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Modelling Protein Interaction in CCS

Jean Baillie

1 Introduction

This is an account of the progress made to date in attempting to model proteins
and their interaction as CCS agents under parallel composition. Some earlier work
was done using CSP but that model ran into problems over catalysis—basically,
the way CSP forces multiway synchronization rendered the model useless for this
purpose.

1.1 Rationale

The essential properties of interacting proteins were identified (by Hamid Bolouri)
and modelled in CCS. These properties are

e the type of the protein, that is, the combination of amino acids which charac-
terizes it (from the 20 or so amino acids there are thousands of proteins which
may be formed)

e the concentration of each protein, that is, the number of molecules of that
protein in the cell ‘

e catalysis—certain proteins, usually enzymes, acts as catalysts in certain con-
texts.

e complementarity or affinity—the natural tendency for certain proteins to in-
teract with certain others

e symmetry—the reaction between proteins A and B is the same as that between
Band A

e ‘orders of interactions’, by which we mean that reactions may be 1-M, M-1
or M-M, referring to the number of proteins involved in a reaction, compared
with the number resulting from that reaction. Note that 1-M implies that a
single protein may ’spontaneously’ cleave into many (smaller) proteins

The model described in this report obeys the expansion and restriction laws of CCS.
Below is a summary of how each of the above characteristics is modelled in CCS.




e proteins are modelled as CCS agents, which are defined in terms of their
behaviour—the behaviour of the agent defines the type of protein

o concentration of a given protein is modelled by a separate counter agent as-
sociated with each protein type

e a protein is ‘used up’ in a chemical reaction, so agents which have been com-
posed have their counters decremented

e catalysis is modelled by processes which are not used up by the interaction,
so could be defined recursively, with no counter, or else defined as ordinary
proteins but without decrementing the counter

e interaction of proteins is modelled by concurrent composition of agents

e two or more proteins may be involved in an interaction (order), similarly for
agents

o the result of CCS parallel composition is generally a choice of possible inter-
leavings, only one of which will be the actual outcome—we need to model
random or probabilistic selection of the resulting protein

e interaction is symmetric, since CCS composition is commutative
e affinity is implied by the composition laws of CCS

e cleavage cannot be done within the calculus (processes retain their integrity
until they are composed with other processes), but can be managed outside it

In order to use concurrent composition in CCS as a model of interaction, we regard
CCS as an ‘engine’ which performs the interaction. The input to this engine, and
the output from it, are regarded as a kind of primordial soup out of which we
may draw a (possibly random) selection of proteins for processing, and into which
the resulting proteins return. Cleavage is achieved inside the soup, and not in the
engine; the output from CCS may be returned to the soup intact, or we may decide
to break it back up into its constituent parts—which may be those proteins whose
interaction gave rise to it in the first place. This decision is taken in the wrapper
(with apologies for multiple metaphors) program, which also chooses the proteins
for interaction and the catalysts, if any, and keeps count of the numbers of molecules
of each protein. But first, a quick introduction to CCS.




1.2 Brief summary of CCS syntax

e concurrent process are written with initial capitals and called ‘agents’

o agents are modelled as sequence of ‘actions’

e the set of actions admitted by an agent is called its ‘sort’

e a . indicates sequence - say ‘then’

o agents may be defined recursively, or not

o the distinguished agent ‘0’ has no actions and models termination

e actions may be input or output, convention is that overbar denotes output

e complementary actions, eg, a and @ communicate and ‘resolve’ into the dis-
tinguished action ‘7’

e 7 is not observable but may cause nondeterminism in certain contexts

e communication may be restricted; if it is not then complementary actions may
also communicate independently with their environment. All communication
is restricted in this model.

e agents are composed, that is, allowed to run in parallel, modelling interac-
tion. Composition allows agents to interleave and/or communicate, subject
to sequencing of actions.

We may have to take liberties with certain aspects of CCS semantics.

2 Some examples

First, the notational convention we propose to use throughouf:

e an agent/protein whose action sequence is ‘e then b then ¢’ is defined as
def
Pupe = a.b.c.0;

e a catalyst, which is basically an agent that admits a single action a, say, is

defined recursively (pro tem, see above) as C, def a.C,; this is not entirely sat-

isfactory as it implies a qualitative difference from ‘ordinary’ proteins, which
is not the case in vivo. Further work is needed here.

e anew binary interaction operator is introduced between agents P and @, say,
and is denoted by I and defined as follows:

PIQYP|Q\S

where
s€ES & (SEPASEQ)V(EEPAsSEQ)




Example 1

Interaction of proteins P, and P.:

PuIP, “ab0|co

=a.(b.0 ] ¢.0) + ¢.(a.b.0 | 0)
=a.b.c.0+ a.c.b.0+ c.a.b.0

Notes

1. The restriction set S is empty since the RHS of the condition simplifies to
false.

2. There are three possible interleavings so we need some mechanism for choosing
one—assigning probabilities to each outcome based on the length of the chain,
for example, or maybe use a random number indicator!.

3. If, for example, the selected outcome is a.b.c.0 then the counter for a.b.c.0 is
incremented, while the counters for a.b.0 and ¢.0 are both decremented.

