
ar
X

iv
:1

10
1.

33
56

v2
 [

cs
.P

L]
 1

9
Ja

n
20

11

CAL: A Language for Aggregating Functional and
Extrafunctional Constraints in Streaming Networks∗

Alex Shafarenko, Raimund Kirner

Department of Computer Science
University of Hertfordshire

College Lane, Hatfield AL10 9AB
United Kingdom

{r.kirner, a.shafarenko}@herts.ac.uk

January 20, 2011

Abstract

In this article we present theConstraint Aggregation Language(CAL),
a declarative language for describing properties of stateless program com-
ponents that interact by exchanging messages. CAL allows one to describe
functional as well as extra-functional behaviours, such ascomputation la-
tency. The CAL language intention is to be able to describe the behaviour of
so-called boxes in the context of S-Net. However, the language would find
application in other coordination models based on stateless components.

1 Introduction

The concept of coordination engendered by the coordinationlanguage S-Net en-
forces a strict separation of concerns [3–5]. The program is represented as a stream-
ing network in which the nodes are specified as stateless black boxes defined by
their interfaces. An interface definition declares the typeof tuples the box agrees to
receive. It names individual fields without defining the kindof content (e.g., num-
bers, arrays, etc.) that those are expected to represent. The interface also defines
the output tuples the box is permitted to produce, in exactlythe same manner: as
lists of field names. A box behaves as follows: it is initialised, then an input tuple is
consumed, then output tuples (also called messages), if any, are produced in some
order and then the box terminates. No input is possible otherthan via the input

∗The research leading to these results has received funding from the IST FP-7 research project
"Asynchronous and Dynamic Virtualization through performance ANalysis to support Concurrency
Engineering (ADVANCE)" under contract no IST-2010-248828.

http://arxiv.org/abs/1101.3356v2

tuple and no state of the box computation is shared with its environment other than
by producing output tuples.

In this report we present theConstraint Aggregation Language(CAL), which
is a language for specifying constraints about the program behaviour of boxes. The
CAL interface definition for boxes is presented in the form ofsignature. Here is an
example:

box boxname ((a,b,n) -> (d,e), (f,g,q,r), ...):

This box takes as input a tuple(a,b,n) and produces tuples of the types(d,e),
(f,g,q,r),

Any properties of the objects communicated in and out of a boxare consid-
ered dynamic and unknown to the coordinating infrastructure. In reality, some of
them may be static albeit defined in terms of a box language andthus unavailable
to S-Net. The properties are classified into two large categories: functional and
extrafunctional. Functional properties are concerned with the value of the object:
its shape (e.g., array dimensions), element type, and content. The extrafunctional
properties include, but are not limited to, computational latency of output tuples,
electric power required for their production, the amount ofauxiliary memory that
the algorithm needs, etc. Generally, extrafunctional properties are those not af-
fecting the value of the result tuples, but only the efficiency and “cost” of their
production.

The purpose of CAL is to enable the programmer to declare cause-and-effect
relations between the input and output and to define constraints on these. It is
typically the case that functional properties influence theextrafunctional ones, e.g.:
the lengthN of a 1d array affects the time required to sort it in a given order and
the size of the auxiliary memory required for the sorting. Itis also true that while
extrafunctional properties are local and tend to be independent from each other,
functional properties have the tendency to spread out as messages are sent and
received across a distributed system.

2 The Constraint Aggregation Language (CAL)

The constraint aggregation language(CAL) describes properties of S-Net and
boxes and boxes that share the S-Net interface concept. The modular unit of CAL
is called a declaration. A CAL declaration applies to a specific box and is based
on the box signature. The top-level grammar of CAL is given inFigure1. The
declaration consists of clauses. A clause is the statement that the input condition
implies the output condition. The input condition of a box isthe conjunction of
predicates on terms that include object variables that refer to the box input. The
output assertion of a box is the conjunction of predicates onterms that include
object variables that refer to the box output. Both kinds of terms may include envi-
ronment variables that refer to the state of the environmentor the effect of the box
on the environment. The term structure is given in figure2.

