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Abstract

If a high-performance superscalar processor is to realise its full potential, the compiler must
re-order or schedule the object code at compile time. This scheduling creates groups of
adjacent instructions that are independent and which therefore can be issued and executed in
parallel at run time. This paper provides an overview of the Hatfield Superscalar
Architecture (HSA), a multiple-instruction-issue architecture developed at the University of
Hertfordshire to support the development of high-performance instruction schedulers. The
long-term objective of the HSA project is to develop the scheduling technology to realise an
order of magnitude performance improvement over traditional RISC designs. The paper also
presents results from the first HSA instruction scheduler that currently achieves a speedup of

over three compared to a classic RISC processor.
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Introduction

During the last few years, computer architects have turned to multiple instruction issue (MII)
to boost processor performance beyond the one instruction per cycle level. A processor is
classified as MII if it is capable of issuing more than one instruction in a single processor
cycle. MII architectures can be divided into two classes: superscalar architectures and Very
Long Instruction Word (VLIW) architectures. In a superscalar processor ! the hardware
decides which instructions to issue in parallel at run time while in a VLIW processor 2 the
compiler re-orders the original sequential code into fixed sized instruction groups that are

then fetched and issued in parallel at run time.

This paper introduces the Hatfield Superscalar Architecture (HSA) 3, a statically-scheduled
architecture being developed at the University of Hertfordshire. The objective of the HSA
project is to develop a processor that will sustain an order of magnitude performance
improvement over conventional RISC processors that issue only one instruction in each

processor cycle. Issue rates of 16 - 32 instructions per cycle are therefore envisaged.

We believe that a processor with the desired performance must use a hybrid superscalar -
VLIW approach that draws heavily on both hardware and software technology. A pure
superscalar processor can only realise parallelism from within a limited window of pre-
fetched instructions. Such a window is unlikely to deliver the parallelism we are seeking.
High-performance superscalar designs also require excessively complex hardware that
ultimately limits the instruction issue rate that they can sustain I» 4. Johnson, for example,
suggests that hardware complexity limits the sustained instruction issue rate of a high-

performance superscalar processor to around two.

An order of magnitude increase in performance is only likely to be achieved through the
aggressive run-time instruction scheduling that is characteristic of VLIW architectures.
However, VLIW architectures in their turn have major disadvantages. In particular,
traditional VLIW architectures require code to be recompiled for each new processor
implementation. We believe that such incompatibility is unacceptable in a commercial
environment. VLIW architectures can also lead to excessive expansion in code size. Much
of this code expansion is caused by the addition of redundant no-op instructions to pad out
the fixed sized instruction groups that are fetched and issued in parallel at run time 3.

HSA therefore seeks to realise an order of magnitude performance improvement through a
minimal superscalar architecture with in-order instruction issue and aggressive instruction
scheduling. The superscalar approach guarantees object code compatibility over a range of
implementations and removes any requirement for no-ops, while static instruction scheduling

provides a vehicle for achieving the high speedup we desire. At the same time the




opportunity is taken to reduce the hardware complexity significantly by specifying in-order

instruction issue.
Limits of Instruction-Level Parallelism

Any project seeking to realise a speedup of ten through multiple instruction issue is doomed
to failure if insufficient parallelism is available. It is therefore important to know how much

parallelism is inherently available in a typical program.

Early studies focused on the parallelism available within basic blocks and concluded that
speedups in the range of 1.5 to 2.0 could be achieved. More recently Wall 4 used trace driven
simulation techniques to explore the parallelism available to superscalar processors in 17
benchmarks, including the SPEC benchmarks. Wall was primarily interested in the upper
bounds placed on the performance of superscalar processors using dynamic instruction
scheduling and concluded that even with an “impossibly good” superscalar implementation,
the average parallelism rarely exceeded seven, with five being more common. These results
support our belief that high sustained instruction issue rates can only be achieved through

aggressive instruction scheduling.

