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Abstract 
 

This is a discussion paper on a very important 

topic that is about to become mainstream. It deals 

with the issues of software engineering in concurrent 

systems. It introduces this topic and illustrates the 

arguments for a change of perspective. It underlines 

these arguments with two examples, an asynchronous 

stream-based programming model and an 

asynchronous thread-based virtual machine model. 

Both support concurrency on very different 

abstractions but both capture similar support for 

concurrency engineering. 

 

1. Introduction 
 

The computer industry is currently in crisis. 

Despite some decades of research into programming 

concurrent systems, by which we mean systems that 

are both parallel and asynchronous. This is a difficult 

and error-prone activity. Evidence for this can be 

found in Microsoft and Intel’s recent funding of a 

parallel software lab at Berkeley [1]. That laboratory 

seeks a model for programming the next-generation 

of multi-core CPUs. Why this should so different 

from programming the existing infrastructure of 

supercomputers, grids etc. is far from clear. The 

issues, problems and solutions are the same and it is 

only parametric changes that make a difference, i.e. 

the speed of communication and synchronisation 

relative to that of computation. 

There are differences but not technical ones; 

whereas previously it was only in the domain of high 

performance computing that these problems needed 

to be recognised and solved, the recent and quite 

predictable power wall that industry faces means we 

can no longer rely on clock speed to improve a 

computer’s performance. Future generations of 

commodity processors will be sold on “number of 

cores” rather than “GHz” but unless there is a 

perceived benefit from this, there will be a significant 

slowdown in computer replacement. The difference 

then is that in high-performance computing, it is 

permissible to hire PhDs to engineer solutions to 

these problems, whereas for the run of the mill 

applications this is out of the question. The potential 

benefit of these new generations of CPUs must still 

be accessible to a broad spectrum of programmers. 

 

2. Concurrent Software Engineering 
 

Software engineering [2] is the application of the 

discipline of computer science and to a lesser extent, 

project management and other techniques, in order to 

develop software applications. The main purpose of 

this discipline is to improve the reliability and 

maintainability of software systems [3]. The 

achievement of these goals will suffer a severe blow 

in this shift to explicit concurrency in mainstream 

computer systems, as has been noted by Lee [4], 

based his group’s experience with a well-engineered 

application when making this shift themselves. This 

paper attempts to map the impact these forces have 

on the software engineering discipline and to propose 

both generic and very specific solutions to those 

problems. We believe firmly that the process of 

concurrent software engineering must be partitioned 

into its constituent components, namely that: 

 

Concurrent Software Engineering = 

Concurrency Engineering + Algorithm Engineering. 

 

However, we use of the term algorithm engineering 

in a different context to that described in [5], where 

the process is described as what is required to 

transform a pencil-and-paper algorithm into a robust, 

efficient, well tested, and usable implementation. 

Their definition encompasses a number of low-level 

issues, such as cache behaviour, and its main focus is 

experimentation. Our use of this term is more 
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abstract as we approach the algorithm from the 

perspective of capturing its specification, which may 

include concurrent operations but independently of 

any implementation issues, which make the 

algorithm non-portable. We believe that low-level 

solutions are required in order to eliminate, as far as 

is possible, the experimentation from algorithm 

engineering but this requires systems to be designed 

from the ground upwards, namely from the 

processor’s ISA, which must abstract and embed 

explicit concurrency and manage this in a dynamic 

manner [6]. We will return to this in due course (see 

Section 5). 

The key issue here however, is this separation of 

concerns. This in turn reflects a separation of 

expertise, where the engineers contracted to develop 

an application are partitioned into those with an 

application knowledge and/or expertise in algorithms 

and those with expertise in concurrent systems. It is 

also clear, that due to the complexity of both parts (in 

the former from the sheer size of the components in 

terms of lines of code and in the latter in terms of the 

explosion of states that concurrency exposes) both 

must retain or even strengthen the Software 

Engineering principle of reuse. Currently this does 

not seem to be a major issue in engineering 

concurrent code. In this paper we give examples of 

the embedding this principle into two related but 

quite separate developments. 

