DIVISION OF COMPUTER SCIENCE

SEQUENTIAL ANIMATION OF A STRUCTURED ANALYSIS
REQUIRED LOGICAL MODEL OF A VENDING MACHINE
CONTROLLER

D. A. Fensome

Technical Report No.169

October 1993

Sequential Animation of a Structured Analysis Required Logical Model of a
Vending Machine Controller

D.A.Fensome October 1993

1. Background

To give brief summary of research

This report summarises part of a research programme investigating prototyping
methods for real-time systems. Previous work has examined Ada tasking as an
animation tool for data flow models [Fensome 92], and the use of data flow to model
real time system functional requirements [Fensome 93]. The present report describes
work carried out in animating a Vending Machine case study using the sequential
programming paradigm.

2. Structured Analysis (SA) requirement model

To summarise required logical model used for this reort

The vending machine controller is described in [Fensome 93], where the requirements
and logical context diagrams are shown. Appendix 1 of the present report shows the
first level decomposition of the requirement model, and includes the required logical
model of data flow and control flow, and the control machine.

3. Structured Analysis Control Centred Animation
To summarise the design and to present pros and cons

The animation is a conventional control centred design, shown in Appendix 2 as a top
level structure chart and Ada styled program units. Only sample parts of the design
are given, which are sufficient to demonstrate the important features of the design
transformation. The design is carried through to asking for an event input and
producing a model output, and a procedural abstraction has been used throughout.

At the top level of the control machine design, the first decisions to be made
concerned the data flow between program modules, and how atomic execution of
input events could be emulated. These decisions involved dealing with polled inputs,
and in particular how null inputs (null events) and time outs were to be handled. I
decided that the control data flow p2cev and p3cev (in cfd0) would be a suitable
coupling mechanism to the control module, if a 'null’ event could be added to the
design to signify no particular input event had occurred.

An automatic time-out event 'to' could be generated if time spent in, for example, the
Input Control module was too long. Automatic time-out did assume an Ada
environment with all the facilities of package Calendar (ie background real time clock
which could be interrogated periodically). If this was not required or undesirable, then
the time out could be generated by the animation user as just another input event.

The next problem was how to deal with the process activators pat3 and pat4 in
cspecO. Should these be explicitly coded into the design or were these an unnecessary
complication in the animation ? In fact since the control machine knows whether p3
or p4 are active, and will only call the appropriate process if it is active, there seems
little point in having additional variables to represent the process activators. An
example of this is when the event 'mp' (minimum payment) takes the control machine
from S1 to S2 and activates P3 via pat3.

One control event 'cg’' ("change given") also appears to be redundant in the design. In
the requirement model it is necessary to signal this event to the control machine from

CPVM seq animation 1 December 6, 1993

P4 (see cspec(), but again is unnecessary in the sequential implementation because
control will return to the control machine automatically when P4 has executed.

Overall the animation design was not as easy as might be assumed, and took much
longer than expected (is any design easy?). How this might be quantified I am not
sure, but I am now aware of the difficult areas ie polling of inputs, atomic execution
emulation, relevance of requirement model communication primitives.

However the design did show that the animation user I/O was not so much a problem
as expected. The design would produce a scrolled screen on the animation computer
which typically might be -

Return Coins? Y/N =N New Stock? Y/N =N Customer Inserts = 10p
Customer selects = Cola

Product Available = Y Product Given = Cola Change = null

for each input event. This might seem crude, but would provide an adequate listing of
event sequences and responses, in order to check for correct functionality.

4. Direct Animation with Visual Basic
To summarise design and to present pros and cons

The ability to quickly draw a user interface for the animation, and easily connect
events into their related processing, was the reason why Visual Basic was used as an
Animation Tool.

Visual Basic is a programming environment which provides a set of standard
interface objects (eg boxes, buttons) on screen windows called forms, so that input
events on the forms can be easily processed. The interface objects are connected into
the programming environment by defined subprograms. For example the button
labelled '10p' in the customer form shown in Appendix 3, is given a name Tenp_In
and is connected via subprogram Tenp_In_Click, where 'Click’ is the prédefined name
for the mouse click event on the button. Appendix 3 gives the complete Visual Basic
listing for the CPVM animation, and shows Sub Tenp_In_Click ().

There are very few design decisions using Visual Basic as an animation tool because
the programming paradigm is one of input event and subsequent processing. The
atomic execution semantics of the data flow model are automatically provided by
Visual Basic. This is an advantage because it makes the animation easy to implement
from the data flow model ie the programmer just provides a connection into the Basic
programming environment by coding 'Click’ subprograms. The control machine
cspecO can easily be implemented as a subprogram which is called when each input
event occurs. Also the process activators can be implemented as global variables
which can be inspected by other subprograms which implement processes. For
example see process 3 implemented as Sub validate_selection. Therefore there is an
easy translation mechanism from a data flow model to the animation in Visual Basic.