Wall also obtained parallelism ranging from 6 to 60 using a “perfect” superscalar model. It is
important to realise that these figures are strongly influenced by Wall’s assumptions and
therefore do not, as one might suppose, represent ultimate limits. Three assumptions will be
mentioned. Firstly, Wall never allows more than 64 instructions to execute in parallel, so no
program can exhibit parallelism greater than 64. Secondly, Wall assumes an instruction pre-
fetch “window” size of 2K instructions, effectively preventing any instruction from executing
in parallel with an instruction more than 2K ahead of it in the dynamic instruction stream.
This prefetch window size is unrealistically large for a superscalar processor using dynamic
instruction scheduling. However, in a statically scheduled MII processor such as HSA,
parallel execution of instructions which are initially widely separated can be achieved
through aggressive code motion. For example, the instruction scheduler might move an
instruction from after a loop to before the loop and as a result move it many instructions

forward in the dynamic instruction stream.

Finally, Wall makes no attempt to collapse chains of dependent instructions which repeatedly
add a constant to a variable. As a result a loop body that is executed 1000 times may require
1000 cycles to increment a loop count, even though each iteration of the loop performs a self-
contained operation and all the loop bodies could be executed in parallel. We conclude that
while Wall’s study accurately reflects the limitations affecting a dynamically scheduled
superscalar processor, his figures for a “perfect” superscalar model do not represent the

ultimate limits for a statically-scheduled MII processor.




Similar trace driven studies © have been performed by Yale Patt’s group at the University of
Michigan. Patt’s group was also concerned with the speedup that can be obtained using a
high-performance dynamically scheduled processor and concluded that issue rates between
2.0 and 5.8 instructions per cycle could be sustained. The group also computed the ultimate
limits of achievable parallelism using an Unrestricted Dataflow Model in which instruction
issue was only constrained by true data dependencies, effectively removing the first two
restrictions noted in Wall’s model. Using the SPEC benchmarks, figures from 17 to 165

instructions per cycle were obtained.

Finally, Lam and Wilson 7 used trace driven simulation to investigate the limits of instruction
level parallelism but imposed far fewer restrictions on their processing model. As in earlier
studies, instruction execution was only constrained by true data dependencies. However, in
addition, perfect procedure in-lining and loop unrolling were assumed. Perfect in-lining was
simulated by ignoring all instructions associated with procedure entry and exit, including all
instructions that manipulate the stack pointer. Perfect loop unrolling was simulated by
ignoring all instructions that manipulated the loop index and any associated induction
variables. As a result, variables that were incremented in each loop iteration no longer
created true data dependencies between loop iterations. Lam and Wilson therefore not only
remove all three restrictions noted in Wall’s model but also make further idealistic
assumptions about procedure entry and exit overheads. Using this idealised “Oracle” model,
they obtained figures for parallelism ranging from 47 to a staggering 188,470, with a

harmonic mean of 158 for their integer benchmarks.

Since there is considerable overlap in the benchmarks used in the above three studies, the
figures can be combined in a single table (Table 1). As can be seen, the amount of
parallelism detected by the simulations is dramatically affected by the architectural model
used. Nonetheless, we conclude that there is more than enough parallelism inherent in most
programs to support an order of magnitude speedup through static instruction scheduling.
This conclusion is supported by trace driven simulations using the HSA model which
demonstrate that speedups of over 26 are potentially available in the Stanford benchmarks 8.

HSA Architectural Model

HSA is a load and store architecture with a straightforward RISC instruction set derived from
the earlier HARP project 9> 9 at the University of Hertfordshire. Separate integer, Boolean
and floating-point register files are provided. The one-bit Boolean registers are used to store

Boolean branch conditions and to implement guarded instruction execution.

