DIVISION OF COMPUTER SCIENCE

The Use of Metrics in Connectionist Psychological Models

Caroline Lyon and Neil Davey

Technical Report No.157

October 1992




The use of metrics in connectionist psychological
models

Caroline Lyon and Neil Davey
Jan 1993

Abstract

Models of psychological and cognitive phenomena that are based on
connectionist processing have recently been described. These include Nor-
ris’s back propagation model [1], Schyns’s model based on Kohonen nets
[2] and Hinton and Shallice’s model that adds a recurrent layer to an MLP
type network[3] This paper looks at some of the ways data are represented
and at the metrics that are employed in these models. It investigates the
techniques that are appropriate for different processing tasks in connec-
tionist networks. The term “connectionist network” is an alternative to
“neural network”, which is the name more often used in the computer
science literature.

1 Introduction

During the operation of a neural network it is necessary to use measures of
similarity, to examine how close one set of data is to another. This feature is
common to most neural network models, appearing in various guises. For a
typical multi-layer perceptron (MLP), or back propagation model, the actual
output from the net will be compared to the desired output during training.
Then connection weights can be adjusted to minimise the difference between
actual and desired values. In self-organised Kohonen-type nets one set of data
will be compared to another, so that similar sets can be grouped together. With
reinforcement learning actual actions or states are evaluated against targets.
Now, the appropriate measures of similarity vary with the type of data being
assessed. This paper looks at implicit assumptions about the nature of the data
being processed with the use of different metrics. Whether these assumptions
are realistic can then be explored.

The input and output of neural nets are sets of elements that can be rep-
resented as linear arrays or vectors. The weights on connections to a neuron
within a neural net can also be represented in vector form, where a set of vec-
tors make up the weight matrix. Thus the measures of similarity which we shall




examine are typically measures of how “close” one vector is to another. In the
psychological models examined here the comparison of vectors is an integral
part of their operation.

This paper will first look at some commonly used metrics. It will give an
overview of the three models and their use of these metrics (Section 3). It will
then look more closely at the use of these metrics and give an assessment of
appropriate tools for different tasks (Section 4).

2 Commonly used metrics

2.1 The Euclidean distance measure

This is a measure of the difference between two vectors of the same length.
It is the sum of the differences between each corresponding pair of elements.
Consider two vectors with n elements each:

L1,Z2,...,Ln and Yi,Y2, .., Un

Then the Euclidean distance D between them is given by:
n
D* = Z(-’vi —u)?
i=1

If n = 2 then this is just an expression of the theorem of Pythagoras.
The Root Mean Square (RMS) measure is related to the Euclidean distance.
As the root of the mean of the squared distance between each pair of elements

RMS? = 1D2
n

2.2 Hamming distance

In the case of binary vectors this is conceptually similar to Euclidean distance.
It is the number of corresponding elements that differ. Suppose two binary
vectors have D elements that differ. Then

Hamming distance = D
Euclidean distance = v/D

This metric can also be used to measure distance between any two vectors with
ordered discrete valued elements




2.3 Generalized form of Euclidean distance

The Euclidean distance is a special case of the more general Minkowski metric.
Consider again two vectors with n elements each:

L1,L2,...,Tn and Yi,92,- -, Yn

Then the Minkowski distance Dps between them is given by:
n
Dir = (zi—w)
=1
where A is a real number > 1.

2.4 The cosine measure

Another measure of similarity is the cosine between two vectors. Whereas the
Euclidean distance measured the difference between vectors, this measures their
similarity, a reciprocal concept. Intuitively we are saying that if you take two
vectors of the same length and find they go in the same direction, then they
are close to each other. As the angle between two vectors declines the cosine
approaches 1. If the cosine is 0 then the vectors are orthogonal, or at right
angles in 2 or 3 dimensions. Now, the formula for the cosine 6 between two
vectors v and w is given by

V.W

0 = T

where v.w is the inner product of vectors v and w.
In other words if vectors v and w have n elements, or are in n-dimensional
space, then

V.W = 0jW1 + VoW + ... UpWp

and ||v|] , the norm or length of v is given by

vl = /v +v]+...+ 3

The derivation of this formula is found in the original PDP book [4, chap 9]
and in many books on linear algebra.

