that neither of the inputs into the schema may hold the same Boolean
value. If this were true then all inputs would occur at once. The first predicate stops
multiple communications to a single process. Only one input can be dealt with at any one
time. All processes in the GHCS carry the same predicate to prevent input overloading.

The remaining predicates state that, provided that the input value (X7) is true
then the right-hand-side of the expression may be evaluated. The predicates in the
schema, SprayerProcess conform to the behaviour of the LOTOS equivalent specification
in appendix B, but one main difference is that the same action results from a true
evaluation of the left-hand-side of the SetSpray... prdicates. LOTOS had two distinct
operations for this state modification. For example, LOTOS evaluates SetSprayOn? and
sprayOn? as separate inputs and deals with them separately.

__SprayerProcess
ASprayer
SetSprayOn? : B
SetSprayOff 7 : B
sprayOn? : B
sprayOff 7 : B

—(SetSprayOn? < SetSprayOff 7 < sprayOn? < sprayOff 7) A
(((SetSprayOn? V sprayOn?) = sprayState’ = True) V
((SetSprayOff? V sprayOff ?7) = sprayState’ = Fulse))

A.3 Hygrometer process state definitions

The Hygrometer process state is defined below, together with initialisation and be-
havioural definitions.

___ Hygrometer
minHumid : Reading
mazHumid : Reading

minHumid < mazHumid
mazHumid > minHumid

A Hygrometer

Hygrometer
Hygrometer’
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= Hygrometer
A Hygrometer

minHumid' = minHumid
mazHumid' = mazHumid

__wmitHygrometer
Hygrometer'

minHumid' = minReading
mazHumid' = mazReading

The predicate part of HygrometerProcess follows the conventions introduced in section
A.1 (Sprayer) where a guard is placed in the process to prevent multiple inputs evaluating
to true and influencing the process’ state and those connected to it (e.g: Sprayer and
Window Controller). Notice the use of HYopen! and HYclose! to signify the origin of
the messages aimed at the Window Controller.

__ HygrometerProcess
A Hygrometer
SprayerProcess
WindowControllerProcess
SetMinHumid? : B
SetMazrHumid? : B
ReadHumid? : B

min? . Reading

maz? . Reading

current? : Reading

sprayOn! : B
sprayOff! : B
HYopen!: B
HYclose! : B

=(SetMinHumid? < SetMazHumid? < ReadHumid?) A
(((SetMinHumid? A min? < mazHumid) = minHumid' = min?) V
((SetMazHumid? A maz? > minHumid) = mazHumid' = maz?) V
((ReadHumid? A current? < minHumid) = sprayOn! = True A HYclose! = True) V
((ReadHumid? A current? > mazHumid) = sprayOff! = True A HYopen! = True)))

A.4 Thermometer process state definitions

__Thermometer
minTemp : Reading
mazTemp : Reading

minTemp < mazTemp
mazTemp > minTemp
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_ AThermometer
Thermometer
Thermometer’

__EThermometer
AThermometer

minTemp' = minTemp
mazTemp’ = mazTemp

__nitThermometer
Thermometer'

minTemp’ = minReading
mazTemp' = mazrReading

__ ThermometerProcess
A Thermometer
HeaterProcess
WindowConltrollerProcess
SetMinTemp? : B
SetMazTemp? . B
ReadTemp? : B

min? : Reading

maz? : Reading

current? : Reading

inc! : B
dec! : B
THopen! : B
THclose! : B

~(SetMinTemp? < SetMazTemp? < ReadTemp?) A
(((SetMinTemp? A min? < mazTemp) = minTemp’ = min?) V
((SetMazTemp? A maz? > minTemp) = mazTemp’ = maz?) V
((ReadTemp? A current? < minTemp) = inc! = True A THclose! = True) V
((ReadTemp? A current? > mazTemp) = dec! = True A THopen! = True)))

A.5 Heater process state definitions

__ Heater
heatLevel : Level

minLevel < heatLevel < mazLevel
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__AHeater

Heater
Heater'

__EHeater

A Heater

heatLevel' = heatLevel

__initHeater

Heater!

heatLevel’ = minLevel

__ HeaterProcess
A Heater
AlarmProcess
SetHeat? : B
level? ;. Level
me? . B
dec? : B
on!: B

—(SetHeat? < inc? < dec?) A

((SetHeat? = heatLevel’ = level?) V

((inc? A heatLevel < mazLevel) = heatLevel' = heatLevel 4+ 1) V
((inc? A heatLevel > mazLevel) = on! = True) V

((dec? A heatLevel > minLevel) = heatLevel' = heatLevel — 1) V
((dec? A heatLevel < minLevel) = on! = True))

A.6 WindowController process state definitions

_ WindowController

windowLevel : Level

minLevel < windowLevel < magzLevel

_ A WindowController

WindowController
WindowController!