The following basic functional units are postulated: arithmetic, relational, shift, multiply,
memory reference and branch. Similarly, floating-point add, relational, multiply and divide
units are provided. The number of each type of unit is configuration dependent. An unusual
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feature is the provision of relational units to compute Boolean conditions. Dedicated
relational units have two advantages. Firstly, since the number of arithmetic units can be
reduced, fewer result buses and register file write ports are required. Secondly, a specialised
relational unit can generate Boolean results at an earlier point in the processor cycle than a
general-purpose ALU 10,

A compact four-stage pipeline is used:

IF: Instruction Fetch

ID:  Instruction Decode and register fetch

EX: Execute

WB: Write Back
In the first stage a fixed number of instructions is fetched from the instruction cache into an
instruction buffer. One or more processor cycles may be required for each cache access. In
the case of multiple cycle fetches it is assumed that the cache accesses are pipelined and that
a new instruction access can begin in each cycle. In the instruction decode stage one or more
instructions are issued to functional units. Instructions then spend a variable number of

cycles in the execution stage before returning results to a register file in the write-back stage.

HSA always issues instructions to functional units in program order. As a result the
processor will, in general, issue the instruction groups previously assembled by the scheduler.
Furthermore, there is little to be gained from out-of-order issue if the instruction stream has
already been re-ordered for parallel instruction issue by an instruction scheduler. In contrast,
many superscalar designs use scoreboarding or Tomasulo’s algorithm !! to provide out-of-
order instruction issue. HSA avoids this complexity and the resultant pressure on processor
cycle time.

All branches are resolved in the ID stage. With a single cycle instruction cache the branch
delay is therefore one. Load and store instructions use register indirect addressing or the
ORed indexing addressing mechanism developed for HARP 12, These simplified addressing
mechanisms allow all effective addresses to be made available at the end of the ID stage and

avoid a load delay with a single cycle data cache.

Precise interrupts are achieved by requiring each functional unit to detect a potential
overflow condition during its first cycle of operation. A functional unit can therefore only
start a second execution cycle if it can guarantee that overflow will not occur. If there is any
possibility of an overflow, the unit must stall the processor until the presence or absence of

an interrupt is confirmed. Intel’s Pentium !3 uses a similar mechanism.




Limits to Code Motion

HSA seeks to exploit fine-grained parallelism through aggressive compile-time scheduling.
Ideally each instruction in a program should be able to percolate or float up through the code
flow graph until an immediately preceding instruction generates one or more of the operands
required by the instruction. Ultimately code motion is limited by data dependencies between
individual program instructions. Three classes of data dependencies can be identified: Read-
after-write (RAW), write-after-read (WAR) and write-after-write (WAW). WAR
dependencies are also called anti-dependencies while WAW are called output dependencies.
In the following example a read-after-write data dependency exists between the two

instructions:

DIV R1, R2, #6 /*R1:=R2/6; writes R1 */
SUB R4, R1,R5 /*R4:=R1-R5; reads R1 */

Since no instruction scheduler can change the order of these instructions, RAW data
dependencies ultimately limit the performance of all MII processors. In contrast, WAR and
WAW data dependencies can both be removed using register renaming. For example, in the

fragment below, the second instruction has an anti-dependence on the first instruction.

DIV R5, R6, R7 /*R5:=R6/R7; reads R6 */
SUB R6, RS, #4 /*R6 :=R8-4; writes R6 */

However, there is no need for the subtraction to wait for the outcome of the long latency
divide operation. The dependence can be removed by using a different register to hold the
result of the subtract. This renaming allows the subtract to be moved ahead of the divide in
the instruction schedule: '

SUB R16, RS, #4 /*R16 :=R8-4; R6 replaced by R16 */
DIV RS, R6, R7 /*R5:=R6/R7 */
MOV R6, R16 /* R6 :=R16 */

The MOV instruction is added to restore the result of the subtraction to R6. This additional
instruction need not inhibit further code motion. Later instructions that are percolated past
the MOV can replace any use of R6 as a source operand by R16 and continue percolating
through the code structure until a true data dependency is reached. This subsequent code
motion often results in R6 becoming dead after the MOV instruction, allowing the MOV to
be deleted.