When this measure is used it can be necessary to normalize vectors so that
they are the same unit length. This operation adjusts the length of the vector
to ||1||, while preserving the relative size of each element. Then the normalised
vector v/ is o

/

V————+~22—+ +_v_n;
vl il vl




and the cosine measure is just the inner product of the two vectors:
cosf =v'.w'

If vectors are normalised the results of the cosine measure can be interpreted
so that it is equivalent to the reciprocal Euclidean measure, since

v = w|?=14+1-2(v.w)

2.5 Log probability or cross-entropy measure

This interprets real valued elements of a vector as probabilities that the indi-
vidual components of a binary vector have the value 1. A set of such vectors
therefore defines a probability distribution for each element. If the desired out-
put of a net is the set of vectors:

{d}

and the actual output is
{a'}

then the cross entropy is:

C=- Zdj-logg(aj-) + (1= d;)logg(l - a;)

iJ

When C is minimised the probability of producing the correct output is max-
imised.

Treating the vectors as probability distributions is likely to be appropriate
when the training data is probabilistic, or fuzzy. An example is the association
between symptoms and diseases in medical diagnosis. It is typically used to
give a likelihood that a neuron is going to fire and relates the desired output
probability to the actual probability. It is described in [5, p. 207] and in [3,
p.80].

3 Connectionist models

3.1 The idiot(savant)

Norris’s paper [1] describes the development of a connectionist model of an
“idiot savant” date calculator using an MLP. The Euclidean distance measure
is used to compare desired with actual output. This network should calculate
the day of the week on which any given date between 1950 and 2000 falls.
The model is based on the original back-propagation architecture described
inParallel Distributed Programming by Rumelhart et al. [4]. There are seven




outputs, one for each day. The input was initially a binary vector with 58 units
that coded the input date in the following way. There were 31 units for the day
field, 12 for the month field, and 15 for the year field. The year had 5 units
to code the decade, 10 to code the last digit of the year. The net was trained
on 1000 presentations of 3650 random dates. Performance on unseen dates was
scarcely better than chance.

A later version that divided the task into three modules with a human co-
ordinator was much more successful. In this case the first module did a simple
mapping of the days of the month of January 1950 onto days of the week. The
second module mapped any date in 1950 onto a weekday. It took as input the
weekday output from the first module and coupled this with the month. The
final module mapped any date from 1950 to 2000 onto a weekday. It took as
input the weekday output from the previous module together with the month
and the year. Though overall performance improved, the errors related to leap
years remained high.

In fact, this sort of model is never likely to perform very well. A neural net
can of course always learn a mapping from one particular pattern to another,
given an appropriate representation. However, to be useful it must learn many
mappings and be able to generalize to unseen data. This requires that patterns
that are near each other in input space should typically be near each other in
output space. The date calculator does not meet this requirement. Changing a
single element in the input vector can result in any of the 7 output units firing.

Another example of this limitation on the use of connectionist methods is
found in the MLP network designed to divide a given number by 3 in [6].

3.2 The concept acquisition model

Schyns [2] implements two stages of neural net processing in order to model
concept acquisition. In the first stage he uses a Kohonen net to process visual
symbols that represent prototypes of the concepts Dog, Cat and Bird, as in the
figures below. .

Dog. Cat. Bird.

- Prototypes of the categories dog, cot, and bird.

Noisy exemplars of the prototypes are fed to the net, which organises them




in unsupervised mode. The cosine similarity measure is used. Specific regions
of the output map will respond to exemplars of a given category. Schyns finds
that the simulation agrees with the prototype theory of concept acquisition.
The noisy exemplars presented to the network are locally organised into groups,
depending on their proximity to the prototypes.

The second stage in the concept acquisition process is to name each exemplar,
each representative region of the first stage output map. This is done using a
“Brain State in a Box” neural net - a variation on the Hopfield architecture. The
input to this stage is a vector combining data from the previous output with a
binary ascii representation of the name. This method successfully allocates a
name to each of the three categories here, since the problem is sufficiently small.

In general this sort of approach is likely to meet with difficulties, as Hopfield
nets can only store a limited number of states. The ascii representation needs
further thought, since the conceptual similarities and differences apparent to
humans will not be reflected in the binary vector.