2

Declaration ⇒ Header[Decl ;]*

Header ⇒ box BoxName(BoxSignature) :

BoxSignature ⇒ [TupleType] -> [TupleType[, TupleType]*]

TupleType ⇒ ([Object[, Object]*])

Decl ⇒ [Clause]
| provided Condsuse Decl end

Clause ⇒ Cond => Assert

Cond ⇒ Predicate[, Predicate]*

Assert ⇒ Predicate[, Predicate]*

Figure 1: Top-Level Grammar of CAL

2.1 Variables and Terms

A variable is lexically a sequence of letters, underscores and digits preceded by
one or two dollar signs, with the first character after the dollar(s) being a letter
or undescore. A variable can be associated with avalue. There are two types
of values: a number and a term, the former being distinguished from the latter
lexically. A variable may not be associated with anything; in that case it is called a
freevariable. All free variables are existentially quantified by CAL.

Three categories of variables are available to a CAL clause.

1. Object variables. They are lexically identical to the members of the tuple
type in the header except that they are preceded by the dollarsign. Each of
these variables is associated with a term that reflects the properties of the
corresponding data object. More precisely, the objects on the left-hand side
of the signature are assumed to be pre-associated with the property expres-
sions, and those on the righ-hand side will have propertiesassertedby the
out-condition, but otherwise all object variables behave in the same way.

2. Environment variables, for example$$nthreads, the number of threads
available to the box. They are associated by the environmentwith values
according to the meaning. They are lexically differentiated from the object
variables by the double dollar prefix. Note that environmentvariables have
values at run-time, which may change from one activation of the box to the
next, just as object variables.

3. The rest of the variables arelocal; they are free and therefore existentially
quantified. Their purpose is to facilitate specification of complex conditions.
There exist a special variable$_, which denotes a fresh local variable with
a compiler-generated name. It can be associated with a valuevia unification
but cannot be referred to by name to fetch that value, a kind ofunification
“black hole”.

3

Term ⇒ Evaluable
| General

Evaluable ⇒ Basic
| EvTuple
| EvHeadTuple

Basic ⇒ Variable
| Constant
| Symbol

EvTuple ⇒ (Evaluable[, Evaluable]*)

EvHeadTuple ⇒ Symbol EvTuple

Infix-Exp ⇒ Prod
| add-op Prod
| Infix-Exp add-op Prod

Prod ⇒ Basic
| Prod times-op Primary
| Prod ˆ Primary

Primary ⇒ Basic
| (Infix-Exp)

add-op ⇒ +
| -

times-op ⇒ *
| /

General ⇒ Evaluable
| Set

Set ⇒ { Evaluable[, Evaluable]* }
| Variable
| Set ∨ Set

Figure 2: Term structure in CAL

4

Predicate ⇒ [Relation | Equivalence]

Relation ⇒ [Variable | Constant] RelOp Expr

RelOp ⇒ [= | > | < | >= | <= | !=]

Equivalence ⇒ Expr :=: Expr

Figure 3: Predicates in CAL

Terms are composed from the basic terms, which are variables, numbers and
symbols, using a few constructors. Numbers are rational numbers in the formn/d
where both the numerator and the denominator are unsigned integers.n/1 can be
abbreviated ton and an optional minus may precede any number.

The variety of symbols includes identifiers and infix signs. Identifiers are, as
usual, composed of letters, numbers and underscores, and the infix signs include
+, -, *, /, ^, \/. Infix signs are treated as syntactic sugar for special in-
dentifiers\plus,\minus,\times,\slash,\hat,\union, which start with
a backslash (otherwise not available to the programmer), but which are, otherwise,
similar to ordinary identifiers.

Two constructors are used for term construction: set and tuple. A set is a
comma-separated list enclosed in braces, for example:{$A, 12, shape}. Sets
contain members, which are general terms except any kind of set nesting is forbid-
den. Unions of sets are allowed, and a variable may range oversets, even though
that is not a type judgement and is not enforced by the compiler. Ill-formed sets,
which contain sets as members or which are united with members rather than sets
cause the predicate that uses such a set to fail.