Support for Speculative Instruction Execution

An instruction is executed speculatively if it is executed before it is known whether the path

originally containing the instruction will be followed. Consider the following example:

NE B1, R1,R2 /*Bl:=(R1#R2)*/




BT B1, Label /*1f B1 is true go to Label */
LD R6, 8(SP) /* R6 := contents of (SP + 8) */

The LD instruction could be moved ahead of the branch instruction and executed
speculatively giving the following code:

NE B1, R1,R2

LD R6, 8(SP) /* Speculative execution */
BT B1, Label

However, if R6 is live at the branch target, its value on this path will have been corrupted by

the code motion. Register renaming can be used to avoid this problem:

NE B6,R1,R2

LD R20, 8(SP) /* R6 replaced by R20 */

BT B6, Label

MOV R6, R20 /* Result of load returned to R6 */

As before, a MOV instruction is added to copy the contents of R20 into R6.

The above code illustrates a further problem introduced by the speculative execution of
instructions. Suppose the load instruction in the previous example generates an invalid
memory address. If the path originally containing the load instruction is not subsequently
followed, the instruction will generate a spurious exception that will incorrectly terminate the
program. To solve this problem, all non-branch instructions in HSA exist in two forms. In
the first form, an exception generated by an instruction is immediately taken in the usual
way. In the speculative form an exception will simply mark the result register of the

instruction as invalid.

In the above example, the speculative version of the LD instruction is therefore used. If the
LD instruction raises an exception, R20 will be marked as invalid. An exception will only be
taken if the non-speculative MOV instruction attempts to use the invalid value held in R20.
Note that this is the earliest point in the code where it is certain that the speculative load
should be executed. In contrast, if the branch is taken, the exception flag will be reset when a

new value is loaded into R20, and the exception will be ignored.

To support speculative execution an extra tag bit is added to all processor registers, including
the Boolean registers, to identify invalid values. This hardware support allows loads and
other instructions, such as additions that generate an exception on overflow, to be executed
speculatively. Unfortunately, even with this additional hardware support, store instructions
can still not be executed speculatively. A store instruction can therefore not be percolated

into a preceding basic block that ends with a conditional branch instruction.




A Generalised Delayed Branch Mechanism

Program execution time is also limited by branch instructions. If, for example, a conditional
branch is resolved in the third pipeline stage, two cycles are potentially lost whenever a
branch is taken and instructions have to be fetched from the branch target address. In a
traditional RISC pipeline, branches are typically resolved in the second pipeline stage giving
a branch delay of only one. This latency is often disguised by using a delayed branch
mechanism !1 in which the instruction following the branch is always executed irrespective
of the outcome of the branch instruction.

The classic delayed branch mechanism specifies that a fixed number of the instructions after
each branch instruction will be executed irrespective of whether the branch is taken or not.
This mechanism is too inflexible for a superscalar architecture which issues a variable
number of instructions in each processor cycle. HSA therefore generalises the traditional
mechanism by allowing each branch instruction to specify the number of instructions to be
executed in its branch delay slots 14, This variable count is implemented by adding a count
field to all branch instructions. Initially the compiler sets all count fields to zero. Then, after
instruction scheduling, the scheduler sets the counts to equal the number of instructions that

have been successfully moved into the branch delay slots.

The flexibility inherent in this mechanism allows it to adapt to different pipelines and
instruction issue rates. Machine compatibility is therefore ensured as long as each processor
can execute branches that specify a variable number of delay slots. Any HSA processor can
therefore execute code scheduled for any other HSA processor.

In contrast, recent superscalar architectures 15; 16 have tended to abandon the delayed branch
mechanism in favour of using a branch target cache (BTC) to predict the outcome of
branches dynamically. If the outcome of a branch is successfully predicted then the branch
penalty is zero. Significant progress has recently been made in improving the accuracy of
dynamic branch prediction with success rates as high as 97% being reported by Yale Patt’s
group at the University of Michigan 17-

While a perfect BTC will result in zero performance degradation, in practice there will be a

performance penalty every time a branch is mispredicted:

Penalty cycles / useful cycle =IR . BF . (1 - HgT() . BP

where
IR = Issue rate or average number of instructions issued per cycle
BF = Branch Frequency
BP = Branch Penalty of a misprediction in cycles

HpTC = Branch Target Cache successful prediction rate.