3.3 Modelling acquired dyslexia

In “Investigations of acquired dyslexia” [3] Hinton and Shallice use an MLP with
an added recurrent layer to show that typewritten words can be mapped onto
semantic concepts. Their network initially output semantic feature vectors when
presented with letter strings. They then damaged the network and showed it ex-
hibited characteristics that resembled those found in deep dyslexia. The input is
a word composed from a restricted domain of letters, using [b,c,d,g,4,{,m,n,p, 7,1
in the first position,[a,e,i,0,u] in the second, [b,¢,d,g,k,m,p,r,{,w] in the third and
[e,k] in the last. There are 28 possible words or grapheme units for the input.
These words describe items in 5 categories: indoor or outdoor objects, body
parts, animals and foods. : i

The output from the net is a binary vector which represents the meaning
of a word using 68 semantic feature elements. Each of these “sememe units”
belongs to one of the semantic feature subsets, denoting size, colour, location,
structure, purpose etc. If a particular sememe is deemed present it would be
flagged to 1, else it would be 0.

The net has an MLP type architecture with one hidden layer. To this is
added a layer through which the output recirculates. This feature was intro-
duced to “clean up” the output and to encourage the output layer to build
basins of attraction for words in similar semantic categories.

In training the net the desired output is compared to the actual output using
the cross-entropy measure. Once the net has been trained and then damaged to
simulate acquired deep dyslexia the output vector between the pre- and post-
damaged states is compared. The cosine metric is used to do this.

The paper concludes that the damaged network exhibited characteristics
that resembled several of the phenomena found in deep dyslexia and semantic




access dyslexia. A striking example is the case of the patient shown the word
“peach” on a card and asked to read it says “apricot”.

4 Tools for the job

This section examines the limitations and advantages of different metrics. It
looks at the way in which they are used in the three models and how they might
best be employed.

4.1 Scope of Euclidean distance measure

While all the elements of the vector are of the same sort this is an appropriate
measure. However, suppose that element j is a different sort to element k. Then
| z; — y; | could have a different significance to | @ — y; | but the Euclidean
distance measure would obscure this. As an example take 2 vectors whose el-
ements are the digits of a binary number. The Euclidean distance D between
the pair of vectors:

[0,0,0] (0,0,1]
is the same as that between
[0,0,0] (1,0,0]

In both cases D = 1. But the numerical difference is 1 in the first case, 4 in the
second. In fact the measure can be even more contrary. Consider the following
pairs of binary numbers:

[0,0,0,0] (1,0,0,0,]
and
[0,1,1,1,] [1,0,0,0]

Numerically the first pair of numbers differ by 8 while the Euclidean distance
is 1. The second pair of numbers differ only by 1, but the Euclidean distance is
the maximum for 4-element binary vectors at /4.

Similar problems can arise when letters are represented in binary Ascii code.
The difference between two letter vectors is an arbitrary measure.

This confusion can be avoided by using a less compact, unit basis, represen-
tation. Suppose, for the moment, that an integer is represented by an element
of a vector, such that each element represents a different number. Then




[0,0,0,0] represents .. 0
[0,0,0,1] corrovvvverereneee 1
[0,0,1,0] oo 2
[0,1,0,0] vvoooorerrrrrene 3

Using this notation the Euclidean distance between pairs of numbers would not

give a contrary result: that a close pair had a larger distance than a pair further
apart. However, it would merely give the same distance measure between any
two different numbers. In order to capture the relative difference another type
of representation is needed, such as cumulative flagging. Then

[0,0,0,0] represents .. 0

[0,0,0,1] voovvreverrans 1
0,0, 1,1] covvooevvirennnn. 2
[0,1,1,1] covvvverrenenns 3

The general point is that when the output vectors have an interpretation
in which a metric is applicable, it is desirable that items that are close in the
representation space are also close in the interpretation space. Technically,
suppose that X and Y are topological spaces, with X being the representation
space, or input, while Y is the interpretation space, or output, onto which these
vectors are mapped by a semantic function o. If

c: X—=Y

then we simply require o to be a topology preserving, homeomorphism from X
to Y.