 

3. Related work 
 

As we are looking for general solutions to a 

problem that has been researched for decades, by 

implication we cannot cover all related work and 

restrict our references to those papers that have had a 

major influence on the work described. 

The idea of S-Net was proposed, and the initial 

sketch of the language and its type system was made 

by Shafarenko. The first comprehensive solution for 

S-Net was by Grelck and Shafarenko (see [20], 

where the language definition and some relevant 

algorithms are presented). Further development of 

the type system was done by Cai et al [21] and some 

recent examples of the use of S-Net in applications 

are found in [18]. 

Stream processing as a discipline goes back to 

Kahn’s seminal work [11] and the languages Lucid 

[12] and Esterel [13]. S-net network combinators 

resemble some structures in [14], but in fact go back 

much further to the pioneering work of Stefanescu 

[16] and Broy [17].  

SVP has its roots in the microthread machine 

model originally proposed by Bolychevsky et al [26] 

and extended by Jesshope in [6,7]. It is a general 

model of concurrency with implementations at the 

ISA [8] and language [9-10] levels. 

Capturing concurrency in a computer’s ISA has 

two influential precedents, the transputer concept 

[23], which captured the CSP model of concurrency 

and the pioneering work by Burton Smith on the 

Delencor HEP [24], the Horizon, and eventually the 

Tera architecture [25] (or Cray MTA). Both provided 

instructions to create/terminate processes and to 

communicate between these; in the transputer by 

mapping channels at link-time and in the HEP by 

synchronisation on shared memory locations. There 

are also examples, too numerous to mention, where 

these basic concepts have been extended and/or 

restricted in support of specific application areas, 

such as real-time applications or graphics processing.  

 

4. S-Net 
 

Encapsulation. Since the late 90s methodologies of 

software design have danced around the concepts of 

decomposition and encapsulation. Surprisingly, these 

were seen as vehicles of software reuse only, but not 

necessarily as central concepts of parallel computing. 

A problem decomposition results in a representation 

of an application as a set of black-box components, 

whose functionality is defined in terms of the 

interface description and some “glue” code that holds 

the components together in a way that ensures the 

expected system behavior is achieved. On the one 

hand, the components “hiding behind” their 

interfaces are highly reusable, since no code 

modification is required inside them when an 

alteration of system specifications occurs. Indeed, the 

altered functionality is achieved by “deriving” new 

components in an OOP fashion: orthogonal addition 

and redefinition of functions (i.e. methods or 

“ports”). 

  

Object state breaks encapsulation. When a 

component is a black box, this means that its 

interface description is enough to fully understand its 

behavior, with the exception of, perhaps, cost. That 

behavior, for a simple method interface, which 

includes the method name and some parameters, can 

only be one of two kinds: the effect of the method 

invocation on an object (i.e. an instance of the 

component) with internal state, and the production of 

a returnable result. It is the former that causes great 

difficulties in encapsulation. The problem is that the 

internal state is time sensitive, which means that it 

requires some time reference for accessing it, even in 

a distributed parallel system, which has no single 

clock. It is also place sensitive. Even when an object 

is quiescent, it cannot easily be moved from one 

processing place to another, since its state has an 
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implicit association with certain processes, which are 

specifically placed. If there are several processes 

using the same object, then even where it should be 

placed and by what discipline its simultaneous use 

may be governed are not clear. That information is 

not part of the interface, it is at best implicit in the 

object state, and at worst is only found in the client 

code. So in a sense, encapsulation fails: the behavior 

is no longer localized and abstracted between the 

input and output interfaces.  

 

Solution. It is our contention that state transitions in 

the component world should be structured and 

managed in the same way as control flow is 

structured and managed in ordinary programming. 

We argue that the best way to achieve this is to strip 

user-defined components of all persistent state, so 

that they become pure functions that map a tuple of 

parameters onto a similar collection of results. As 

soon as the latter is produced, the internal state 

should effectively be destroyed
1
. Such components 

are easy to reason about and debug, they are 

inherently mobile, and usable as a black box in a 

parallel computing environment - but there is also a 

price to pay. The gluing environment would have to 

provide sufficient scaffolding to support an evolving 

state (or local states!) of the computation. In other 

words, it will need to hold the effective state of one 

or more component for them and present it back to 

the components’ inputs in combination with any data 

to be processed. This is similar to thread-safe code 

where the intermediate state is held in the thread 

memory, except in this case it is not the intermediate, 

but, say, the end-of-iteration state that is being held 

and managed outside the component.  