__EWindowController

AWindowController

windowlLevel = windowlLevel
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__nitWindowController
WindowController'

windowlLevel = minLevel

The Window Controller process receives communications from two separate sources
(as does the Alarm) and it must differentiate between those two sources. Either the
Hygrometer or the Thermometer process can request an open or close operations from
the Window Controller. To stop contradiction between two inputs (which can carry
different messages) some individual identity is required, hence the TH/HY prefix on
the open inputs. See the double implication predicate in the segment schema STWin in
section A.6 to see how we can ensure that both inputs have different values. The LOTOS
equivalent of this process’ behaviour uses one common gate name to address the multiple
process communication using open? and close ?because LOTOS will buffer the inputs (as
it is capable of modelling ordered events — unlike Z).

__ WindowControllerProcess
A WindowController
AlarmProcess
SetWindow? : B

level? : Level

HYopen? : B

HYclose? : B

THopen? : B

THclose? : B

on!: B

—(SetWindow? < open? < close?) A
((SetWindow? = windowLevel = level?) V
(((HYopen? V THopen?) A windowLevel < mazLevel) =
windowLevel' = windowLevel + 1) V
(((HYopen? V THopen?) A windowLevel > mazLevel) =
on! = True) V
(((HYclose? V THclose?) A windowLevel > minLevel) =
windowLevel' = windowLevel — 1) V
(((HYclose? V THclose?) A windowLevel < minLevel) =
on! = True))

A.7 Alarm process state definitions

Alarm
ralarnzState B

AAlarm

Alarm
Alarm/
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_ ZEAlarm
AAlarm

alarmState’ = alarmState

__initAlarm
Alarm/’

alarmState’ = off

The Alarm process also receives one input from two sources along the same communi-
cations channel; namely on?. However, a conflict does not exist between Alarm, Heater
and Window Controller because the same message is sent from either source process and
not a potentially contradicting message. Regardless of who sends the Alarm a message
the same message will get through so there is no need to impose an invariant on the in-
put values from the same source to ensure that they are always different. Only separate
inputs (i.e: SetAlarmOff? and on?) need to be restricted in such a manner — as is the
case with all of the process schemas in the GHCS specification.

__AlarmProcess
AAlarm
SetAlarmOff? : B
on?: B

=(SetAlarmOff? < on?) A
((SetAlarmOff 7 = alarmState’ = off) V
(on? = alarmState’ = on))

A.8 Information hiding with segments

The GHCS can be organised into segments where each part holds two or more individual
processes. In LOTOS we use the hide operator to restrict the observability of the hidden
actions. In Z we can restrict the actions using set subtraction. Each segment restricts
the same actions as those found in the LOTOS equivalent specification in appendix B.
We use Z schema calculus to define the segments with their restricted elements.

SpHy
(SpmyerProcess \ {sprayOn?, sprayOff 7}

HygrometerProcess \ {sprayOn!, sprayOff '}

ThHe
ThermometerProcess \ {inc!, dec!}
HeaterProcess \ {inc?, dec?}

The STWin segment is a special case as it has to restrict certain actions and impose
conditions on the interaction of the Hygrometer and Thermometer processes using open
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and close communications. Both of these links to the Window Controller must be mutu-
ally exclusive otherwise contradicting messages can arrive at WindowControllerProcess
at the same time (unlike LOTOS which will buffer the messages). To stop this contradic-
tion we use double implication (<) to enforce similar Boolean values for each input from

separate processes and different inputs from complementary ports on the same process
(i.e: HYopen! and HYclose!).

_ STWin
SpHy \ {SpHyopen!, SpHyclose!}
ThHe \ {ThHeopen!, ThHeclose!}
WindowControllerProcess \ {open?, close?}

(HYopen! <> THopen!) A
(HYclose! < THclose!) A
—(HYopen! < HYclose!) A
—(THopen! < THclose!)

Finally the complete system itself, the GHCS. Notice that we do not imposed any
invariants on the GHCS schema, as we do in ST Win, because no contradicting messages
can be sent to the Alarm from its separate sources. Each connecting component sends
the same message so we don’t concern ourselves with message contamination.

GHCS
lis_frwm \ {on!)

AlarmProcess \ {on?}
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