A superscalar processor using dynamic branch prediction will therefore suffer a performance
loss proportional to the sustained instruction issue rate, the branch frequency, the miss rate in
the BTC and the branch penalty. Crucially as aggressive instruction schedulers achieve ever
higher average instruction issue rates, the branch penalty will increase. For example, with an
effective issue rate of eight, a BTC success rate of 95% and a three cycle misprediction
penalty, performance is likely to be degraded by approximately 20%. In contrast, since HSA
does not incur a branch misprediction penalty, it has the potential to sustain an issue rate of
IR instructions per cycle.

The use of a BTC also significantly increases the complexity of the hardware. In addition to
the cost of the BTC itself, the processor must be able to recover rapidly from incorrect branch
predictions by undoing the effect of any instructions that have been speculatively issued after
the branch prediction. Rapid recovery from mispredicted branches is usually achieved by
providing a reorder buffer 18 or an equivalent mechanism. The main concern with these
recovery mechanisms is the increased complexity of both the operand fetch and result write
back operations. Even without a reorder buffer, a significant number of register operands
have to be read and written during each processor cycle. If a reorder buffer is added, all of
these operand reads and writes need to be performed associatively on the reorder buffer. The
danger is that this complexity will result in either additional pipeline stages or a longer cycle
time. An additional stage will increase the branch penalty, while increasing the cycle time

will, of course, affect all instructions.

The HSA branch mechanism also has disadvantages. Firstly, a delayed branch mechanism
generates each branch target address one or more cycles later than a BTC. Performance can
only be maintained by speculatively executing instructions from both paths after the branch.
HSA can therefore only avoid the penalty cycles incurred by a BTC by increasing the
instruction bandwidth. Secondly, additional bits are required for a delay count field in all
branch instructions, restricting the branch range. Thirdly, the count mechanism itself
requires careful implementation. Finally, some researchers view delayed branches as an

artefact that is too closely tied to specific hardware implementations.
Guarded Instruction Execution

Guarded or conditional instruction execution has been proposed by a number of
researchers!9-21 and has been implemented in several processors including Cydra5 22, the
Acorn ARM 23 and the HARP processor 24 developed at the University of Hertfordshire. All
HSA instructions are executed conditionally. Guarded execution is implemented by
associating one or more Boolean guards with each instruction. For example consider:

TB1 FB2 ADD R1, R2, R3
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The addition will only return a result to R1 if the value held in Boolean register B1 is true at
run time and the value in B2 is false. The Boolean values themselves are generated by

relational instructions that return a Boolean value to one of the Boolean registers.

Guarded instructions have a number of advantages. Firstly, renaming can be avoided when

an instruction is percolated into a preceding basic block. For example consider:

EQBI1,R1,R2 /*B1 :=(R1=R2) */
BT B1, label /* Branch if B1 = true */
ADD R6, R3, R4

The instruction scheduler can safely move the ADD instruction in parallel with the branch
instruction as long as the guard condition FB1 is attached:

EQBI,R1,R2
BT B, label; FB1 ADD R6, R3, R4

In the absence of guarded execution, the register R6 must be renamed if the contents of R6
are live on entry to the basic block starting at “label”. Guarded execution therefore reduces
the pressure on register usage. Since renaming involves the insertion of additional MOV
instructions, guarded execution also reduces the pressure on code size. However, guarding
can not be used if the add instruction is percolated into or beyond the instruction group
generating the Boolean guard.

Secondly, guarded execution allows store instructions to be percolated into the preceding
block. Since store instructions can not be executed speculatively on HSA, it is not normally
possible to move a store instruction into a basic block that ends with a conditional branch
instruction. Guarded execution allows such percolation since the guard ensures that the store
operation will only take place at run time if the path that originally contained the store
instruction is followed. This additional movement of store instructions is important since

store instructions tend to block the motion of subsequent load instructions.

