
An Empirical Study of Maintenance Issues within Process Improvement
Programmes in the Software Industry

Tracy Hall, Austen Rainer, Nathan Baddoo, Sarah Beecham
Department of Computer Science, University of Hertfordshire, UK

{t.hall, a.w.rainer, n.baddoo, s.beacham}@herts.ac.uk

Abstract

 Anecdotal evidence from our work with
software developers suggests that maintenance
is a significant problem for software
development companies. A problem that is
absorbing increasing amounts of precious
development effort. In parallel, software
companies are increasingly applying process
improvement principles to development
problems. In this paper we discuss how
maintenance is addressed in process
improvement programmes. We look at how
well maintenance is addressed by formal
process models like CMM. We also present
empirical evidence from our study of process
improvement in UK software companies. Our
main findings are that although developers
report that maintenance is indeed a problem, it
is not always their most important problem.
Furthermore, our findings also suggest that
companies are often not well prepared for the
maintenance phase of developments and that
formal process improvement models do not
pay enough attention to maintenance.

1. Introduction

 In this paper we look at how process
improvement programmes address software
maintenance. Anecdotal evidence suggests that
maintenance is a major problem for companies
and we look at how companies are applying
process improvement to reducing their
maintenance burden. We present empirical
evidence that characterises the process
improvement efforts of 85 companies. Our

results suggest that although companies are
certainly aware of the maintenance burden
created by fault-ridden software that does not
satisfy users, companies are generally poor at
targeting process improvement at the reduction
of maintenance effort. Furthermore process
models like CMM and ISO9001 have been
criticised for not addressing maintenance
activities directly enough [5]. Indeed even
influential CMM publications [13] contain no
references to maintenance in their index. Such
publications also seem to consider
maintenance as a separate issue to
development as illustrated in the following
quote (though the sentiment in the quote is
well intended):

"…in both development and maintenance it is
desirable to trace bugs to find the specific
defects and errors that caused them" [11,
p312]

 In this paper we present qualitative evidence
from software developers in three case study
companies to reveal the scale of maintenance
problems existing in their companies. We
found that many of the development problems
that developers reported to us are directly
related to maintenance. Developers report
major problems in companies with faults
delivered to customers coupled with major
problems with low user satisfaction levels.
Indeed we found that poor requirements
capture contributes many problems to
maintenance.
 We followed up these case study findings by
analysing questionnaire responses from 85
companies to determine how these companies
are addressing maintenance issues within

process improvement. We found that many
companies are not effectively incorporating
maintenance factors into process improvement
activities. Furthermore very few companies
report that they monitor maintenance activities,
which suggests that many companies have an
inadequate understanding of their maintenance
activities.
 The work we present here is part of our
wider empirical study of process improvement
in software companies [3, 9]. The data we
present was collected during our study of
process improvement in thirteen case study
companies and the follow-up survey of process
improvement in 85 companies. This means
that our findings are based on a combination of
qualitative and quantitative data. Overall our
findings suggest that although companies are
not effectively focussing on reducing
maintenance effort, a few changes of emphasis
could dramatically improve the situation in
many companies.
 In section two of the paper we explain our
study methods and describe the companies in
the study. In section three we present our
findings, including qualitative data
characterising the maintenance features of the
case study companies and quantitative survey
data describing how maintenance is being
tackled in process improvement programmes.
We further discuss our findings in section four,
present ideas for future work in section five
and conclude in section six.

2. The study methods

2.1. Company Case studies

 We conducted detailed case studies in
thirteen software companies. At each of these
companies we held focus group sessions with
three types of staff group: senior managers,
project managers and developers. Membership
of each group consisted of between four and
six people. Overall we conducted 44 focus
groups which involved approximately 200
software professionals. During focus groups
we encouraged participants to discuss various
topics associated with software process
improvement. One such topic related to the
problems companies had in their software
processes. It is the results from these
discussions we report in section 3.1.

Subjective data elicited from software
professionals in this way is unusual in software
engineering research and yet, where this
approach has been used in other studies highly
accurate data has been collected [1].

2.2. Questionnaire

 We followed-up our case studies with
detailed questionnaires to a wide range of
additional software companies. We received
completed questionnaires from 85 software
companies. In the main, process improvement
managers or quality managers completed the
questionnaires on behalf of companies. Again
the main aim of the questionnaire was to
gather quantitative data characterising process
improvement efforts in companies, however,
the results contain a great deal that is relevant
to maintenance. Results related to maintenance
are presented in section 3.2 of this paper.
 The questionnaire was designed according to
classical questionnaire design principles [10]
and can be viewed at
[http://homepages.feis.herts.ac.uk/~pppgroup/q
uestionnaire.html].