The CPVM Visual Basic listing in Appendix 3 does not show any time-out events,
but these could have been added as 'user generated' from the customer form. Visual
Basic also provides a background idle loop facility which could be used to code
automatic timeout events using the general timer facilities. The Timer function
however was used to generate a delay function, which was then used to display a
sequence of change coins in the 'Returned’ box of the customer form.

However there are some disadvantages in using Visual Basic as an animation tool,
mainly in the programming facilities offered by the language. Visual Basic has some

CPVM seq animation 2 December 6, 1993

data typing facilities but these are somewhat crude, particularly for discrete types. For
example there are no integer subtypes or enumerated types, each being implemented
as a standard integer type (as Booleans are t0o).

The modularisation facilities in Visual Basic are also somewhat crude compared to
the standard Ada facilities. Global modules, modules related to forms, and general
purpose modules are provided, but there is no attempt to encapsulate data or provide
anything which could remotely be called object oriented facilities. This is a very
negative feature of Visual Basic, especially as part of my research objectives is to
look for a prototyping method which allows carry over of prototype components into
production software.

Finally the syntax for subprogram calls, whilst not difficult to use or learn, also
caused problems. This is because procedure calls do not use brackets around the
actual parameters, whereas function calls do have brackets. However if you call a
procedure with brackets by mistake, it is misinterpreted as an array reference, a local
array is set up (by default), and no error is reported. This is most unfortunate !

5. Conclusions

Emulation of the requirement model semantics with a sequential animation was
certainly easier than the parallel equivalent (see technical report 131) where there was
a significant tasking overhead. The programming tool used for the sequential
animation did make a significant difference however.

Programming in an Ada environment was relatively difficult compared with the
Visual Basic environment, because

* input polling had to be designed
e some of the requirement model communication primitives were redundant

In Visual Basic however, the animation was straight forward at the design level
because processing is directly connected to input events, and the programming
paradigm directly mirrors the requirement model semantics. However the language as
a programming tool has some disadvantages in its abstraction and encapsulation
facilities. Also the benefits of the graphical interface are questionable for prototyping
event oriented systems, where a tabulated list of events and consequences are
required.

For future work it is proposed that the prototype programming environment should
provide

* only sequential programming

e input event scanning with easy facilities to connect into the required
processing

e scrolled textual I/O

* good data typing including subtypes and ennumerated types

* good abstraction facilites; at least data abstraction, but preferrably object
oriented (for ease of design transfer to production software).

CPVM seq animation 3 December 6, 1993

References
[Fensome 92] Prototyping Real Time Engineering Systems using Hatley & Pirbhai's

Requirement Model : April 92, School Information Sciences Technical Report No
131, University of Hertfordshire

[Fensome 93] Modelling Real Time Systems Functional Requirements using Existing
Data Flow Methods: July 93, School Information Sciences Technical Report No 160,
University of Hertfordshire

Appendix 1

Structured Analysis Required Logical Model

Level 1 DFD
Level 1 CFD

Cspec0

CPVM seq animation 4 December 6, 1993

the
object

entered price

Validate
Coins

Get
Product
Price

1

2

: . current_payment
product_data:Catalogue_Set coins: Coinhopper ‘Money

total

Validate
Selection

Give changé

4

return:Object

3

selection
the

product available product

CPVM DFD 0 Level 1
Required Logical Model

Validate
Coins

Validate

Selection Give change

3 4

EVENT = {ci, mp, rc, pg, op, cg, to}

where

ci = coin inserted

mp = minimum payment
rc = return coins

pg = product given

op = over payment

cg = change given

to = time out

CPVM CFD 0 Level 1

Idle SO

ci rc/patd
to

L

Customer Sl

pg.to
rc/patd

mp/pat3

y

Product
Available

op/patd

Give

Change >3

CPVM CSPEC 0

Appendix 2
Control Centred Structured Design
a) Top Level Structure Chart

b) Ada Style Control Centred Design

CPVM seq animation 5 December 6, 1993

Control

Machine
) the_product
p2cev
./ p3cev ; gthe_product O\

Input Process Change
Control Control
P1 & P2 P4

Selection

Control

P3

CPVM Animation

Top Level Control Centred Design
Fig 1

-- Ada Style CPVM Animation
-- Control Centred Design, module control machine
--Oct 1993 D. A. Fensome

procedure main is
p2cev, p3cev : EVENT;

the_product : PRODUCT;
vendmc : STATE;