 

Language. To support the parallel component 

technology being discussed, a coordination language 

has been designed and implemented [20,18]. The 

language is called S-Net, which stands for Streaming 

Networks. Its purpose is to support writing 

coordination code that instantiates components as 

“boxes” and connects them with anonymous data 

streams so that an application is represented as a 

network between the standard input and output, 

which are two external streams connecting the whole 

application with its environment. We shall now 

briefly outline the main concepts of S-Net. 

 

The box concept. Any S-Net component can be 

instantiated to a Single-Input, Single-Output (SISO) 

box. The box has a limited life cycle: it accepts one 

item from the input stream (these items are called 

                                                             
1
 N.b. we are not arguing for functional programming  as  

our components can be written in any imperative language. 

“records”, see below), does some processing and 

yields zero, one or more items to the output stream, 

after which it destroys its internal state (i.e. re-

initialises) and waits for the next input item to arrive. 

There is one standard component, called a 

synchrocell, which has the ability to hold state, but 

which cannot perform computations of any kind; thus 

component encapsulation isn’t violated. Components 

are written in a box language, using the S-Net 

communication API (which consists of a single entry 

point: snet_out, which allows a box to insert a new 

item in its output stream). At present C is supported 

as a box language and so is SaC [19]   

 

The streaming data concept. All boxes accept 

records as units of their input. A record in S-Net is a 

set of fields and tags. Both fields and tags have 

names and values. Field values are unavailable to S-

Net: they are only processed by the box language, 

while tag values are standardized as integers and are 

available to both the box language and S-Net itself. 

Records are nonrecursive in the sense that it is not 

possible to define an unlimited linked structure, such 

as a list. Every user-defined component contains a 

program unit (a function or similar) written in a box 

language, and a type signature written in S-Net that 

defines the type of records (in terms of their field/tag 

name sets) that the box accepts and the types of any 

output records that may be produced. Streams 

between boxes are sequences of records. Even 

though all boxes are SISO, the data relationships 

between them are not one-to-one, since streams can 

be split and merged using combinators. 

 

Combinators. These are second-order functions that 

connect one or two boxes into a SISO network. First 

of all there are series and parallel combinators, 

A..B and A||B, respectively.  The series combinator 

connects the output of box
2
 A to the input of box B, 

with the input of A and the output of B becoming 

those of the resulting network. The parallel 

combinator splits the single input stream into two 

streams according to the type match with the A and B 

interfaces, and merges the resulting two streams 

together. S-Net regards nondeterminism as an 

exploitable characteristic and provides two versions 

of the parallel combinator, a deterministic one A||B, 

and a nondeterministic one: A|B. In the latter case the 

order in which the output streams are merged is 

arbitrary. This allows the recipient of the stream to 

reduce the latency of any response, provided that the 

algorithm allows it. Also we allow for 

nondeterminism at the input even when the 

                                                             
2
 All combinators are applicable to arbitrary combinator 

networks not just atomic boxes. 
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combinator is deterministic and has to merge the 

output streams in the input stream’s order. The 

nondeterminism at the input occurs when a record 

matches A and B equally well, e.g. a record with the 

field-label set {x,y,z} when A expects {x,y} and B 

{y,z}. This allows for arrangements where two 

different routes are possible and the choice between 

them is on the basis of nonfunctional parameters, 

such as power or load. The type system of S-Net is 

powerful: it is based on set-theoretical subtyping with 

some extra controls in the form of binding tags, but 

we have no space here to expose it even briefly; 

suffice it to say that the exact destination (in the 

deterministic case) or set of destinations (in the 

nondeterministic case) is always statically 

known with only one exception, see below. 

