

Getting the Best out of Software Process Simulation
and Empirical Research in Software Engineering

Paul Wernick and Tracy Hall
Systems and Software Group, School of Computer Science

University of Hertfordshire
College Lane, Hatfield, Hertfordshire AL10 9AB, England

tel. ++1707 286323/284782; fax ++1707 284303
{p.d.wernick, t.hall}@herts.ac.uk

Abstract

This position paper sets out our views on the need
to use simulation and quantitative experiments in
combination in order to maximise the benefit of both to
software engineering research. Each approach should
be used to overcome weaknesses in the other in
attempting to predict the behaviour of software
processes when new or modified processes, tools or
techniques are employed. We also express our concern
at the frequently-encountered use of the term
'experiment’ to describe quantitative simulation-based
investigations.

1. Introduction
In this paper we describe what we believe to be a

weakness in current approaches to the use of
simulation in software engineering. This is the often-
unstated uncertainty of the results obtained from what-
if simulation runs. We give reasons for this
uncertainty, and suggest that this problem can be to a
large extent resolved by the application of empirical
experiments in combination with simulation-based
investigations. Such an approach will improve the
reliability and usefulness of both techniques.

2. What is software process simulation?
As a first step, we define the term ‘simulation’ as

used in software process research. Since we believe
that the issue we are raising is applicable to all types of
software process simulation, we define this key term as
broadly as possible.

A software process simulation is a simplified
abstracted model, enactable on a computer, of a real or
proposed software development or evolution process,
usually producing results reflecting real situations or
the expected results for proposed process changes.
These results are often expressed in quantified terms.

The model is most usually based on a graphical or
textual structure intended to represent elements of the
real or hypothesised process and the interactions
between them.

3. Why simulate software processes?
Simulation of software processes is now a well-

established and successful field of software
engineering research and practice.

In the context of the development of simulation
frameworks Pfahl [9] provides us with a number of
likely reasons for this:
• “Focused improvement of techniques and tools,

and associated conduct of controlled experiments
and case studies, thus accelerating the generation
of interesting new empirical evidence about the
efficiency and effectiveness of development
techniques and tools

• Standardized representation and packaging of
empirical evidence about local effectiveness and
efficiency of techniques and tools in varying
contexts, facilitating the systematic exploration of
the impact on (global) project performance at low
cost.

• Improved knowledge transfer, education, and
training through visualization of the impact of
local effects on global performance.”

We also note the successful use of software process
simulation in making explicit theories of why software
processes perform as they do (see, for example, [3]).

Simulation also allows the elimination of potentially
confounding factors found in empirical studies, such as
student performance and the particular circumstances
of a real-world situation. This can particularly be the
case when a new or modified process is being used for
the first time and not all of the specifics of a situation
which may influence the outcome can be identified and
factored out in an experimental protocol.

Second International Workshop on Realising Evidence-Based Software Engineering (REBSE'07)
0-7695-2962-3/07 $20.00 © 2007

Finally, simulation enables the prediction of the
long-term effects over many years and many software
releases of a process change, a prediction which would
otherwise be unavailable when the decision to adopt or
reject the change has to be made.

As Setamanit et al. [11] note, “In software
engineering it is easy to propose hypotheses; however,
it is very difficult to test them … Controlled
experiments are costly and time consuming … and are
nearly impossible to conduct. In addition, the isolation
of the effect and the evaluation of the impact of any
given factor within a large, complex, and dynamic
project environment … can be remarkably difficult.”

However, we suggest that a purely simulation-based
approach to experimentation in software engineering
has weakness which, we believe, can be addressed by
the use of simulation and empirical techniques in
combination.

4. What can we legitimately claim to be
able to do with simulation models?

Setamanit et al. [11] claim the following status for
their work. “With available empirical data software
process simulation models can be constructed and
calibrated so that they reflect real world behavior quite
accurately. Such models can then be used as an
experimental platform to investigate the
situation/system and evaluate new hypotheses and
theories. By varying individual parameters or
combinations thereof, the magnitude and strength of
the impact on variables of interest can be measured …
Simulation models enable controlled experimentation
that allows the researcher to identify factors that
profoundly impact the outcome. It is far less costly and
less time-consuming to perform experimentation using
simulation models.”