loop
case venmc is
when SO => --Idle state
p2cev := Input_Control;
if p2cev = ci then --coin inserted
vendmc = S1;
end if;
when S1 => --Serious Customer
p2cev := Input_Control;
if p2cev = rc then --Return Coins
vendmc = SO;
Change_Control(null);--Give coins back!
els if p2cev = mp then --Minimum payment
vendmc = S2;
els if p2cev = to then
vendmc = SO; --timed out
end if;
when S2 =>
loop --poll all inputs
p3cev := Selection_Control (the_product);
p2cev := Input_Control;
if p3cev =opthen --overpaid, give change
vendmc = S3;
exit loop;
--time out, or return coins
els if p3cev = to or p2cev = rc then
Change_Control(null);
vendmec = SO;
exit loop;
--product given, no change
els if p3cev = pg then
vendmc = s0;
exit loop;
end if;
end loop;
when S3 =>
Change_Control(the_product);
end case;
end loop;

end main;

--Ada Style CPVM Sequential Animation
--Input Process Control P1 and P2
--D.A.Fensome Oct 93

function Input_Control retarn EVENT is

rcev : EVENT;

new_stock : CATALOGUE;
the_object : OBJECT;
the_money : MONEY;
entry_time : TIME,;

begin
entry_time := CLOCK;
loop
get_return_coins (recev);
if rcev /= null then
return (rcev);
end if;

get_new_stock (new_stock);
if new_stock /= null then

put_new_stock(new_stock);
end if;

get_the_object (the_object);
if the_object /= null then
if the_object = Slug then

-- note the time

--return coins demanded?

--has stocker restocked/repriced?

--anything input in coin chute?

P4.put_return (Slug) -- return slug to user, not for us!

--convert to type money and store data

else
object_to_money (the_money, the_object);
add_to_current_payment (the_money);
add_to_coins(the_money);

end if;

return (is_mp);
end if;

until Is_Time_out (entry_time, timeout);

return (to);
end Input_control;

-- Animation user I/O
-- Ada style

function get_return_coin return EVENT is
the_char : CHARACTER;

begin

text_io.put ("Return coins ? Y/N =");

text_io.get (the_char);

--has minimum payment been made?

return (if the_char = 'Y" then rc else null; end;)

end get_return_coin;

-- Part of P4 change control
procedure put_return (the_object : OBJECT);

begin
object_io.put (the_object);
text_io.putline ("Returned to Customer");
end put_return;

Appendix 3
Visual Basic Animation
Customer Form

Visual Basic code

CPVM seq animation 6 December 6, 1993

Product |
Available
20p
Y
50p
Product
Cola
Slug @
Returned -
@ Cola
10p
@ Beer

Return Coins

Visual Basic - Customer Form

"Visual Basic sequential implementation of CPVM

'D.A.Fensome August 93

'H & P's finite state control machine '

Sub cspec((ByVal cev As Integer)

ofe e ok s ok o s ok e sk ot e s sfe e ot ke ok ok sk ok

Select Case state
Case s0O
If cev = ¢i Then
state = sl
End If
Pat3 = False
Pat4 = False
Case sl
If cev = mp Then
state = s2
Pat3 = True
Elself cev = rc Then
state = s()
Pat4 = True
Elself cev = to Then
state = s()
End If
Case s2
If cev = op Then
state = s3
Pat4 = True
Elself cev = pg
state = s()
Pat3 = False
Elself cev = rc Then
state = s()
Pat4 = True
End If
Case s3
If cev =cg Then
state = S0
End If

End Select

End Sub

Sub Return_coins_Click ()
vk s kok o ok ok ok o ok ko ok

cspec() rc
Give_change null

End Sub

VB CPVM code

'coin inserted

'minimum payment

'return coins

'over paid

'‘product given

'change given

November 5, 1993

'process 2
1

Sub get_coins (ByVal the_object)

ke sk s sk sfe sfe sfe e sk sfe sk ske sfe e sk skeok sk sk stk sk skosk sk k

Select Case the_object
Case Tenp
current_payment = current_payment + 10
Coins.TenpCount = Coins. TenpCount + 1
Case Twentyp
current_payment = current_payment + 20
Coins. TwentypCount = Coins.TwentypCount + 1
Case FiftypCount
current_payment = current_payment + 50
Coins.FittypCount = Coins.FiftypCount + 1
Case slug
returned.text = "SLUG...urghh"
End Select