Thirdly, guarded instruction execution results in the complete elimination of some basic
blocks. For example, consider the following code that has been generated for an “if then

else” construct:

NEQ B6, R1, R15 /*B6 := (R1 #R15) */

BF B6, else-code /* Branch if B6 = false */
then-code: ADD R1, R2, R3

BRA continue /* Unconditional branch */
else-code: ADD R4, R5, R6

continue:

11




After scheduling, the following code is produced:

NEQ B6, R1, R15 /*B6 :=(R1#R15) */
TB6 ADD R1, R2, R3; FB6 ADD R4, R5, R6

The advantage of branch removal is that code size is reduced and potentially fewer branch
execution units are required. However, the execution time need not be significantly
improved. Non branch instructions should percolate to the same point in the code

irrespective of the intervening branch structure.

Branch removal is more important in superscalar processors that predict the outcome of
branch instructions dynamically. Here removing branches from the program will also reduce
the number of branch prediction failures. This reduction was recently quantified by Professor
Hwu’s Impact Group at the University of Illinois 25 which used guarded execution to remove
conditional branches systematically from their benchmarks. In one case the miss rate of the
branch target cache was dramatically reduced by almost a factor of 1000. Average results,
however, were less encouraging with 27% of conditional branches being removed and branch
prediction failures being reduced by 20%. Similar results have been obtained with HSA 26

where the scheduler removed over 30% of all branches executed.

A fourth advantage of guarded execution is that it provides a simple mechanism for allowing
a branch instruction to be moved either into the branch delay region of an earlier branch
instruction or into the same instruction group as a previous branch. For example, consider

the following code fragment where only the control flow instructions are shown:

BT B1, label
BT B2, label2

label: BT B3, label3

Guarded execution allows all three branches to be consolidated into a single instruction group

and executed in parallel.
FB3 BT B1, label; FB1 BT B2, label2; TB1 BT B3, label3

A fifth advantage of conditional execution is that the number of functional units and other

processor resources can be reduced. Consider the following example:

NEBI1,R1,R2
BT B1, label (#6); TB1 instrl; FB1 instr4
TB1 instr2; FB1 instr5
TB1 instr3; FB1 instr6
Two branch delay slots are assumed and six instructions following the branch are executed

before the branch is taken. All six will be issued to functional units but three of the
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instructions will receive false Boolean guard operands and will therefore be squashed in their
functional units without returning a result to a register. As a result the bandwidth of

functional unit result buses can be reduced.

Carrying the idea of squashing further, instructions can be removed from the pipeline in the
Instruction Decode Stage 27 whenever their Boolean guards are available and evaluate to
false. The HSA simulator will squash an instruction in the ID stage, if the relevant Boolean
guard evaluates to false and the instruction has remained in the instruction buffer for a full
cycle without being issued. In the above example, the instructions in the first branch delay
group are the first instructions that satisfy these conditions. This squashing mechanism
operates in parallel with the instruction issue logic and therefore does not place additional
pressure on the instruction decode cycle time. Such squashing can be remarkably effective
with as many as 50% of all instructions fetched from the instruction cache being squashed in
some simulation runs 26. Squashing is therefore a powerful mechanism for reducing the
impact of the additional instruction fetch bandwidth required to exploit the delayed branch
mechanism fully.

A number of major disadvantages must be set against these advantages. Firstly, a significant
amount of encoding space is required in each instruction to specify the guard conditions.
Fortunately, a large number of Boolean registers is not required with eight proving more than
adequate on the HARP processor chip 24. Nonetheless four bits were used on HARP to add a
single guard to each instruction. Arguably three of these bits could have been more usefully
employed in doubling the size of the register file. Multiple Boolean guards will require even
more instruction bits, even though a fully general mechanism can be encoded using only two
bits per Boolean guard:

bit 0: Guard used/ not used

bit 1: True/false guard

Secondly, incorporating Boolean guards in the HARP processor added significantly to the
time required to develop the chip 28. There is, however, no evidence from the HARP
development to suggest that guarded instruction extended the processor cycle time or

degraded performance in any way.

