
Persuading Developers to ‘Buy into’ Software Process Improvement: Local

Opinion and Empirical Evidence

Austen Rainer, Tracy Hall, Nathan Baddoo

Centre for Empirical Software Process Research (CESPR)

University of Hertfordshire

Department of Computer Science

Hatfield Campus, College Lane

Hertfordshire, AL10 9AB

England

a.w.rainer@herts.ac.uk

In order to investigate practitioners’ opinions of software

process and software process improvement, we have
collected a large volume of qualitative evidence from 13

companies. At the same time, other researchers have

reported investigations of practitioners, and we are
interested in how their reports may relate to our evidence.

Thus, other research publications can also be treated as a

form of qualitative data. In this paper, we review advice
on a method, content analysis, that is used to analyse

qualitative data. We use content analysis to describe and

analyse discussions on software process and software
process improvement. We report preliminary findings

from an analysis of both the focus group evidence and

four publications.

Our main finding is that there is an apparent

contradiction between developers saying that they want

evidence for software process improvement, and what
developers will accept as evidence. This presents a serious

problem for research: even if researchers could

demonstrate a strong, reliable relationship between
software process improvement and improved

organisational performance, there would still be the

problem of convincing practitioners that the evidence
applies to their particular situation.

Keywords: empirical study, case study, content analysis,

software process, software process improvement,

opinions, change

1. Introduction

There is a growing body of research, some of it empirical,

that reports on the effects of software process

improvement (SPI) programmes. Some of this research

considers the benefits of SPI programmes on organisations

at both lower-levels [1] and higher-levels [2-4] of process

maturity. Such benefits include increases in productivity,

reductions in cost, reductions in duration, increases in

product quality, and improvements in process stability.

Some other research, however, suggests possible negative

effects of SPI. For example, Kuilboer and Ashrafi’s [5]

survey of developers suggests that companies conducting

SPI for a longer period of time showed an overall increase

in development cost and project duration. Gray and Smith

[6] criticise process assessment and improvement on

theoretical grounds. Their most fundamental criticism is

that the software research community still only has a poor

understanding of the software process. This criticism is

similar to previous observations made by Abdel-Hamid

and Madnick [7] and Remenyi and Williams [8]. For

example, Remenyi and Williams [8] observed that we lack

an established theory of software development, and

proceeded to argue for a grounded-theory approach (e.g.

[9] [10]) to investigating the software process.

One important aspect of process engineering is

implementing a new, or modified, process. While the

research community and industry needs to better

understand process, so the research community and

industry also needs to better understand the

implementation of process. As part of the Practitioners,

Processes and Products (PPP) project, we are investigating

practitioners’ opinions of software process and software

process improvement. Our focus is on understanding the

difficulties experienced by practitioners during the

implementation of SPI programmes, with the intention

that this understanding may lead to improvements in

programme implementation. In order to investigate

practitioners’ opinions, we have collected information

from practitioners at 13 companies. We collected that

information through the application of the Repertory Grid

Technique, a survey and focus group discussions (43

discussions occurred, in total). The PPP project emerged

from previous investigations that we have conducted on

the relationships between human factors in software

development and software quality e.g. [11-13].

This paper reports our investigation of an appropriate

method, content analysis, for analysing ‘ordinary

language’. The paper also presents results of some initial

analyses. We have already reported findings from an

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

analyses of the data collected through the Repertory Grid

Technique [14-16].

Content analysis is an unusual method for software

engineering research. Also, we acknowledge the

arguments and advice of Fenton, Pfleeger, Kitchenham

and Glass (e.g. [17-21]) to document and improve our

methods of analyses. For these reasons, we direct a

substantial amount of attention at discussing the method.

This discussion emphasises:

• That the investigation of ordinary language offers

considerable potential for gaining insights into

practitioners’ and researchers’ opinions.

• That the analysis of ordinary language must address

potentially significant difficulties.

• That content analysis, as used here, is a method for

identifying and classifying words and phrases used in

ordinary written and verbal language.

• That content analysis, as used here, is treated as an

initial (although substantial) investigatory phase,

producing classifications that are subsequently

analysed by other means. Content analysis can serve as

one method in a multi-method approach.

Two sets of analyses were conducted. In the first set of

analyses, we analysed a transcription of a group

discussion about SPI between developers within one

company. In the second set of analyses, we analysed four

published research papers on software process

improvement. Analysing two different types of

communication allows us greater insight into the

feasibility and desirability of using the content analysis of

language to understand people’s opinions of the software

process.

2. Ordinary language and content analysis

Because the content analysis of ordinary language is a

novel approach to investigating the software process, we

have looked outside of the software engineering research

literature to gather advice on this approach. The main

sources that we have drawn from are: Bromley’s account

of analysing ordinary language descriptions of personality

[22]; Holsti’s guide to content analysis as an approach to

documentary research [23]; Strauss’s handbook for

qualitative analysis for social science [10]; and Miles and

Huberman’s sourcebook of qualitative data analysis [24].

While each of these texts has its own particular focus, they

all contribute important advice for analysing language.

Additional work, such as that of Reddy [25] and Weber

[26] would also be relevant were one to conduct a more

exhaustive review of the literature.