A tuple is a comma-separated list enclosed in parenthesis. As a syntactic sugar,
the first member of a tuple, provided that it is a symbol, can beextracted from it and
placed in front of the opening parenthesis. The resulting term is fully equivalent to
the original one, for example,a(b,c) is effectively equivalent to(a,b,c).

Infix signs implicitly cause tupling. Any term in the forme1 ⊕ e2, where
e1,e2 are terms and⊕ is an infix sign, is converted by the CAL compiler to
⊕(e1,e2). Any ambiguity resulting from more than one infix sign binding the
same term is resolved on the basis of priority in a conventional way.

CAL variables have no explicit type, but terms do. Since set nesting is forbid-
den, there are two mutually incoercible term types: a set andan individual. An
individual can be a number, a symbol or a tuple.

2.2 Predicates

Terms in CAL are used in formulating conditions and assertions, which are con-
junctions ofpredicates. Those have the grammar displayed in Fig3. There are two
syntactic classes of predicate: relations and equivalences.

5

Relations. Those compare a variable (or a constant) with a term on the basis of
numerical value. The term on the right hand side is evaluatedin the arithmetic
sense as follows

• Only tuples are allowed; sets are forbidden; if a set constructor is encoun-
tered, the predicate fails.

• The top level of the term structure is thus a basic term or a tuple; If the
former,

– if the basic term is a constant, the constant value becomes the value of
the term

– if the basic term is a symbol, it is one of the Standard Constants (ex-
amples are: maximum integer, infinity, etc), otherwise the predicate
fails

– if the basic term is a variable, the variable must be associated with an
evaluable term, otherwise the predicate fails; if it succeeds, then that
term’s numerical value becomes the value of the variable.

If the top level of the term structure is a tuple, the tuple head is interpreted
as the identifier of a numerical function, such as\plus; the rest of the
members of the tuple are considered the arguments and are evaluated; the
function is applied to the values of its arguments and the result becomes the
value of the term. If the identifier of the function is unknown, the predicate
fails, as it does in the event of any of the arguments failing.Note that the
tuple head cannot be a variable1.

Note that since all free variables are existentially quantified, the clause will effec-
tively define a constraint involving every free variable participating in it.

Equivalence is an application of the most general unifier to the two terms.The
unifier succeeds if there exist unifying associations for all free variables partici-
pating in the terms. If it succeeds, the associations will bethe most general ones
possible, and they may involve further free variables generated by the compiler.
The unification rules are completely symmetrical with respect to both operands:

• At the top level ground terms, tuples and sets are all possible. Tuples and
sets are mutually un-unifiable, unless the tuple head is\union. Union-
headed tuples are considered sets in the context of unification. It is checked
that terms under a union are (syntactically) sets. That excludes, as members
of a union, terms such as a tuple headed by anything other than\union,
constants and symbols, but it does not exclude variables, asthose can, and in
this case must, be associated with sets, but that is not a syntactic restriction.

1This restriction is required for the tractability of numerical expressions.

6

• Sets are unified by assigning the free variables occurring inthem with most
general terms (i.e. constraining them) that make the two sets identical. By
the most general assignment we mean an assignment such that any other
unifying assignment can be produced from it by further constraining any
free variables that remain after the unification. When sets are unified, the
most general form ofset termis, obviously,

{t1, t2, . . . , tn} ∨ v1 ∨ v2 ∨ . . . ∨ vq ,

wheret1, t2, . . . , tn are (non-set) terms, i.e. basic terms or tuples of tuples
and/or basic terms, andv1, v2, . . . , vq are variables ranging over sets (since
sets and individuals are mutually incoercible)2

• A non-variable basic term can only be unified with an identical basic term or
a variable.

• An un-associated variable becomes associated with the other operand; if the
variable is associated, the other operand is unified with theassociated terms.