Thirdly, using Boolean guards increases the complexity of the instruction scheduler.
Instruction scheduling, like all compiler optimisation, ultimately reduces to a massive case
analysis problem and introducing Boolean guards introduces significantly more cases. These
additional cases can either be handled by introducing a more complex data structure to

represent instruction groups 27 or on an individual basis.
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Fourthly, guarded execution, like the use of delayed branches, is open to the charge of being
an artefact. Future developments in technology and processor organisation could make

guarded execution redundant in later versions of an architecture.

Finally, although several researchers have reported impressive speedups using architectures
with guarded execution, there is little published evidence to quantify the benefits of guarded
execution itself. Our own work on HARP suggests that guarded execution yields a
performance advantage of about 10% with an instruction issue rate of four 3, not a significant
advantage. Similar improvements of between 6 and 11% are reported by Professor Hwu’s

group with an instruction issue rate of eight 25
Memory Disambiguation

Program execution time is also limited by data dependencies involving memory locations.
However, while data dependencies involving registers are relatively easily handled by the
instruction scheduler, data dependencies that involve memory locations are significantly

harder to deal with. Consider the following example:

ST 4(Rj), R1 /* Store register R1 at address Rj+ 4 */

LD R2, 8(Rj) /* Load register R2 from address Rj + 8 */
Can the instruction scheduler safely percolate the load ahead of the store? This code motion
is only safe if, at compile time, the two memory addresses can be shown to be always
different. In the above example, the addresses are clearly different if the two registers are
identical. Otherwise no conclusions can be drawn. HSA instruction schedulers use a

disambiguating routine that compares two addresses and returns one of three values:

Different: Addresses are always different.
Same: Addresses are always the same.
Fail: Addresses can not be disambiguated.

If the addresses always differ, the load can safely be moved ahead of the store. Percolation
can also continue if the addresses are always the same. In this case the value required is

already in the register being stored, so the load can be replaced by a register-to-register move.

Unfortunately many address pairs can not be disambiguated at compile time. Since many of
these addresses will prove to be distinct at run time, disambiguation failures could seriously
limit the parallelism realised by HSA. If this proves to be the case, the instruction scheduler
will replace pairs of store and load instructions with code that compares the two addresses

dynamically at run-time 29.

ADD R16, R, #4 /* Compute store address */

ADD R17, Rj, #8 /* Compute load address */

EQB1, R16, R17 /* Compare two addresses for equality */
FB1 LD R2, 8(Rj) /* If addresses differ perform load */

14




TB1 MOV R2,R1 /* Else obtain value from register */

ST 4(Rj), R1
Both the LD and MOV instructions that replace the original LD instruction have been moved
ahead of the ST. Note that the use of guarded instruction execution has avoided the insertion
of two branch instructions. Furthermore, if its guard is removed, the LD can also be moved

ahead of the new address comparison instructions.

The crucial importance of memory disambiguation was emphasised by recent trace driven
simulations 8 performed using the HSA model where it was shown that forcing loads and

stores to execute sequentially reduced the speedup available by a factor of 4.8.
Scheduling Results

Two instruction schedulers are currently being developed for HSA. The first HSA scheduler,
a Conditional Group Scheduler 26 28 is already at an advanced stage of development. The
Conditional Group Scheduler aims to exploit the guarded instruction execution facilities
provided by HSA and implements new data structures that directly support the scheduling of
guarded instructions. The Conditional Group Scheduler attempts to fill each parallel
instruction group in turn. Scheduling therefore consists of repeated searches through the

code for instructions that can be added to the current group.

This section presents some preliminary results obtained using this scheduler. Three versions
of the HSA architecture are compared, a slow cache version, a fast cache version and an ideal
version (Table 2). In the slow cache version, both the instruction cache and the data cache
are assumed to require two cycles to perform a read operation. As a result all branch
instructions have two branch delay slots, and the load delay is one. Data loaded from the
cache by a load instruction can therefore not be used by an immediately following instruction
without introducing a stall of one cycle. In the fast cache model, a cache access time of one
cycle is assumed, giving a single branch delay slot and eliminating the load delay. In both of
these models multiplication is assumed to require 3 cycles and division 16 cycles. In
contrast, in the ideal model all instructions, including multiply and divide, are assumed to
execute in a single cycle. There is therefore no load delay although the branch delay remains
one.