This point is brought out in the results from a project that converts text
to phonemes using an MLP [7]. The output vector represents phonemes, and
errors in output are measured by Euclidean distance. Now, phonemeés can be
represented so that they display topological relationships [8], but can also be
coded as symbols. This project compares performance using different coding
schemes. Codes that preserve information about the phonemes’ relationships
give better results than compact coding that obscures this.

4.1.1 The Euclidean metric in Norris’s model

One of the reasons why the net in this model met difficulties was the nature of
the similarity measure between actual and desired output. If the actual output
was wrong by one day or wrong by 3 days the error measure between the two 7
element vectors would be the same. The situation can be more confused if there
is no gating mechanism to prevent more than one output neuron from firing. If
the right output neuron fires together with several wrong ones there can be a
larger error than if the right neuron fails to fire at all, while a single wrong one
does.




4.2 Scope of the cosine measure

First it must be emphasised that similarity depends on length as well the angle
between vectors. The cosine between two vectors is not a measure of their
similarity if they are of different length.

Secondly, there are underlying constraints similar to those that apply to the
Euclidean distance metric.

This cosine measure is often used in Kohonen nets (though Kohonen himself
originally used the Euclidean distance metric [9, p 33] ) so consider first the lim-
itations on the sort of data which these nets can process. The basic processing
idea is that similar input vectors will organise themselves into a cluster, so that
the input is divided into separate classes. Central to to this self-organising pro-
cedure is the repeated comparison of vectors. In his original “Self-Organisation
and Associative Memory” Kohonen stresses that only certain types of data can
be processed in this way:

“One must emphasize that all types of input information cannot be
self-organized....it is necessary that the universe of the input data has
some kind of metric defined all over it. Such a metric indeed exists
for the usual primary sensory signals...At higher hierarchical levels,
on the other hand, the existence of ordered maps is still unclear” [9,
p. 266].

To process feature vectors with discrete symbolic elements in this way is an
uncertain exercise.

An example can be found in a field far removed from psychological models,
but relevant just the same. In a British Airways research project different neural
network methods are investigated for monitoring engine condition [10]. One of
the methods explored is using Kohonen’s method to classify .vectors, whose
elements are various parameters derived from measurements of temperature,
pressure, speed etc. There is no metric defined over the whole input field. Of
this method the paper says:

“ There is no guarantee that the coding which the network produces
is going to be entirely relevant to the problem in hand; the variable
which most affects the ‘distance’ between the records of the input
data is not necessarily the one which is the best predictor of the
target quantity! ”

Two input vectors could appear close even when some very significant factors
differed, so long as a number of much less significant factors matched.
4.2.1 The cosine measure in Schyns’s model

Schyns uses a Kohonen net in an appropriate way by using a visual symbol to
represent a prototype of a concept. The operation is all in the domain of image




processing. In essence input vectors are compared, using the cosine measure, to
the weight vectors afferent to each output node. A response is triggered where
the similarity is greatest. Since each input vector is an array of 100 elements,
each +1 (white) or -1 (black), all vectors have the same length and do not have
to be normalised.

4.3 Choosing appropriate metrics
4.3.1 Examples from Hinton and Shallice’s model

Consider the binary output vector of this network in its 68-dimensional sememe
space. The elements of this semantic feature vector fall into 2 groups of sub-
sets: those which are fully dependent and those which are not. For example,
all objects in this domain of physical objects must fall into one, and only one,
of the size categories. This is a set of dependent sememes. However in other
subsets objects may flag up either, both or neither of two sememes, for example
“wild” and “fierce”. These sememes are connected but not dependent. Further-
more, the subsets themselves are not fully independent. Certain sememes from
different subsets are commonly associated.

The authors address this situation in two ways. First, there are constraints
in the form of strong negative lateral correlations to inhibit more than one of
several competing units from firing. Secondly, the output recirculates through
the “clean up” layer which encourages positive lateral correlations.

It could be possible, however, to extract more information from the output
vector. Taking this model as an example let us first look at a case where the
Euclidean measure is preferable to the cosine. In the semantic feature vector
consider a subset of dependent sememes. Those representing size are presented
as 3 categories:

[ under 1ft ] [ 1ft to 2yds ] [ over 2yds ]
[ small ] [ medium ] [ large ]

The value of the activity of each will be binary [3, p 83], to be interpreted
as a decision on whether the word being processed represents an object that
falls in that class. A limitation in this approach is that there is no measure
of relative differences: if a small object is flagged “medium” or “large” it will
appear equally wrong.