 

S-Net has two unary combinators for network 

replication: the series A**p and the parallel A!!<t> 

replicators. The former is equivalent to an infinite 

chain A..A..A.. ... in which any record that matches 

the pattern p is removed from the chain and sent to 

the output. The latter is equivalent to an infinite 

network A||A||A||... where each replica corresponds to 

a certain value of the tag <t> expected in the input 

record. This is the only situation in which the record 

destination is value-dependent but the destination is 

guaranteed to be one of the boxes with identical type 

signatures, and so it is type-safe. In implementation, 

these infinite data structures present no difficulty 

whatsoever since for the !! combinator only a finite 

variety of <t> values is expected at any given time 

and since any replicas of A that do not contain active 

synchrocells (see below) are garbage-collectable 

owing to the absence of state information (such 

replicas can be instantiated again if the same value of 

<t> is encountered later). As for the ** combinator, 

the network only unfolds as far as the point where no 

records that match the A input type are produced 

(which means that all records at this point, if any, 

match the pattern p). This is similar to ordinary 

while-loop termination, except the resources being 

used are both space and time.  Again those replicas 

without active synchrocells anywhere on the chain 

can be fused with their predecessors and successors 

in implementation. Unique resources are not required 

for boxes as all replicas are stateless and identical. 

Finally, it should be noted that there are 

nondeterministic versions of the replicators, * and !. 

 

When data comes from two different sources and has 

to be processed together, one needs some sort of 

synchronization facility. In ordinary distributed 

programming it is the computational code that is 

burdened with synchronisation, due to the 

multiplicity of communication channels and the 

state-transition nature of communication. In S-Net, 

user-coded boxes cannot be used as synchronizers 

even in principle, since they are stateless.  

Synchronisation is performed via a special box 

supplied by S-Net itself and only configured by the 

user: the synchrocell. The way it works is as follows: 

a cell [| {x,y}, {z,w} |] is initially empty. The first 

record that comes must match either {x,y} or {z,w} 

and it is stored in the synchrocell memory, the 

synchrocell now becomes active. Records of the 

same type from this point on are passed through and 

the first record of the other type causes the joining of 

the two records into an output record {x,y.z.w} after 

which the cell becomes dead. Dead synchrocells pass 

all records through. The reader can satisfy herself 

that, for example, [| {x,y}, {z,w} |]**{x,y,z,w} is an 

asynchronous version of  the zip  function, familiar 

from functional languages, and that 

[|{x},{z,<t>}|]!<t> is analogous to the Explicit Token 

Store known from dataflow research (here a 

subtyping rule is used to get rid of the second copy of 

<t>).  There are many more useful patterns that can 

be built using synchrocells.  

 

Examples and design methodology. Readers are 

referred to the S-Net site on the Web for details of 

our S-Net implementation [22]. Due to the limited 

space we can only state here that a compiler is 

available, which translates an S-Net program into C 

with calls to an extensive run-time library that uses p-

threads to achieve concurrent execution. Here is a 

tiny example, which exhibits asynchronous, parallel, 

streaming execution of an n!=1!2!...!n producing 

network. The input stream supplies a sequence of n.  

(N.b. boxes in this example may implement variable-

precision arithmetic and so may be non-trivial.) 

 
net fac ({n} -> {n,m}) {  
   net facit ({x,r} -> {r}) {  
     box leq ((x) -> (x,p));  
     box if ((p) -> (<T>) | (<F>));  
     box dec ((xx) -> (xx));  
     box mult ((x,r) -> (rr));  
  }  
  connect (leq..if..([{<T>}->{<stop>}]  
                     || [{<F>,x,r}->{x,r};{xx=x}]  
           .. (dec|mult)  
           .. [|{xx},{rr}|]*{xx,rr}  
                     .. [{xx,rr}->{x=xx,r=rr}]) ** {<stop>})  
           ..[{<stop>,x}->{}];  
  box one (() -> (one));  
}  
connect one .. [{n,one}->{n,x=n,r=one}]  

             .. facit .. [{r}->{m=r}]; 

 

The main syntax construct of S-Net is  
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net list-of-net-n-box-defs connect formula 

 

The formula in each net clause is a combinator 

expression defining the structure of the network. The 

user-defined boxes leq, if, dec and mult are self-

explanatory thanks to their expressive type 

signatures.  