Modified versions of the Stanford benchmarks are used throughout. Each program is com-
piled using the GNUCC generated HSA ‘C’ compiler, scheduled using the Conditional
Group Scheduler and simulated using the HSA instruction-level simulator 27. Both the
instruction fetch and issue rate are set at 16. In practice, however, issue rates over 8 are
uncommon. Since we were initially interested in achieving the maximum possible speedup,

no additional resource limitations were introduced.
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Since HSA is a superscalar rather than a VLIW architecture, some parallel instruction issue is
to be expected without any instruction scheduling. The speedups achieved with the Stanford
benchmarks range from 1.42 with the slow cache model, through 1.58 with the fast cache
model, to 1.63 with the ideal model (Table 3). HSA therefore achieves a respectable speedup

without any instruction scheduling despite the restriction of in-order instruction issue.

Instruction scheduling results in significant further improvements in performance. The HSA
scheduler currently obtains speedups of 2.91 with the slow cache, 3.23 with the fast cache
and 3.62 with the ideal model (Table 4), more than doubling the performance of a superscalar
processor without any instruction scheduling. This improvement is achieved at the cost of
code expansion ranging from a factor of 1.91 to 2.12. Further results using the Conditional

Group Scheduler were presented at a recent conference 2.
Conclusions

HSA is a highly parameterised processor model, which has been developed to support
Computer Architecture research at the University of Hertfordshire. HSA has a number of
distinctive features including strict in-order instruction issue, guarded instruction execution, a
general delayed branch mechanism, hardware support for speculative instruction execution

and an ability to remove or squash redundant guarded instructions in the instruction buffer.

Two high-performance instruction schedulers are currently being developed for HSA. The
first scheduler has already achieved speedups of over three. Our aim is to improve
significantly on this figure, our ultimate goal being an order of magnitude speed up over
traditional single-instruction-issue RISC processors. Further goals of the HSA project are to

limit code expansion and to quantify architectural trade-offs within the HSA model.
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Table 1 Limits of Instruction Level Parallelism

Parallelism Potentially Available

Benchmark Wall Patt Lam
Eqntott - 30 3283
Espresso 41 179 742
Gee 27 38 175
Duduc 56 55 -
Fpppp 60 378 -
Matrix300 - 1165 188,470
Spice2gb - 17 843
Tomcatv 60 930 3918
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Table 2 HSA Architectural Models

Slow Cache Model
(cycles)
Instruction Cache 2
Branch Delay 2
Data Cache 2
Load Delay 1
Multiplication 3
Division 16

Remaining Instructions

20

Fast Cache Model
(cycles)

W O ke e

16

Ideal Model
(cycles)

p—ip—kp—ioy—k;ﬂy—d




Table 3 Speedup without Instruction Scheduling

Program Slow Cache Model
Bubble 1.45
Intm 1.32
Perm 1.82
Puzzle 1.27
Queens 1.48
Quick 1.38
Towers 1.57
Tree 1.25
Average 1.44
Harmonic Mean 1.42

21

Fast Cache Model

1.61
1.38
2.18
1.36
1.64
1.50
1.86
1.40

1.62
1.58

Ideal Model

1.63
1.60
2.18
1.36
1.64
1.59
1.86
1.43

1.66
1.63




Table 4 Speedup after Instruction Scheduling

Program Slow Cache Model
Bubble 4.41
Intm 2.38
Perm 5.04
Puzzle 2.75
Queens 2.96
Quick 2.52
Towers 2.73
Tree 2.29
Arithmetic Mean 3.13

Harmonic Mean 2.91
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Fast Cache Model

5.23
242
6.21
2.70
3.54
2.73
3.23
2.60

3.58
3.23

Ideal Model

5.61
3.77
6.21
2.70
3.54
343
3.23
2.87

3.92
3.62