Another way of representing the data that makes more information explicit
is to use a cumulative representation, similar to that described above 4.1. The
units would then fire in the following way:

[0,0,1] for length.. > 0.............. (1)
0,1,1] oo > size 1....... (2)
[L,1,1] e > size 2....... (3)




Using this representation the relative difference between (1) and (2) compared
to (1) and (3) is reflected in the Euclidean measure.

But now note how the relative difference measured by the Euclidean distance
(section 2.1) and the cosine metric (section 2.4) and the Euclidean distance
vary:

vectors compared | cosine of angle | Euclidean distance
between them

(1) and (2) 707 1.0
(2) and (3) 817 1.0
(1) and (3) 577 1.414

The Euclidean distance is a better metric to determine which of the 3 de-
pendent classes determining size is selected. The difference between (1) and (2)
is the same as that between (2) and (3), but less than that between (1) and (3).

Using the cosine measure, in which the numerator is the inner product of
the vectors, matching ‘1’s give a stronger correlation than matching ‘0’s. This
gives the result, less desirable in this case, that vectors (2) and (3) are closer
than (1) and (2).

The Hamming distance is a simple measure, conceptually similar to Eu-
clidean distance. If other simplifying assumptions about the representation of
data have already been made this measure may be appropriate. In measur-
ing the distance between binary vectors nothing is lost by using the Hamming
instead of the Euclidean measure. However, the Hamming measure cannot eas-
ily be slotted into a back propagation training algorithm, since this requires a
differentiable error function.

However, now consider those cases where the cosine measure is preferable.
Take another subset of sememes that are not fully dependent, such as “mam-
mal”| “wild”, “fierce” etc. Here the positive correlation between semantic fea-
tures that are flagged is, for classification purposes, more useful than negative
matches. Hinton and Shallice chose the cosine measure for comparing output
vectors because:

“By comparison with a Euclidean distance measure, proximity is
more sensitive to changes toward other possible stored-meaning vec-
tors ...”.
In this case the cosine metric is a more appropriate measure from one point of
view.

This analysis indicates that it might be worth investigating a different way
of measuring similarity between 68- dimensional sememe vectors. It could be
more profitable to divide the vector into its constituent subsets and measure the
similarity between these subsets, using the appropriate metrics in each case.

However, the use of the cosine metric with binary vectors should also be
assessed from another point of view. Implicit in its use is the assumption that
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each sememe is of equal importance. If “is a mammal” is a more important
discriminating factor than “is brown” this measure will not detect it. Words
that represent objects that differ on significant factors may appear close if they
match on less significant ones.

4.4 Avoiding inappropriate metrics

Diversionary tactics can be used to convert a problem to a domain in which
available metrics are suitable. Schyns’s method that converts symbolic concepts
into a visual image is an example of this.

Another approach is to present the processing task in such a way that the use
of similarity metrics are minimised. If the output from a feed forward network,
such as an MLP, has only two nodes the problems of comparing the target output
vector to the actual are sidestepped. In this case the data has to be represented
and the processing task formulated in a way that the net merely classifies input
into one of two classes. A language processing task, for instance, might present
strings of symbols that were classified as grammatical or ungrammatical [11].

If this sounds a limited capability consider how a processing task might be
decomposed into constituent parts. A neural network does not have to be a
monolithic structure: processing symbolic data can be effectively done with
hierarchies of networks [12].

Whether this is psychologically plausible T do not know.

5 Conclusion

Neural networks have largely been developed for practical use in fields where
elements of the data being processed have some topological relationship. This
includes the many applications for different signal processing tasks, as well as
the processing of primary sensory data.

When methods developed for these domains are transferred to processing
more symbolic data certain assumptions can be smuggled in. It is important that
these assumptions should be made explicit so that any problems they present
are addressed.

The performance of connectionist systems depend on a number of factors:
the architecture, the learning algorithm, the pattern of connectivity. Among
these factors must be included the representation of data and the selection of
metrics. The choice of representation and of appropriate metrics is one of the
critical tasks in developing a connectionist system.
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