We are concerned at the thinking shown by this
second quotation.1 We agree that simulation models
can be constructed whose quantitative outputs reflect
observed behaviours, and that the model should be
tested in sensitivity analyses to ensure that its outputs
do change in expected ways when the values of its
input are changed. In addition, it is certainly cheaper
and less risky to build and run a simulation of a
software project than to test a hypothesised process
‘improvement’ by using a real-world project.

However, we feel that the advantages of simulation
can be overstated by suggesting that a researcher can
use such a model to identify unambiguously “factors
that profoundly impact the outcome” of a software

1 We stress that we have used this paper only as an example of a
mind-set which we see as common in the software process
simulation community, and intend no criticism of Setamanit and her
colleagues, or of the research they do.

development project” without noting strong
reservations which we outline below. We believe that
this also raises a deeper question about the nature of
simulation, which is: are speculative simulations
actually experiments in the sense of the term as
commonly used?

 If these investigations are not ‘experiments’ in the
sense in which the word is usually employed and might
reasonably be understood by the expert general reader,
are modellers in danger of asking for too much
credence to be placed in the outputs of simulation runs
unless they support their conclusions with more
traditional experiments? In other words, might it be
useful to use empirical experiments designed
specifically to address this weakness in a purely
simulation-based approach by testing the hypotheses
developed in modelling in an environment closer to the
real world?

5. Why should the result of ‘experiments’
using simulation models be treated with
caution?
What aspects, currently unavoidable in the way

simulation models are developed and used in software
engineering, might place limitations on the use and
usefulness of simulation-based ‘experiments’, and
therefore cause us to look more critically at what has
actually produced the given output? For instance, what
might caused us to have less faith in such an output
than the result of a scientific experiment conducted
with a tool which has a long history of empirical
support, such as an optical astronomical telescope?

An unavoidable danger arises from giving as much
credence to these results as to those of an ‘experiment’.
This is the risk that the assumptions we make in
excluding things (as a result of our need to abstract and
simplify in building a simulation model) might not
hold up under changed conditions of a ‘what-if’
‘experiment’, such as that which we have ourselves
previously presented on pair programming [13]. This
might be, for example, due to a failure to realise that a
specific assumption or simplification, allowable under
existing real-world conditions, may no longer apply
under the conditions necessary for the speculative
simulation run, i.e. when an assumption underlying the
model structure or its explicit or implicit abstractions
becomes vital to the success of the run, or, as Dewar
[4] terms it, ‘load-bearing’.

For similar reasons, the reassurance gained from
testing the model by checking its calibration against
real world reference modes and the justifications for
the values used for simulation inputs may also be
endangered by taking the model outside existing
known ‘safe’ limits. The commonly used expert

Second International Workshop on Realising Evidence-Based Software Engineering (REBSE'07)
0-7695-2962-3/07 $20.00 © 2007

estimates for parameter quantification may lose their
justification when conducting speculative simulation
runs, particularly if modellers do not warn the experts
that the latter’s estimates are to be employed in this
extra-normal fashion and give them an option to revise
their opinions. This situation inevitably arises when
these expert values are taken from the literature
without referring back to the experts who provided
them in the first place.

As a further example, the use of values obtained
from student experiments, often on comparatively
small-scale tasks by comparatively inexperienced
developers, as input parameters for models purporting
to represent the work of experienced developers in the
real world, may work when a model is initially
calibrated but may fail in unexpected and unpredictable
fashions when the model is taken outside known
calibrations into the realm of prediction.

However, expert estimates and results of small-
scale academic experiments are sometimes the only
source of values for simulation modellers to use to
calibrate their models.

6. The Status of Experiments using
Simulation Models
The question of the status of simulation-based

‘experiments’ has led us to reflect on the status of the
simulation models themselves, which needs to be
examined before the speculative simulation runs can
themselves be considered.

What is the ontological status of the models we
produce? To what extent can we justify the idea that
the models represent the real world in some way and
that they form a sufficiently stable basis and a
sufficiently complete abstraction for the results of
simulation-based investigations such as ours into pair
programming [13] to be applicable in the real word?
Do we need to make explicit the assumptions
underlying these investigations?

Montgomery defines an ‘experiment’ as “… a test
or series of tests in which purposeful changes are made
to the input variables of a process or system so that we
may observe and identify the reasons for changes that
may be observed in the output responses.” [7: p.1]. The
repeated execution of simulation models with differing
values of input parameters certainly meets this
definition. However, we feel that Naylor et al.’s
concern that “… computer simulation experiments are
in effect experiments with a mathematical model …”
[8: p.3] rather than with the real-world situation being
simulated is still a valid issue despite the length of time
since this statement was made.