The parenthesis there [...] signify the filer construct 

(not to be confused with a synchrocell [|...|] ), which 

is a housekeeping box offered as syntactic sugar by 

S-Net, but one that can be written by the user for 

each specific case. Its role is to rearrange a record 

into one or more output records by renaming/copying 

or dropping fields/tags as indicated by the expression 

inside the brackets. This hopefully requires no 

explanation. Finally, to understand the working of 

this network one needs to be aware of flow 

inheritance, a stream specific form of inheritance 

whereby any unmatched fields/tags at the input are 

appended to each produced output record.  

 

Concluding this section, we would like to comment 

on the design methodology using this language. S-

Net promotes top-down design, which is known to be 

very effective but which in practice is hard to support 

by conventional programming languages. The way to 

do it in S-Net is as follows. First the whole 

application is given a name and a type signature, 

which details what data collections are being 

processed and what type of potential output they 

cause. Next the monolithic application is broken 

down into a small network of networks by 

identifying closed functionalities and the combinators 

needed to stream the data as appropriate. Those 

functionalities are then reified as further nets, type 

signatures are determined and then refinement 

continues until the items connected by the network 

are truly atomic and could be defined directly in the 

box language using nothing more than data-

parallelism without loss of exploitable concurrency. 

At each stage, data streams can be reasoned about 

and animated and also at the final stage boxes, being 

stateless, fully-encapsulated entities, can be unit-

tested, too. 

 

5. The SVP model  
 

Summary of the SVP Model. SVP stands for SANE 

Virtual Processor, where a SANE is a Self-Adaptive 

Network Entity. SVP also manages asynchronous 

concurrency but at the level of machine instructions. 

It is based on threads that are created dynamically 

with a context of scalar, synchronising variables, 

which is garbage collected on thread termination. 

Data-structuring is managed by thread replication 

within indexed families, which may be unbounded. 

Input and output to these families of threads is via 

asynchronous shared memory. 

SVP instructions capture data-, instruction- and 

task-level concurrency. Collectively they form an 

operating system kernel implemented in the 

processor’s ISA that manages work creation, 

termination, pre-emption and all mapping and 

scheduling of threads. SVP is designed so that 

programs are free of deadlock under composition, 

deterministic where required and to enable the 

migration of data and/or code in a distributed 

computing environment to better manage an 

implementation’s efficiency through self-adaptive 

control.  

SVP is defined by five actions that dynamically 

create and asynchronously control the concurrent 

execution of families of threads.  Those actions are 

{create, sync, kill, squeeze, and break}. Together, 

create and sync define a concurrent section between a 

creating thread and one or more identical created 

threads (the family) each of which is aware of its 

unique index value. Kill and squeeze terminate 

named families and break terminates a thread’s own 

family. Squeeze differs from kill and break in that a 

squeezed family can be re-executed to completion 

from a breakpoint. Reflection on termination is 

provided by a return code received by the sync, 

which signals when all threads and their writes to 

asynchronous memory have completed. The return 

code also indicates how the family was terminated, 

i.e. whether normally or via one of the terminating 

actions. A return value may also be received on sync, 

which is either a thread index, determining the 

breakpoint in the family from a squeeze action or a 

value set by a thread when it succeeds in executing a 

break. 

There are two further abstractions that complete 

the definition of the model. The first is that threads 

are blocking, i.e. they capture not only function but 

also synchronisation, which in turn supports data-

driven instruction scheduling. Threads execute their 

operations strictly in-order and block if they do not 

have the data required to complete an operation. 

Instructions may always write data and hence a 

thread’s context of synchronising variables are i-

stores supporting dataflow synchronisation. Threads 

suspend on these i-stores awaiting a write from 

another thread or a hardware process (such as a read 

from asynchronous memory) and are scheduled only 

when that data has been written. 