2.3. Companies in the study

 The tables in Appendix One and Appendix
Two provide some basic demographic data
characterising the companies in the study. The
tables show that a range of companies is
represented in both our case study companies
and in our questionnaire sample. Appendix
Two shows that the questionnaire sample of
companies has the following characteristics:

• A balance of UK and multi-national
companies.

• A range of software development function
sizes.

• A varied profile of company ages, with
most companies having been established
over ten years ago and many over twenty.

• A very high proportion of ISO9001
certified companies. This is probably a
reflection of our targeting techniques
rather than being representative of the
industry as a whole. A few companies in
the sample have been CMM assessed but
not many.

• A balanced representation of application
areas, also with a well balanced split

between bespoke and commercial
development activities.

• A broad focus of software development
effort, with development, maintenance,
support and operations complementing a
small amount of consultancy effort.

3. Findings

3.1. Case Study Findings

 In this sub-section we present our
provisional analysis of the data we collected
from our 44 focus group sessions. We have not
yet analysed all of the data collected and
therefore we present data from three
companies, companies 2, 5 and 10 (see
Appendix Two). The data we present was
collected from thirteen focus groups.
 In each focus group we asked practitioners at
each of three hierarchical levels what they
considered were the most important problems
and issues in the software process. In our
provisional analysis we categorised the
problems cited into three major categories:
organisation problems, project management
problems and development problems. Each
category was refined to another level of detail,
for example the development category was
refined to problems associated with:
requirements, design, coding, testing and
maintenance. We then classified each issue
that arose and counted the occurrence of issues
in each sub-category. Table 1 shows the spread
of problems across the major categories. It
shows that practitioners at all levels in the
three companies consider that organisational
issues contribute almost half of all problems to
software development. Table 1 suggests that
development problems only contribute a
quarter of all problems experienced in the
software process.

Table 1. Problems cited in focus groups

Problems cited in 13 focus groups

Frequency Percentage

Organisational issues 141 47

Project management issues 80 27

Development issues 77 26

Total number of problems 298 100

 Table 2 shows how problems experienced
within development are broken down into
particular lifecycle phases. It shows that of all
the development problems cited only 18%
were attributed directly to maintenance
activities. This means that of all the problems
identified by practitioners only 6% of them
were directly related to maintenance.

Table 2. Development problems cited in
focus groups

Development problems cited in 13 focus groups

Frequency Percentage

Requirements 31 40
Design 7 9
Coding 6 8
Testing 19 25
Maintenance 14 18

Total number of lifecycle
problems

77 100

 These results imply that development issues
constitute a minority of problems experienced
by practitioners and that even within
development issues, maintenance activities
generates fewer problems than requirements
capture and testing. Requirements particularly
cause most problems in the software process,
indeed the following quote from a software
developer in one of the case study companies
aptly illustrates the requirements problems that
are encountered:

"It is possible for us to start a project, get half
way through it and the customer will turn
around and say, this is now going to be used in
a safety critical application…"

 Closer analysis of the results in Table 2
suggest that the vast majority of development
problems impact significantly on maintenance.
Many requirements problems directly affect
maintenance and similarly design, code and
test problems. Indeed we speculate that Table
2 identifies the degree to which other aspects
of the development process contributes to
maintenance effort. It shows that requirements
problems contribute significant problems to
maintenance. Table 2 further suggests that
actually performing maintenance tasks does
not present too many problems. Performing
design and coding activities creates least
problems.

3.2. Questionnaire Findings

 In this section we present results from a
questionnaire completed by 85 software
companies. The questionnaire is intended to
follow up and examine in a more quantified
way the qualitative data we collected from our
case study companies. In many of our case
study companies practitioners told us that
delivering faults to customers and repairing
those faults was a major headache for them
and their managers. Practitioners at all levels
expressed concern about this. Practitioners in
many companies told us that reducing such
faults and controlling maintenance effort were
important business objectives. To address such
objectives companies need to do two things:

• Ensure that objectives are explicit.
• Collect measurement data tracking

progress towards these objectives.

 Without explicit goals and objectives it is
difficult for companies to focus on improving
specific areas, like reducing maintenance
effort, and without measurement data it is
impossible to monitor trends towards the
achievement of objectives [14, 8]. In this sub-
section we discuss how companies in our
sample of 85 companies addressed the goals
and measurement data that relate to
maintenance.