Further, we suggest that non-specialists, including
many likely users of the results of our simulation work,

when faced with the term ‘experiment’ are liable to
think in terms of hard science such as physics or
chemistry. Are, then, we simulation modellers doing
what we would identify with what people generally
call ‘experiments’ when they refer to ‘science’? We
suggest No, at least not in the physics sense. If we are
not conducting ‘experiments’, what claims can we
make for our results, and might we be giving the
wrong impression to outsiders by using the term
‘experiment’ with its connotations of scientific rigour
and certainty of outcome?

Certainly, the performing of such an investigation
using a simulation model does not seem at first sight to
have the fundamental stability of a physical experiment
intended to support the level of certainty of outcome
as, say, mixing an acid whose properties are well-
known with an alkali with equally well-known
properties in a school laboratory, in repetition of an
experiment conducted in chemistry classes many times
before, most of those cases after the original, research-
driven ‘experiment’ was conducted. In the case of the
chemistry experiment, the repetition, and the support
given by the underlying theoretical and procedural base
of chemistry (Kuhn’s [6] ‘disciplinary matrix’) lend an
air of close-to-certainty in advance of our
‘experiment’.

Even when such an experiment is conducted in a
laboratory for the first time, without the certainly
derived from a history of many previous repetitions,
there is support for the reason for conducting the
experiment (the theory to be tested), its procedures and
protocols, and how to interpret its results, all of which
can also be drawn from the discipline of chemistry [6].

Do we simulation modellers intend to claim that we
can rely on any equivalent sources of comfort for
repetitive or new results when we run our simulation to
see what will happen when, say, we graft some
observed values obtained from experiments with
student subjects into pair programming on a simulation
model of an existing software process [13]? Whilst the
process and the tools can be selected based on a past of
successful applications, the problem domain, that of
software process, is greatly lacking in the theoretical
base which might allow outcomes to be predicted in
novel situations.

The underlying nature of simulation ‘experiments’,
and thus the status of claims made on this basis, is a
question requiring deeper consideration than we are
able to give it in this position paper, so at this stage we
are raising the question as one which software process
simulation modellers need to take into account in the
future.

For the present, we suggest that this weakness in a
purely simulation-based approach can be to some
extent mitigated by support provided by the use in

Second International Workshop on Realising Evidence-Based Software Engineering (REBSE'07)
0-7695-2962-3/07 $20.00 © 2007

combination with it of series of practical experiments,
each of which is designed explicitly to address one or
more questions raised by the simulation.

7. What might we do to minimise the
problems with simulations?
In addition to using experiments, how else might we

improve the dependability of our simulation results?
We suggest that the following guidelines would help
improve the validity of simulation models.
• Use well-defined processes, such as that due to

Ahmed et al. [1], to develop and check
simulations.

• Use well-defined graphical representations, such
that modelled variables and influences reflect
actual (logical or physical) entities and actually-
observed influences. In some cases this may
require reliance to be placed on expert opinion in
order to capture subtle influences and effects, but
when this is done it should be stated explicitly
when reporting the work. Further assurance should
be gained by having problem domain experts
agree that the model structure is reasonable before
quantifying its variables

• Use well-defined parameters, i.e.
o numbers that make sense in the real world [5:

p.6];
o numbers that make sense in the light of expert

opinion of our theories or our own experience
of research in the area, even if they are
difficult to measure in the real world (such as
the effect of the existing system on our ability
to change it [13] (cf. [5: p.6]). However the
need to be able to quantify parameterised
inputs to models must also be taken into
account, and if this results in values having to
be estimated by expert estimates or indeed by
curve fitting to see whether a model can
reproduce the shape of a trend this must be
acknowledged as an issue to be resolved (cf.
[3]). However, we note the current state of
uncertainty concerning the validity of many
metrics in software engineering, and the need
in gathering values to calibrate simulation
models to quantify aspects of the process or
product whose quantification is itself difficult,
problematic or controversial

o When extracting values for simulation model
parameters, take care, but only as much care
as the model requires; do not introduce over-
‘accurate’ parameter values

• Place explicit limits on claims made on the basis
of speculative simulation runs.

o Simulation modellers should no longer refer
to these runs as ‘experiments’; as we have
noted they are not experiments in the sense of
the term in generally-accepted use. They are
investigations, but not experiments in the
physical science term of the word

o If model output values are to be cited, limit
the number of significant figures in the
outputs to the lower of whatever the model’s
underlying accuracy, and that of its inputs,
will bear.