If current_payment >= Min_payment Then
cspec() mp
End If

End Sub

Sub Tenp_In_Click ()

ofe s e o o sk ok sk ke o e ok ok o

cspecO ci
get_coins Tenp
Tenp_In.Value = False

End Sub

Sub Twentyp_In_Click ()

o e o ok ook ok Sk ok ok ok ot ok e s sk e ok

cspecl) ci
-get_coins Twentyp
Twentyp_In.Value = False

End Sub

VB CPVM code 2

November 5, 1993

Sub Fiftyp_In_Click ()

ofe s e st e e e ofe e sk o s sk s sk A o ke

cspecO ci

get_coins Fiftyp

Fiftyp_In.Value = False
End Sub

Sub Slug_In_Click ()

ot skeoke skeske ske sfe sfe sfe sfe sfe s sk kokok

get_coins slug
End Sub

Sub Beer_button_Click ()
"ok sl ok s sk sk s sk e skeoske sk sk ke ke sk skeok ok

validate_selection Beer

End Sub

Sub validate_selection (ByVal the_selection%)
' stk ks e e ks ke s sk ko ok

'process 3

Dim enough_paid%, some_there%

If Pat3 Then
enough_paid = Check_enough(the_selection)
some_there = Is_Product_Available(the_selection)

put_product the_selection, enough_paid, some_there
End If

End Sub

Function Check_enough% (ByVal the_selection%)
st ok etk Rl ko kot R ks kol Rl sk ok ok K

‘process 3.1
Dim the_cost%

the_cost = Product_data(the_selection).CostPart
If current_payment > the_cosi Then
cspecl op
Check_enough = True
Elself current_payment = the_cost Then
Check_enough = True
Else
Check_enough = False
End It

End Function

VB CPVM code 3

‘process 3.1
'process 3.2
'process 3.3

November 5, 1993

Function Is_Product_Available% (ByVal the_selection)
Ve sfe st o e sk e sk e ok s s ok st sk sfe sk st sk o sk sk s ok st sk ok e e ke sk sk sk ok sk e sk ok sk ok ok

'Process 3.2

If Product_data(the_selection).GoodsPart > 0 Then
product_available.text = "YES"
Is_Product_Available = True

Else
product_available.text = "NO"
Is_Product_Available = False
End If

End Function

Sub put_product (ByVal the_selection%, ByVal enough_paid%, ByVal product_available%)

ok e et s e ek o oS ek e e o ke ke s s ke el o ok s ok ok ek s sk sk sk ekl stk ket ke ok sk
'"Process 3.3
If (enough_paid And product_available) Then
the_product.text = Product_data(the_selection).ProductPart
Give_change (the_selection)
End If

End Sub

Sub Give_change (ByVal the_product%)
sk skt s Rk sk ook sk ok ok stk sk ok sk ook ok

'Process 4
Dim payment%
It Pat4 Then
payment = Calc_change(the_product) 'process 4.1
Convert_to_Coins payment 'process 4.2
End If

End Sub

Function Calc_change% (ByVal this_product)
vk stk ol sk sk R sk R Rk ks ok ok sk S sk ok ok

'Process 4.1
If this_product = null Then
Calc_change = current_payment
Else
Calc_change = current_payment - Product_data(this_product).CostPart

End If

End Function

VB CPVM code 4 November 5, 1993

Sub Convert_to_Coins (ByVal the_payment%)
#3fe sfe sfe e ok o ok sk sk ofe sk s sl ok sk sk s sk st sfe sk sk sk ske sk ke sk sfeskeoskesk skoeosk sk

'Process 4.2
"Return change for 10/20/30p depending on coins available

Select Case the_payment
Case 0
Exit Sub
Case 10
It Coins. TenpCount > 0 Then
returned.text = "10p"
Coins.TenpCount = Coins. TenpCount - 1
End If
Case 20
If Coins. TwentypCount > 0 Then
returned.text = "20p"
Coins. TwentypCount = Coins.TwentypCount - 1
Elselt Coins. TenpCount > 1 Then
Convert_to_Coins 10
Blank_return
Convert_to_Coins 10
End If
Case 30
Convert_to_Coins 20
Blank_return
Convert_to_Coins 10
End Select

cspecO cg
End Sub

Sub Blank_return ()

tafe sk st ok sk e o ok e ok ok sk ok
delay 5
returned.text =
delay 5

End Sub

"

Sub delay (ByVal secs%)
e sk o ok o ek oK ok sk s ko sk ok

start! = Timer 'gets the current time since midnight
Do

timenow! = Timer
Loop While timenow - start < secs

End Sub

VB CPVM code 5

November 5, 1993

Sub Cola_button_Click ()

ok s sk s e sk she steste sfe st sk sfe ste ke sfe sfeske e sk

validate_selection Cola
End Sub

Sub Form_Click ()

feste stk s sk ook ok ok ok

'set up globals
current_payment =0
Product_data(Cola).ProductPart = "Cola"
Product_data(Cola).CostPart = 20
Product_data(Cola).GoodsPart = 5
Product_data(Beer).ProductPart = "Beer"
Product_data(Beer).CostPart = 30
Product_data(Beer).GoodsPart = 5
Coins.FiftypCount = 5
Coins. TwentypCount = 5

Coins. TenpCount = 5

state =0
Pat3 = False
Pat4 = False
End Sub
VB CPVM code 6

November 5, 1993