2.3 A note on logic/constraint programming machinery

It is easy to see that the present syntax of CAL clauses makes them reducible to
Horn clauses. Indeed, due to the static nature of S-Net routing, the assertions can
be matched with conditions using the type-inferred versionof the S-Net graph. As
a result, after a suitable (fully mechanical) transformation, a single unstructured set
of CAL clauses can be gleaned from the whole network. The onlydeviation from
the standard Horn format:

P1 ∨ P̄2 ∨ P̄3 . . .

is the conjunctive head made up from all assertionsA1, A2, etc. in the clause

(A1 ∧A2 ∧A3 . . .) ∨ C̄1 ∨ C̄2 . . . ,

with the conditionsC1, C2, etc. participating in the disjunction. However, this is
equivalent to a set of Horn clauses:

A1 ∨ P̄1 ∨ P̄2 . . .
A2 ∨ P̄1 ∨ P̄2 . . .
A3 ∨ P̄1 ∨ P̄2 . . .

. . .

The central issue therefore is whether or not the assertionsrequire a disjunctive
form, which would make CAL clauses non-Horn. The present syntax excludes it

2 Unification of such terms is known as theflat(q) unification problem [1] and it is the most
complex set unification problem that admits a polynomial complexity solution. It is known that even
the solution to a system offlat(q) unification equations, as opposed to a single equation, is already
NP-complete, to say nothing of a more complex set algebra. This explains our choice of set operators
available in CAL.

7

in anticipation that the input information should be sufficient to assert constraints
(however loosely) on a definite collection of terms, each member of the collection
thus being constrained conjunctively. It may be the case, however, that an input
to a box produces, for instance, two possible output messages; then depending on
which message is produced, a different constraint is asserted on the same object
variable. Such situations would necessitate a disjunctiveassertion, for which the
current CAL syntax is insufficient.

Thoughts should be given to non-Horn CSPs, in our case SMT modulo linear
arithmetic, which would involve a solver such as Yices [2] as a means of aggrega-
tion.

2.4 Aggregation and Vocabularies

The idea behind constraint specification of CAL is that both functional and extra-
functional constraints can be expressed as relations on terms. The difference be-
tween them is in the aggregation method. For functional constraints terms are uni-
fied according to the corresponding box connections. For instance, two boxes con-
nected in series:A..Bwith the signatures, respectively,(x)->(y)and(p)->(q)
would impel CAL to unify object variablesy andp, which will effectively trans-
form any assertions ony into conditions onp. All kinds of connections between
boxes will be type-resolved by the coordination language compiler to establish the
interface type; then CAL will unify corresponding object variables. Naturally, due
to the presence of arithmetic relations in CAL clauses, the connection between the
input and the output of a box might be quite complex and the corresponding ag-
gregation might involve heuristically driven symbolic computations, but such sce-
narios are expected to be uncommon. At any rate, if constraints fail to aggregate,
this leaves the whole-system constraint only set less tight, but still sound. Warning
messages could be generated for the benefit of the system designer in such a case,
and improvements could include redesign of some boxes in order to expose es-
sential parameters in a more straightforward fashionin databefore any properties
and property associations may be formulated. For instance,instead of defining a
complex relation between input and output shapes, a box could compute an extra
integer parameter that defines the output shapes directly. The output constraints
would thus become disconnected from the input constraints,but the former could
then be declared precisely and simply. It is clear from this example that there may
well be a trade-off between aggregability and accuracy given a limited amount of
deductive power in the constraint aggregation logic.

In contrast to functional constraint aggregation, the extrafunctional constraints
are aggregated by means other than unification. Unification can still play a role if
aggregation rules are formulated in inference-rule form, but that is an implemen-
tation issue. What is certain in any implementation is that the aggregate constraint
set is produced from the assertions of individual boxes by non-logical means. For
example, aggregating latency over a pipeline involves not only the knowledge of
latency properties of the pipeline stages, but also the communication cost of the