• Accept that there are severe limitations to the
validity of results of purely simulation-based
work, but treat this fact as an issue to be addressed
rather than as a reason for dismissing them.

• Attempt to quantify the risks, errors or
uncertainties in the outputs of the model. This is
often achieved in current practice by sensitivity
analyses which show how the output of interest
changes as each input parameter is varied. This
gives an idea of the extent to which errors in the
numeric values of these parameters might affect
the quantified outputs, but not the degree to which
the modeller’s confidence in their model structure
has been affected when amending that structure to
reflect the conditions under investigation. The
latter may well turn out to be a much more
difficult task than sensitivity analyses with respect
to input parameters.

• Check post facto to see how well the models
predictions are reflected in more realistic
situations than the mathematical world of a
simulation environment. Here, the models and
their predictions are to be seen as theories in
themselves, and subjected to more realistic tests.
These tests consist of the design of experiments
intended to refute [10: p.276] the predictions of
the simulation models, conducting the experiments
under controlled conditions, comparing the results
of model predictions and experimental results, and
a search for reasons for the inevitable differences
found. The final test of predictions, to
operationalise them in real-world processes, would
follow only after this trial.

The use of simulation and experimentation in
combination is considered in the next section.

8. Combining empirical and simulation
approaches
How might we exploit the strengths of simulation

and empirical approaches to maximise the benefits to
be obtained from both? We propose, as Pfahl [9] hints
when he notes the need for “associated conduct of
controlled experiments and case studies” that the

Second International Workshop on Realising Evidence-Based Software Engineering (REBSE'07)
0-7695-2962-3/07 $20.00 © 2007

changes made to simulation models which can already
reproduce real-world results when ‘what-if’
simulations are conduced be considered less as
experiments and more as theories to be tested, with the
quantitative and qualitative outputs from them seen not
as results to be applied directly but as speculative
results which need support from closer-to-real-world
experimentation.

We therefore suggest that empirical experiments
should be designed on the basis of speculative
simulation conditions, and conducted under conditions
otherwise as close to the real world as possible, in
order to test the simulation predictions in a practical
environment. In addition to testing simulation results in
a more rigorous fashion than can be achieved in the
simulated world, this approach would provide a strong
theoretical basis for the protocols used in the
experiments, showing explicitly why these experiments
need to be conducted, specifying both their various
inputs and the expected outputs and how to measure
them. It might also assist in the identification of
confounding factors in the empirical experiments, and
perhaps in the quantification of their effects.

The process of simulation and experimentation is
likely to need to be iterated, as experimental results are
fed back into simulation runs in the form of modified
model structures and changed parameter values more
directly focussed on the questions which the simulation
had raised. Subsequent simulation runs may
themselves require changes to the experimental design
and protocols or the reinterpretation of existing
experimental results.

This iterative process might be viewed as an
example of the Shewhart or Deming plan/do/check/act
cycle, with the simulation model providing the plan for
a specific experiment (the ‘do’), then a checking of the
experimental results followed by action both to
improve the simulation model and, if justified, to
improve the real-world situation being studied.
However, in order to maximise the benefit from this
approach we strongly believe that appropriate weights
be given to both simulation and experimental aspects,
and not to weigh one unduly at the expense of the
other. This may require simulation and empirical
researchers to combine their expertise and submerge
their egos in a combined investigation, in the same way
that programmers are required to submerge their egos
in eXtreme Programming [2: p.59]. It will also demand
the acceptance by both parties of shared definitions for
key technical terms in the joint work. Perhaps the most
crucial of these terms where a shared definition may
not have yet been agreed is the word ‘experiment’. If
this is not achieved, then simulation and empirical
workers will inevitably fail to communicate clearly as
they work at cross purposes.

We show our approach in diagrammatic form in
Figure 1.