3.2.1. Maintenance as an improvement
criteria

 Many practitioners in our 13 case study
companies told us that reducing maintenance
effort was an important business objective of
their company. In particular, practitioners told
us that they were under pressure to reduce
delivered faults and to become more efficient
at maintenance tasks. We used our
questionnaire of 85 companies to find out how
companies were addressing these issues in
their software process improvement
programmes.
 We first asked respondents (process
improvement managers) to tell us why process
improvement was in place in their company.
Although 67% of respondents said that
improving product quality was the main
reason, no respondents said that process
improvement was directed at any specific
maintenance activities or specifically to reduce

maintenance effort. Other motivations for
improvement efforts that respondents cited
included reducing development costs (61%),
shorten development cycle times (61%) and
improve management visibility in the
development process (38%).
 We then asked respondents how the success
of improvement programmes was judged and
monitored. Table 3 summarises the success
criteria reported by respondents.

Table 3. Success criteria of process
improvement

Factors used as success criteria for process improvement

Frequency Percentage

20 24Reduced
development effort

14 16Reduced
maintenance effort

23 27Improved
defect detection

15 18Improved
operational reliability

25 29Reduced
delivered defects

12 14Improved
documentation

NB Respondents were at liberty to choose multiple criteria

 Table 3 shows that, of the success criteria
offered in the questionnaire, 29% of
respondents selected 'reduced delivered
defects' as a criteria - making it the most
popular criteria, closely followed by 'improved
defect detection'. Clearly both of these success
criteria are highly related. However only 16%
of respondents reported 'reduced maintenance
effort' as a success criteria.
 Further analysis of the data revealed that
only 36 of the 85 companies (42%) selected
any criteria at all. That means that more than
half of the companies in our sample had no
explicit success criteria for process
improvement.
 These are important findings as they suggest
that many companies are not only poor at
identifying problems that improvement effort
will be directed towards but also companies
fail to monitor the impact of improvement
efforts.

3.2.2. Maintenance-oriented data collected
by companies

 Collecting measurement data can help
companies to plan and monitor maintenance
by, for example, monitoring fault delivery or
predicting the impact on maintenance of
delivering a system at a certain point in time
[14, 8]. At a most basic level companies need
to be know about product faults and change
data [14]. In addition companies also need to
collect data characterising maintenance
activities, including effort, so that progress can
be monitored.
 We asked companies via our questionnaire
about the measurement data they collected that
related to the planning and management of
maintenance.
 Table 4 presents data characterising the
general use of metrics data within our sample
of 85 companies. It shows that, while most
companies in our sample collect some
measurement data, only 19% use a lot of data.
Although, on the face of it, this does not
particularly bode well for the control and
management of maintenance activities it is
probably a reasonable result in that the CMM
only expects mature companies to make
extensive use of metrics data.

Table 4. The extent of metrics use

The extent of metrics use

Frequency Percentage

Major 14 16
Minor 53 62
None 6 7

Missing 12 14

Total 85 100

 In our case studies developers regularly cited
effective configuration management as critical
to the efficient deployment of maintenance.
Many practitioners told us they believed that
good configuration management processes
made maintenance activities much less effort.
Table 5 shows that despite this, less than half
of the companies in our study appear to be
monitoring their configuration management
processes. Given the significance that
practitioners ascribe to configuration
management, this result suggests that
companies are not monitoring configuration
management activities optimally. Surprisingly,
further analysis of this result did not reveal a

clear statistical correlation between companies
with high maturity levels and whether
configuration management data is collected,
nor between formal CMM assessment and
configuration management data.

Table 5. Extent of configuration
management data collected

Collection of configuration management
data

Frequency Percentage

Collected 35 41

Not collected 7 8

Missing 43 51

Total 85 100

 The collection and analysis of data
characterising the faults discovered during
development and testing is believed to be a
reliable predictor of residual faults delivered to
customers [6]. Clearly residual faults
contribute significantly to maintenance effort.
Such data also contributes valuable
information about when a product is ready to
be delivered to customers. Fault analysis data
can play an important role in planning and
managing maintenance activities [6]. Table 6
shows that, although, almost half of our
sample do some sort of fault analysis, a
significant proportion of companies do no fault
analysis (assuming that missing responses
indicate that no such data is collected). Again
this result suggests that companies are failing
to collect the data that will help them plan and
manage their maintenance activity.

Table 6. Extent of fault analysis data
collected

Collection of fault analysis data

Frequency Percentage

Collected 41 48

Not collected 1 1

Missing 43 51

Total 85 100

 We also asked respondents whether their
company collected data that could more
indirectly aid the planning and management of

maintenance activities. For example we asked
whether data was collected measuring:

• Re-work effort
• Peer reviews
• System maintainability
• System complexity

 Our results identify very few companies that
collect and use such data.