8

pipeline itself, and all those are combined statistically as probability distribution
functios with tuneable parameters. The machinery that should be used here is
one of queuing theory; also involved in these calculations are the virtual hard-
ware model and various system parameters. At this point it isenvisaged that any
component-wise information about latency is fed into a special aggregation library
that contains an aggregating function for every network combinator per extrafunc-
tional property to be aggregated. It is important to understand that here virtual
hardware plays a dual role: it provides an execution platform and also some sym-
bolic rules that describe the process of statistical aggregation relevant to that plat-
form. For example, the above mentioned pipeline exampleA..B would exhibit
different temporal behaviours (even statistically) if thenature of the serial combi-
nator is network communication between processors rather than shared memory
for cores. This difference may be qualitative rather than quantitative: in the former
case the message size negatively impacts on the combinator latency while in the
latter it may not. By contrast, the combinator jitter may behave in the opposite
manner: communication tends to reduce jitter due to buffering while direct sharing
exacerbates it by allowing the box jitters to combine.

In both functional and extrafunctional cases the recursivestructure of the net-
work would call for a reflexive aggregation technique: subnetworks should expose
the same nature collections of symbolic expressions as boxes, and the aggregation
process should not care whether what is being aggregated is atomic or not. There
are two ways of achieving this. One is to see CAL as a package operating on top
of a generic inference system, such as Prolog, or even an appropriate SMT solver
such as Yices. This would enable the development of all aggregation code in that
framework. The second alternative is to use CAL specifications as source data to a
custom analysis tool, which is hardwired for all forms of aggregation. The choice
remains open at present time.

Either form of aggregation requires a definition of the property terms with
which the aggregation process must deal. CAL terms are generally tuples or sets of
tuples, and those involve constants and identifiers. The latter must carry meaning
for each individual property class. The structure of the terms and the assortment
and meaning of the identifiers used in them form the substanceof a vocabulary
definitionfor a property. Vocabularies for extrafunctional properties are external to
CAL and should be defined as part of the contract between the statistical model,
coordination infrastructure and virtual hardware. The last one has its own vocabu-
lary that defines the system parameters repeatedly mentioned above. Vocabularies
for functional properties are also external to CAL, and are part of a contract, too.
However, the contract is now between modules written in a boxlanguage.

Constraint aggregation may deliver information to each of the modules that
standard type systems are unable to guarantee and, because of that, fail to gather.
CAL properties can be used to tune the back end of the compilerfor program
specialisation, either statically or using just-in-time compilation techniques, if the
CAL process is use dynamically, triggered by a change of value for an environment
variable. This would enable quasistatic properties, i.e. properties that are dynamic

9

but which change infrequently, to be treated as configuration parameters, and the
compilation process as one of reconfiguration under the influence of nonlocal infor-
mation. In contrast to types, failure to gather the necessary information would only
delay or cancel such reconfiguration but not jeopardise the validity of code, hence
more liberal aggregation methods, including heuristic andconstraint-satisfaction
modulo generally undecidable theories could be tried. Vocabulary-wise, the vocab-
ulary for the functional properties will closely reflect (but not necessarily coincide
with, up to isomorphism) the type system of the box language.The clauses would
analyse the properties and synthesise assertions that linkup types.

Importantly, types can be dependent on integers communicated at run time,
since those can be aggregated and constrained by the CAL inference machinery.
As a side effect of the aggregation, certain environment variables may receive as-
sertions, and those can be used by the box-language compilerin its conditional
compilation facilities, such as C’s#define. This would require a convention
on such environment-variables’ names, for instance they could start with$$_. It
would also require a template for the#define-like statements for the box lan-
guage into which the variables will be substituted before box (re-)compilation. In-
terestingly, this approach erodes the boundary between thestatic and the dynamic
in box compilation.

Below we will present some example vocabularies. The examples are meant to
be illustrative rather than definitive and are not prescriptive in any way.

2.4.1 Functional Vocabulary

It would be sensible to ensure that any object variable is associated with a set of
terms. This way specific properties can be expressed as one ormore terms and the
input condition can extract specific terms by set unification, while not caring about
what other term structures may be present in the set.