Communication between threads in the model is 

deliberately restricted in order to expose locality 

without reference to resource mapping. The parent 

may write to its first child thread and each created 

thread may write to its successor in the family 

created. This restriction means that a compiler can 
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perform static optimisations to achieve concurrency 

and locality. It has the additional advantage of 

offering concurrent composition in the model without 

inducing deadlock. 

The second abstraction concerns the dynamic 

management of resources in SVP and is the concept 

of a place, an implementation-dependent definition 

of a processing resource. It is through this parameter 

to the create action that families of threads are bound 

to processors. The use of place must also be 

accompanied by a place-server in an implementation 

to define an available place on request.  

 

Support for Software Enginering. The SVP model 

is uniform and hierarchical, and captures concurrency 

from fine-grain instruction or data concurrency up to 

the highest levels of task concurrency in a system. 

However, the introduction of places partitions the 

model in a way that correspond to the partition 

described in Section 2, namely between algorithm 

and concurrency engineering. 

The first usage level is static. Here, code is 

resource naive and captures an algorithm and its 

concurrency. This may be compiled to an 

implementation, e.g. a microgrid of microthreaded 

processors [6], without knowledge of the number of 

processors to be used in executing it. This usage is 

deterministic and binary programs can be combined 

concurrently without inducing deadlock and 

distributed arbitrarily to clusters of processors at run 

time. The model’s locality allows an efficient 

mapping of the computation onto any hardware even 

though the program’s resources will be assigned 

dynamically to this compiled code.  

The second usage level is completely dynamic and 

is defined only when a place is specified in SVP’s 

create action. It is at this level that concurrency 

engineering is achieved and it requires the binding of 

a unit of work (a family of threads and any 

subordinate families) to a place that will execute the 

work. If a thread in family A creates a subordinate 

family, B say, at the default place, then family B will 

share the same processing resources used by A. If, 

however, the thread provides a named place in the 

create action, the execution of that work is delegated 

to the new resources defined by the implementation’s 

definition of that place.  Now family A and B will be 

distributed relative to each other and communication 

will be required. The implementation of the named 

place will provide the necessary address and protocol 

for creating the family remotely and also any 

authentication required for creating a family there. 

Thus the place provides both abstract networking and 

security issues. An implementation of create for a 

given place will also understand issues such as 

memory model (shared or distributed).  

Place servers in SVP. The use of a place when 

creating a family of threads is the key abstraction that 

allows dynamic binding of resources to code. SVP 

implementations require a mechanism to capture this 

cycle of defining a place and using it in the create 

action. This concept of a place server is familiar to 

most people who have used dynamic memory but in 

this case there is a distribution in both time and 

space.  

 

 
Figure 1. Cycle of serving and using a place 

 

Every SANE processor, See Figure 1, provides an 

interface and protocols to define SVP actions and an 

interface and protocols to serve places. The latter is 

called the Systems Environment Place (SEP), which 

supports a standard API, e.g. SEP_request, and 

SEP_release to allocate and release processors. 

These API threads are created at the SEP using the 

SVP create protocol. Place provides control of non-

functional properties in SVP but also introduces the 

non-determinism required to implement the place 

server itself and more generally, non-deterministic 

choice. The place server shares resources between 

concurrent activities. This is implemented by 

defining some places as being exclusive, i.e. they will 

serialise the execution of families of threads at such 

places. The SEP is obviously an example of an 

exclusive place.  

 

6. S-Net on SVP 
Streaming networks are generally implemented 

using static dataflow principles, i.e. boxes are 

assigned to resources and computation is triggered by 

input to those boxes. The two models described 

above, namely programming and machine models (S-

net and SVP) uniquely lend themselves to 

implementations of streaming based on dynamic 

dataflow principles. This idea comes from perceiving 
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an S-Net from the perspective of a record being 

communicated between the standard input and output 

and processing this flow as a sequence of 

continuations (threads) in SVP. In a way, it is similar 

to the Lagrangian view of the fluid motion in 

physics, which describes what happens to a small 

volume of fluid as it travels rather than attempting to 

describe the evolution of the velocity field – that 

latter view is called Eulerian. The current 

implementation of S-Net on pthreads in that sense is 

Eulerian, as we define the behaviour of all boxes 

simultaneously and assume the existence of channels 

between them. This provides a rather static view on 

resources and does not map onto SVP that captures 

and abstracts resources dynamically at the level of 

the machine model. 