4. Discussion of Results

 Although it is widely believed that
maintenance accounts for upwards of 70% of
software engineering effort [4], our results
show that companies are not controlling the
maintenance implications of problems that are
encountered during software development.
Software professionals in our study were
aware of the significant maintenance burden
being experienced by their company and they
were also aware of their company's desire to
reduce maintenance effort. However awareness
of both of these things seemed rather informal
and it was difficult to find a company that
actually had in place explicit measures to
monitor maintenance activity. It seemed that
although most companies paid 'lip service' to
reducing maintenance and solid measures to
reduce maintenance effort were not in place in
many companies. Indeed we got the
impression from case study participants that
companies believed actually reducing the
maintenance burden would involve
fundamental changes to the development
process that would prove too costly in the short
term. The following quote from a software
developer in one company sums up the
frustration that many of our study participants
voiced to us:

"…software is being released with known faults as
time usually takes precedence over quality."

 Our results also show that companies did not
seem to have in place measures to identify the
causes of maintenance effort. Companies did
not seem to be making explicit links between
problems experienced in other areas of the
development process and the maintenance
consequences of those problems. In our study
it was difficult to find companies with a
rigorous approach to controlling and managing
projects with the aim of reducing maintenance

effort. Even companies that acknowledged that
they had problems with, for example, user
requirements capture, seemed to think of this
problem in isolation rather than link this
explicitly with subsequent maintenance
implications.
 Our case study results show that companies
have most problems with 'soft issues' in
software development and have much fewer
problems with technical issues. Organisational
issues contributed many problems to the
development process and even within the
development process user requirements
capture was most problematic. Companies
reported encountering very few problems with
the technical areas of system design and
coding. This supports the views of Bennett and
McDermitt [7] when they call for a re-
assessment of the balance of software
engineering research towards soft issues.
 Few companies in our study monitored and
controlled their maintenance activities
effectively. Most did not explicitly include the
reduction of maintenance effort as an
improvement goal. However a few companies
did. It may be that those companies are the
higher maturity companies (we will need to do
further analysis to determine this). However it
is interesting to note that the vast majority of
the 85 companies in our survey were ISO9001
certified [12].

5. Future work

 We have collected a great deal of data that
we have yet to analyse. We need to extend the
analysis presented here to include all thirteen
of the case study companies. We particularly
need to analyse our data further to see whether
it reveals the characteristics of the few
companies that manage maintenance
effectively. So far our relatively small sample
has produced correlations with unacceptable
levels of statistical significance. For example,
our data currently does not confirm that higher
maturity companies manage maintenance more
effectively than lower maturity companies.
This may be because our sample size is too
small or it may be for reasons related to
maturity assessments. It is a result we need to
follow-up. Such a follow-up will determine
whether our results simply reflect the fact that
an estimated 70% of companies remain at
CMM level one [http://www.sei.cmu.edu/cmm/].

 Other interesting questions have emerged
from the analysis we present here that also
need following-up, for example it would be
valuable to ask practitioners to actually
estimate how much time they personally, and
their company generally, spends on
maintenance.
 We also need to perform a detailed analysis
of the way formal process models address
maintenance before contributing to the on-
going debate in this area that we hinted at
earlier. In particular, the question of whether it
is effective to separate development from
maintenance is an area that could be usefully
explored more fully in the future.

6. Conclusions

 We have shown in this paper that although
conventional wisdom tells us that maintenance
is a very important issue in the software
industry many companies do not appear to be
taking steps to address this. Furthermore we
have shown that there appears to be a conflict
between what companies say they want to do
regarding reducing maintenance effort and the
actual effort they put into its reduction. It may
be that companies are aware that they need to
reduce maintenance effort, but are unsure
about how to achieve this.
 Our results also show that most of the
problems that impact on software development
are related to organisational issues rather than
technical issues. This finding supports the
view that there should be a re-balancing of
software engineering research effort so that the
discipline has a more holistic understanding of
software engineering activities.
 Our results show that companies do not seem
to be addressing maintenance explicitly in their
software improvement efforts. This is despite
the fact that practitioners at all levels in
companies reported that maintenance was a
significant problem for them and their
company. The objectives of many companies'
improvement activities seemed vague and
unfocussed, popular objectives included the
ubiquitous 'improving software quality'.
 Overall, our results show that although some
companies seem to be in a good position to
reduce their maintenance burden, most
companies lack a strategic focus linking the
causes to effects in maintenance. We believe
that with a little more strategic direction

companies could reduce their maintenance
burden.

Acknowledgements

 We are sincerely grateful to all the
companies and practitioners (who, for reasons
of confidentiality, must remain anonymous)
for their participation in this project. The
project is funded by the UK's Engineering and
Physical Science Research Council, under
grant number EPSRC GR/L91962.