The functional vocabulary in a simple Fortran-like programming language with
arrays may include the following term:

Type(array, element($eltype), rank($r),
shape($s0,($s1,($s2,nil))))

Here the term headType indicates that the term defines the object’s type.
Symbolarray indicates that the type is an array type. Theelement subterm
defines the element type of the array as$eltype, the rank subterm defines the
rank of the array as$r and the shape list is contained in the termshape. Note
that the element type can be a symbol that serves as a reference to another type
declaration. For example, the following pair of terms definea vector of vectors of
integers, the inner vector being of variable length:

10

Type(this, element(vector), rank(1),
shape(100,nil))

type(vector, element(int), rank(1),
shape(unknown, nil))

The second term uses the tuple headtype rather thanType to indicate an
additional type definition. Also note the symbol for unknowninteger number
unknown. The action of arithmetic operators in relational contextsis extended
to include the standard response to unknown numbers3.

It should be clear by now that, for instance, all non-pointerC types can be en-
coded as CAL terms. Records and unions can be dealt with by using tuples of label-
type pairs, both labels and types represented by CAL symbols. Self-referencing
types are possible by reusing the type name symbol (second member of the type
tuple at the top level) in the component terms of the type. Here is a list of integers:

Type(int_list, union(record((head, int),tail(int_list)), nil))

Another kind of functional constraint that CAL may deal withis a constraint
associated with a value. Values of compound objects are box-language dependent
and consequently intractable in CAL, but integer scalars should be quite tractable
and do usually carry important information that affects functional properties of
objects (such as their dimensions). To this end, the termvalue($v) should be
included in the vocabulary, where$v is an integer constant. Here is an example of
full terms associated with an input interface of(A,K)->...

$A :=: {Type(array, element(real), rank(2), shape(7,(7,nil))), packed(row_major)}
$K :=: {Type(int), value(100)}

Here the first line associates a term that declares a real7× 7 array packed in a
row major order, and the second line a term that declares the integer scalar100.

2.4.2 Extrafunctional Vocabulary: Latency

The latency vocabulary describes the statistical model of message production by
a box. The environment provides a series of variables in its vocabulary:$$T0,
$$T1, $$T2, etc. These variables are provided separately for each box,just as
all other double-dollared variables. They are part of the environment input; con-
sequently they are unassociated. Their number correspondsto the number of type

3details to follow

11

alternatives on the right hand side of the box type signature. For every output type
τn, the variable$$Tn should be unified with the time-complexity model of the
corresponding output, for example, the assertion

$$T0 :=: $N * log($N)

will tell the environment that the time complexity of producing one output
of the first output type isN logN , whereN is a local variable (encoded as$N)
constrained somehow by the input condition.N could, for instance, be unified
with one of the object’s array dimensions, or the value of a scalar integer supplied
through the input interface of a box. It is also possible thatN has an arithmetic
connection with the input data, such asN = M + 1, whereM comes from the
input object set4.

The complexity language used for defining latency models should include sym-
bols for multiplication,\times, exponentiation\hat, division\slash and log-
arithmlog.

There can be more than one form of complexity. For instance, the latency of a
type channel could be probabilistic: the number of messagesproduced within time
t is described by the Poisson distributionPt(λ) with some parameterλ. This, for
example, could be represented by

$$T0 :=: Poisson(1/$N)

where1/N is theλ-parameter andN , as before, an input-related scalar. Natu-
rally, an assertion such as

$$T0 :=: Poisson(unknown)

should also be possible.
Finally, it should be said that the number of messages produced by the box into

each of the output type channels should be constrained whenever possible and the
constraints should be communicated to CAL. That can be done in a way similar to
the latency constraints, by employing environment variables$$M0, $$M1, $$M2,
etc. They should be associated with either integer numbers that indicate how many
messages of each type will be produced, or a term such as

$$M0 :=: limits(5,15)

4This is also true of functional constraints, they may involve arithmetic relations, which is why
CAL introduces the machinery of rational numbers. The hope at this point is that for most practical
purposes linear arithmetic is sufficient.

12

indicating the limits of variation, or indeed could be unknown or unbounded
(either taken as the default in the absence of an assertion).