Plan (build and exerc ise
simulation model)

Do (empirical
experiments based on

model)

Check (compare results of
experiments with model

predictions)

Act (revise model,
change real-world

prac tices)

Real World

Figure 1: simulation and empirical software
engineering research combined as

Shewhart/Deming cycle

Our proposed combined approach would also make

it easier to explain to non-specialists why specific
experiments need to be conducted. This support may
provide stronger justification to sceptical senior
managers for the high cost of these experiments. It may
therefore also help address another weakness common
to much current experiential work in software
engineering, which is that of the potentially unrealistic
results obtained from of the common use of
comparatively inexperienced students as subjects in
environments intended to reflect real-world conditions.
The ability to use simulation as the basis of
experimental design, and the ability to show potential
results in the form of simulation outputs, may help sell
to managers the idea of using in experiments scarce
and expensive resources in the form of their most
experienced developers, rather than relying on results
obtained by using students. Such a change in approach
must inevitably improve the reliability, applicability
and acceptability of experimental results.

9. Conclusions
In response to the problems we have identified with

current simulation reporting practice, we could simply
say, ‘Adopt the practices we have outlined above and

Second International Workshop on Realising Evidence-Based Software Engineering (REBSE'07)
0-7695-2962-3/07 $20.00 © 2007

it’ll all be OK!’ However, more seriously, we urge all
simulation practitioners, when reporting their work
either publicly or in private, to emphasise these
uncertainties in speculative simulations, and refrain
from using words such as ‘experiment’ which might
influence people unaware of the issues which we have
outlined here to have more confidence in the results of
the simulations which we are crafting than our models
can bear.

Finally, we still firmly believe that simulation has
an important role in software engineering research and
practice. It enables proposed processes changes to be
examined at far lower cost than any real-world
intervention. When strengthened as we suggest by
combining it with focussed empirical work, simulation
remains far cheaper, quicker, and more generalisable
than the current practice of immediately ‘testing’ in
real projects new ideas by adopting, for example, a
proposed process change on the basis of anecdotal
evidence, blind faith and an appeal to current fashion
[12: p.157] which are sometimes all we appear to be
able to offer to industry!

References
[1] R. Ahmed, T. Hall, P. Wernick and S. Robinson,
“Evaluating a Rapid Simulation Modelling Process (RSMP)
through Controlled Experiments”, IEEE International
Empirical Software Engineering Conference, Noosa Heads,
Australia, Nov 2005.
[2] K. Beck, eXtreme Programming Explained, Addison-
Wesley, Indianapolis IN, 2000.
[3] B.W. Chatters, M.M. Lehman, J.F. Ramil and P.
Wernick, “Modelling A Software Evolution Process”,
Software Process: Improvement and Practice, 5, 2–3, pp.91–
102, 2000.

[4] J.A. Dewar, Assumption-Based Planning: A Tool for
Reducing Avoidable Surprises, Cambridge University Press,
Cambridge UK, 2002.
[5] A. Jedlitschka and D. Pfahl, Reporting Guidelines for
Controlled Experiments in Software Engineering, report
ISERN-REPORT ISERN-05-01, Fraunhofer Institute for
Experimental Software Engineering, 2005.
[6] T.S. Kuhn, The Structure of Scientific Revolutions,
Second Edition, University of Chicago Press, Chicago IL,
1970.
[7] D.C. Montgomery, Design and Analysis of Experiments,
Wiley, 2005.
[8] T.H. Naylor, D.S. Burdick and W.E. Sasser, “The Design
of Computer Simulation Experiments”, in T.H. Naylor (ed.),
The Design of Computer Simulation Experiments, Duke
University Press, Durham NC, 1969, p.3–35.
[9] D. Pfahl, “Software Process Simulation Frameworks in
Support of Packaging and Transferring Empirical Evidence,”
position statement, Empirical Software Engineering (Nº
06262), Dagstuhl Castle, Germany, 26-30 Jun. 2006.
[10] K. Popper, “The Problem of Demarcation”, in N.
Warburton (ed.), Philosophy: Basic Readings, Routledge,
London, 1999, p.275–286.
[11] S. Setamanit, W. Wakeland and D. Raffo, “Exploring
the Impact of Task Allocation Strategies for Global Software
Development Using Simulation”, in Q. Wang et al. (eds.),
Proc SPW/ProSim 2006, LNCS 3966, Springer-Verlag,
2006, pp.274–285.
[12] P. Wernick, A Belief System Model for Software
Development: a framework by analogy, PhD thesis,
Computer Science, University College London, 1996.
[13] P. Wernick and T. Hall, “The Impact of Using Pair
Programming on System Evolution: a Simulation-based
Study”; Proc. IEEE International Conference on Software
Maintenance (ICSM) 2004, IEEE.

Second International Workshop on Realising Evidence-Based Software Engineering (REBSE'07)
0-7695-2962-3/07 $20.00 © 2007