Thus, in the Lagrangian view, an S-Net network is 

represented as a bulletin board on which extended 

data records may be posted, and an abstract 

(constant) graph which is available globally. There is 

no unfolding of the graph, and there are no processes 

associated with boxes, channels, or any other 

elements of the network. The only active agent in this 

view is the Graph Walker (GW) whose job is defined 

along the following lines: 

1. collect a record posted on the bulletin board;  

2. read from the record the target graph location; 

3. determine what processing is required, invoke 

the appropriate family of threads that 

implements this and bind this to the most 

appropriate resources at this time; 

4. this will in turn result in zero or more additional 

records being posted to the bulletin board. 

 

At any given time during program execution, 

there can be any number of GWs operating in 

parallel. The Lagrange implementation does not have 

processes and need not implement FIFO queues to 

represent channels, hence the correct sequencing of 

records is also the GWs’ responsibility. A number of 

techniques are being investigated to abstract a 

record’s position in the input stream. These include 

adding a serial number to records as a tag and 

maintaining a cons list of records and their thread 

applications. All methods require some overhead in 

maintaining order, but the potential benefit of 

exploiting S-Net and SVP’s rejection of encapsulated 

state brings major advantages in the exploitation of 

concurrency and adaptivity in its scheduling. This 

overhead is small compared to the execution time of 

a box, which is assumed to be a reasonably 

substantial component.  

The S-Net * and ! combinators cause replication 

of a part of the network in the Eulerian view; the 

Lagrangian view, being devoid of material boxes and 

channels, uses additional indices that, together with 

the graph location, specify which replica is being 

used. To summarise, records emitted for execution  

from boxes are extended with their location in the 

stream and one or more indices that fix the replica 

numbers of the environments inside which the target 

location is found. 

We do not have sufficient space in this paper to 

discuss this implementation in detail. However, in 

SVP the Graph Walker is a family comprising one 

thread that is created with parameters including the 

node number in the static S-Net graph structure, the 

type of the record, used for selecting the box the 

record is routed to and any sequencing information 

required for merging and synchronising records. 

Such a family is created whenever a record is 

emitted by box code, which can be written in or 

compiled into SVP. The GW uses this information 

together with information about resources available, 

constraints on execution etc. to place an instance of 

the target box for that record. The latter is derived 

from the record’s position in the network and its 

record type. If necessary a box can be replaced in a 

network by a serial combination of its cost function 

and its execution, in order to manage situations 

where cost is a dynamic function of input parameters. 

Execution of the box can either be immediate, if 

resources allow, or the GW may schedule the 

execution. For example, the GW may evaluate its 

data structures to see if it can aggregate the execution 

of this record with other similar records in order to 

amortise the configuration costs in an FPGA for the 

execution of this function. 

Implementing the only state-full elements of S-

Nets, i.e. the synchro-cells, may at first appear to be 

problematic in SVP but like resource management, 

the synchro-cells are each implemented using an 

exclusive place, so that concurrent updates to the 

cell’s state are sequentialised. A simple partitioning 

and distribution of synchro-cells is the mechanism 

that enables control of contention at exclusive places 

if this is an issue. 

 

7. Conclusions 
This paper has explored some of the issues that 

will face the computer industry over the next few 

decades, as Moore’s law provides more and more 

cores on silicon devices and as processing resources 

become more diverse (e.g. FPGA accelerators). It 

explores the issues in concurrent software 

engineering that allow software for this time frame to 

be made more reliable and to allow its reuse. The 

paper outlines from a high-level, both a programming 

model and a machine model that allow the separation 

of concerns in this endeavour, namely being able to 

separate the tasks of algorithm engineering and 

concurrency engineering, where it should be noted 
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that the former is nor devoid of concurrency yet must 

be removed from low-level issues such as mapping to 

resources, scheduling, communication and above all, 

synchronisation. 
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