References

[1] El Emam K, Laitenberger O, Harbich T (2000)
"The Application of Subjective Estimates of
Effectiveness to Controlling Software Inspections"
Journal of Systems and Software, 54, pp119-136

[2] Hall T, Baddoo N, Wilson D (2000)
"Measurement in software process improvement
programmes: an empirical study" IWSM2000,
Springer Verlag

[3] Hall T, Wilson D (1997) “Views of software
quality: a field report” IEE Procs on Software
Engineering, April, pp111-118

[4] Hanna M (1993) "Maintenance Burden Begging
for a Remedy" Datamation April 1993, pp53-63

[5] Kuilboer JP, Ashrafi N (2000) "Software
Process and Product Improvement: An Empirical
Assessment" Information and Software Technology
Journal 42 pp27-34

[6] Littlewood B, Strigini L (2000) "Software
reliability and dependability: a roadmap"
International Conference on Software Engineering,
IEEE proceedings

[7] McDermid, J.A.; Bennett, K.H. (1999)
"Software engineering research: a critical appraisal"
IEE Proceedings- Software, 146(4) , Aug. pp179 -
186

[8] Offen JR, Jeffery R (1997) "Establishing
Software Measurement Programs" IEEE Software,
March/April, pp45-53

[9] Wilson D, Hall T, Baddoo N (2001) "A
Framework for evaluation and prediction of
software process improvement success" Journal of
Systems & Software (to appear)

[10] Berdie DR and Anderson JF (1974)
Questionnaires: Design And Use. The
Scarecrow Press, Metuchen.

[11] Humphrey WS (1989) Managing The Software
Process. Addison Wesley.

[12] ISO (1999) Software Process Assessment -
Part 5: An Assessment Model And
Indicator Guidance International
Standards Organisation.

.

[13] Paulk M, Weber C, Curtis B, Chrissis M (1997)
The Capability Maturity Model:
Guidelines For Improving The Software
Process. Addison-Wesley.

[14] Pulford K, Kuntzmann-Combelles A and
Shirlaw S (1996) A Quantitative
Approach To Software Measurement.
Addison Wesley

Appendix One - Characteristics of Case Study Companies

Company
number

HW/SW
Producer

UK or
Multi-

national?

Size
(people)

SE size
(people)

Age
(yrs)

SW type CMM
Level
(self-

estimate)

1 HW/SW MN >2000 >2000 >50 Real time
embedded

1*

2 SW UK 100-500 100-500 20-50 Business
systems

1

3 HW/SW MN >2000 500-2000 >50 Real time
embedded

1

4 HW/SW MN >2000 500-2000 >50 Real time
embedded

1

5 SW MN >2000 >2000 10-20 Real time 4*
6 SW MN >2000 >2000 10-20 Real time 3*
7 SW MN >2000 >2000 20-50 Packages 1
8 SW UK 10-100 10-100 5-10 Business

systems
2

9 SW MN 10-100 10-100 10-20 Real time
embedded

3

10 SW MN >2000 10-100 10-20 Embedded
Systems
software

1

11 HW/SW MN 500-2000 11-25 20-50 Real time
embedded

2

12 HW/SW UK 100-500 <10 20-50 Embedded 1
13 SW UK 100 40 10-20 Business

systems
3

* formal CMM assessment

Appendix Two - Demographic data from questionnaire responses

Table a1 Scope of company

Scope of company

Frequency Percentage

Multi-national 46 55
UK based 38 45

Total 84 100

Missing 1

Table a2 Size of development effort

Size of software development function

Staff numbers Frequency Percentage

0 - 25 38 45
26-100 22 26
101+ 23 27
DK 1 1

Total 84 100

Missing 1

Table a3 Age of company

Age of company

Years Frequency Percentage

0-5 2 2
6-10 12 14
11-20 34 40
20+ 37 43

Total 85 100

Missing 0

Table a4 ISO certification status

ISO 9001 certified

Frequency Percentage

Yes 77 95
No 4 5

Total 81 100

Missing 4

Table a5 Effort areas

Major effort area
(>20% of all software development effort)

Frequency* Percentage

System development 58 68
System maintenance 32 38
User support 33 39
Computer operations 5 6
Consultancy 23 27

* Note that respondents could choose more than one major
effort area.

Table a6 Application areas

Type of software developed

Frequency* Percentage

Bespoke systems 64 75
Commercial packages 44 52

Safety critical 24 28
Data processing 45 53
Business systems 54 63
Systems software 37 44
Telecommunications 34 40

* Note that respondents could choose more than one
application area.