Example 2

Interaction of proteins P,; and Pg:

PuIPz Zab0|can\a
=c.(a.b0|a0\a
=c.1.(b.0]0)
=cr1.b.0
=c.b.0

Notes
1. The restriction set is {a} (set notation is not necessary in the case of a sin-
gleton set)
2. Action ¢ must occur first since g and @ must synchronize
3. a and @ resolve into 7

4. Non-leading 7's are absorbed, that is, they can be ignored since they model
internal and so unobservable and inevitable state changes mid-sequence.

1'We could use the CCS model-checking tool, the Concurrency Workbench (CWB) to check our
models. The way that the CWB works in practice when offered a concurrent expansion is to give
one of the possible outcomes—pragmatically, we could just take this as the one




Example 3

Interaction of proteins P,; and Ps,

Notes

1.

Pu I Pre “Z (ab0]7c0)\a
=7.(b.0|c.0)
=7(b.0 4 ¢.0)

Within the calculus, leading 7’s, although not observable, cannot be dropped.
The result above is weakly equivalent to b.04¢.0, that is to say, as ‘stand alone’
agents their behaviour is indistinguishable. Full equality, however, requires
that they be interchangeable in any context, and this is not the case in the
context of choice. For any process R, say,

R+ 7(b.0+¢.0) # R + (b.0 + c.0)

The apparent choice presented on the left hand side may be unobservably
pre-empted by the internal state transition 7, thus removing the possibility of
R. This is not the case on the right hand side where, in fact, the brackets are
redundant and there is a choice between three initial events (unless of course
R itself contains a leading 7, which makes matters even worse).

This is where we might be seen by purists to be taking a liberty with CCS
semantics. The choice in the result of this example will be regarded as mod-
elling two possible resulting proteins, only one of which will materialise. Thus
this agent as it stands will never appear in the context of choice; we will, by
some mechanism yet to be decided, arbitrate between the two options and
either b.0 will be selected or else ¢.0. An agent containing the choice operator
cannot model a single protein; the choice between the alternatives must be
made before the resulting (purely sequential) protein may interact with oth-
ers. The result is therefore treated as if it were 5.0 + ¢.0, disregarding the
leading .

Example 4

Interaction of the proteins P,; and P.

Notes

1.
2.

PuI Pz “ (ab0|a50)\{a,b}
=T.7.0
=0

Leading 7’s have been disregarded as described in note 2 of Example 3 above.

The result of this interaction is the anihilation of the original proteins.




Example 5

Interaction of the proteins FP,; and P; . This interaction will deadlock since a and
b are both restricted actions and so neither agent can proceed. A catalyst is needed,
either C3 or Cy, to break the deadlock. Choose Cj.

PuIPI1C, & (ab0]5.3.0]|b.Cy)\{a,b}
7.(a.b.0 | c¢.@.0 | Cy)\{a, b}
=T1.c.(a.b.0]a.0| C)\{a,b}
7.¢.7.(0.0 | 0| Cy)\{a, b}

Il

Notes

1. Even after simplifying this using our (slightly sneaky) version of the T laws of
CCS, we still have deadlock; b is a restricted action and so cannot proceed.
We need(ed) another catalyst, namely C%, to break this particular deadlock.
(Note that the corresponding problem would have arisen had we made the
initial choice of catalyst to be Cg.)

2. This in turn gives rise to another question, namely the possible—indeed,
probable—interaction of the catalysts themselves. We can ‘get round’ this
by saying that this interaction only produces a potentially endless sequence
of 7’s, which have no effect on the nature of the protein that results from the
intended interaction (flaky, I know). So now we revisit (without rewriting)
the above expansion on the understanding that the second catalyst was there
from the beginning but took no part in the reaction until its services were
required, namely, at the point where we left it.

Pab I PEcE I Cb I Cg = T.C.T.(b.o | 0 I Cb | E.Cg)\{a, b}
=T1.eT.m.(0]0]|C | Cy) -
= c.(Cy | Cy)

So the resulting protein is P., whose counter is then incremented. The two catalysts
‘float off’ back into the primordial soup (bit iffy).

3 Implementation

Example 5 raises the question of the ‘choice’ of catalysts: do we have a choice?
When we come to implement this it may be that we have to make do with whichever
catalysts are in the vicinity, and these might not be of any use at all, in which case
the deadlock persists or, perhaps, is only partially broken. This may be a true
reflection of the actual chemistry (or it may not).

Also, it won’t have escaped the notice of anyone with more than a smattering of
CCS that the definition of I in section 2 as a strictly binary operator means that
Example 5 above won’t actually work at all. The definition needs to be extended
to allow muliple composition. This is possible but messy.




4 Conclusion

It would seem from this work that it is possible to model, at least in a rudimentary
way, the interaction of proteins as the composition of CCS agents. To complete
the model we would also need a wrapper program to generate the processes and
catalysts for interaction, and for keeping track of the molecule count. Cleavage is
not possible to model in CCS but would be possible inside the wrapper.

However, this model will never surprise us—at least, not in the way that a biological
system might. We will never find a process produced having properties we could not
have predicted: this itself is predictable. We cannot model anything other than the
primary structure of proteins; this is a serious drawback since the chemical prop-
erties of proteins depend on their secondary and tertiary structures. Nevertheless,
this is a novel use of process algebras and illustrates the possibility of their having
uses well beyond their first intentions.