Here are some examples illustrating the use of CAL

box MYBOX: (a,k) => (b), (c,d)

provided $a :=:
{Type(array, element($t), rank(2), shape($n,($m,nil)))} \/ $_ ,

$k:=: {value($kv), Type(int)} \/ $_
use

=> $n1=$n+1,
$base :=:
{Type(array, element($t), shape ($n1,($m,nil)))}; -- Clause 1

=> $b :=: $base \/ {rank(2)},
$d = $base \/ {rank(3)}; -- Clause 2

$kv > $$nthreads * 100
=>

$$T0 :=: $m * log($m)/$$nthreads, $$T1 :=: 1; -- Clause 3

$kv <= $$nthreads* 100
=>

$$T1 :=: $m^(3/2); $$M1 :=: 0; -- Clause 4
end

Four clauses are declared here, all input-dependent on theprovided condition.
The latter unifies the object variables from the input tuple with sets of terms, thus
associating local variables. The object variable$a is examined to effectively de-
termine whether the corresponding object has rank 2, shapen × m and element
typet. If any part of this information is not available, no assertion will be made by
MYBOX.

Next, Clauses 1 and 2 have null input conditions. They assertthe ranks and
shapes of output objectsb andd. Objectb is a two-dimensional object(n+1)×m
of the same type asa. Objectd is three-dimensional, but the third dimension is not
constrained by MYBOX a priori.

Clauses 3 and 4 constrain the environment variables$$Tn. For the first tuple
type, the result will be computed inO(m logm/nth) time, and for the second out-
put tuple the expected computational time isO(1). Both constraints are predicated
on a sufficiently large value of the integer scalar parameterk: k > 100nth. The
environment variable$$nthreads is associated with the valuenth, which is the
number of independent hardware threads available to the boxin question. When
k ≤ 100nth, the expected computation time changes (this could be due tothe box
using a different algorithm): now it is, for the first tuple type,O(m3/2) and it does
not depend on the number of threads (for instance, because the box uses a sequen-
tial algorithm for small object sizes). Under such conditions, the second message
type is not produced at all, which is indicated by constraining the environment

13

variable$$M1 to the value 0.

3 Conclusion

This article describes the basic concepts of theConstraint Aggregation Language
(CAL), a novel program-behaviour description language to be used to describe
the functional and extra-functional behaviour of softwarecomponents as terms in
a term algebra, to serve as data for a constraint solver. While CAL may evolve
over time to extend its expressiveness to further patterns of program behaviour, the
initial version presented in this article already shows thecore language features of
CAL and the basic declaration mechanisms provied by CAL.

References

[1] Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Set unification.
TPLP, 6(6):645–701, 2006.

[2] B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[3] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko.A Gentle Introduc-
tion to S-Net: Typed Stream Processing and Declarative Coordination of Asyn-
chronous Components.Parallel Processing Letters, 18(2):221–237, 2008.

[4] Clemens Grelck and Alex Shafarenko. Report on S-Net: A Typed Stream
Processing Language, Part I: Foundations, Record Types andNetworks. Tech-
nical report, University of Hertfordshire, Department of Computer Science,
Compiler Technology and Computer Architecture Group, Hatfield, England,
United Kingdom, 2006.

[5] Alex Shafarenko, Sven-Bodo Scholz, and Clemens Grelck.Streaming net-
works for coordinating data-parallel programs. In Irina Virbitskaite and An-
drei Voronkov, editors,Perspectives of System Informatics, 6th International
Andrei Ershov Memorial Conference (PSI’06), Novosibirsk,Russia, volume
4378 ofLecture Notes in Computer Science, pages 441–445. Springer-Verlag,
Berlin, Heidelberg, New York, 2007.

14

	1 Introduction
	2 The Constraint Aggregation Language (CAL)
	2.1 Variables and Terms
	2.2 Predicates
	2.3 A note on logic/constraint programming machinery
	2.4 Aggregation and Vocabularies
	2.4.1 Functional Vocabulary
	2.4.2 Extrafunctional Vocabulary: Latency

	3 Conclusion