2.1 Ordinary language

Bromley [22] defines the term ordinary language as:

“… natural ways of speaking and writing in

everyday life, as contrasted with specially contrived

notations, displays and terminologies.” ([22], p. ix)

This definition is fairly easily applied to software

practitioners within industry recognising, however, that

these practitioners will develop and use their own idioms,

such as using terminology (e.g. three letter acronyms) to

refer to the technical substance of their work. For these

practitioners, their language is ‘ordinary’ in that it is used

in their everyday work. One might argue that focus group

discussions are not an ordinary activity for practitioners.

Practitioners do however have group discussions as part

of their everyday work e.g. design meetings, post-

mortems and inspections.

The definition of ordinary language may also be applied

to researchers: while their language may be unusual

compared to other professionals or lay people, for people

who practise software engineering research their language

is ordinary because, again, it is used in their everyday

work. One significant exception, however, may be the

fact that researchers carefully draft their publications.

Because of the complexity and richness of language, and

thus its ability to express ideas, the investigation of

ordinary language offers considerable potential for

gaining insights into practitioners’ and researchers’

opinions; specifically their opinions about software

process and software process improvement. Such insights

may help industry and academia to better understand why

successful software process improvement programmes are

so difficult e.g. the difficulties caused by practitioners’

resistance to change.

There are potentially significant difficulties to analysing

ordinary language. The meaning of many, perhaps most,

words and phrases are modified, subtly or grossly, by the

context [10, 22]. Also, a text may have both ‘surface’

meaning(s) and deeper meaning(s). As examples, consider

metaphors and puns. Finally, transcriptions introduce

additional problems because they do not represent much

of the verbal and non-verbal information that is present in

spoken language e.g. stresses, pauses, facial expressions.

Strauss [10], amongst others, addresses these potential

difficulties. He argues that although an analyst may

misinterpret any particular phrase, and may not even

settle on a particular interpretation, the analysis is still

useful because it enriches the inquiry; it generates

conjectures and ideas that can be refined later in the

analysis. Strauss also argues that subsequent analysis may

be used to test the validity of the previously generated

conjectures (cf. Yin’s [27] discussion of the replication of

case studies and experiments). Similarly, Remenyi and

Williams [8] would argue that the value of analysing

ordinary language is that it produces concepts that are

more or less useful for developing our understanding,

rather than more or less true. These issues are considered

in more depth in a later sub-section.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

2.2 Content analysis

Holsti [23] reviews several definitions of the term content

analysis, commenting that there has been a marked

tendency toward viewing content analysis as a basic

research tool which may be useful in various disciplines

and for many classes of research problem. Holsti

recognises that some researchers treat content analysis as

the quantitative analysis of texts, for example counting

the frequency of occurrence of particular words (Weber

[26] emphasises this approach.) This is not a position

taken by Holsti, however, who argues that content

analysis also includes the qualitative analysis of texts.

Holsti identifies the need for content analysis to be

objective, systematic and theoretically relevant, states that

these three requirements are necessary conditions for all

scientific inquiry, and from these concludes that content

analysis is the application of scientific method to

documentary evidence.

Bromley provides comments that complement Holsti, but

within the context of investigating personality:

“For our purpose the term ‘content analysis’ refers

to a method for identifying and classifying words

and phrases used in ordinary written language to

describe and analyse personality.” ([22], p. 37)

Clearly, we have a different focus for our analysis. Note

also the presence of four types of inquiry: identifying,

classifying, describing and analysing. Note also an

implied sequence to these types, and an implied boundary

to the focus of content analysis. Finally, note that we are

interested in verbal and written language. Therefore, we

can re-state Bromley’s definition of content analysis:

For the purpose of the PPP project, content analysis

refers to a method for identifying and classifying

words and phrases used in ordinary language

(written or verbal) in order to subsequently describe

and analyse software process and software process

improvement.

This suggests that content analysis may be treated as an

initial, although substantial, investigatory phase

producing classifications that are subsequently analysed

(or interpreted) by other means. For example, a

quantitative content analysis that produces a count of the

frequency of occurrence of particular words subsequently

requires an interpretation of what that frequency means.

2.3 The ‘ordinary reading’ of ‘ordinary language’

One might argue that because much information is lost

during the transcription process, or because of the

difficulties in determining the exact meaning of the text,

one should identify general themes expressed in the text,

rather than attempting to identify and define detailed

issues. Phrased another way, and perhaps simplifying, one

should read through the text (perhaps several times) and

get a ‘feel’ for the main themes being expressed in the

text.

Holsti cautions against relying solely on this ‘ordinary

reading’ of texts, and employing what he describes as “a

sort of sixth sense that will alert you to tell-tale signs.” He

writes:

“The difficulty with such advice is not that it is

wrong, but rather that it may be insufficient.

Intuition, insight, or a brilliant flash [of inspiration],

borne of experience, thorough knowledge of one’s

data, imagination, or luck are perhaps always present

in creative research. The ‘folk wisdom’ that ‘the

facts speak for themselves’ is decidely not true.

Hence there is always a place in research for such

intangible qualities as intuition and imagination. But

the same idiosyncratic qualities of intuition which

render it important in some stages of research,

especially in originally formulating the problem and

in drawing inferences from the data, makes it less

useful in others. Intuition is not a substitute for

objectivity, for making one’s assumptions and

operations with data explicit where they are open to

critical purview. Nor is it a substitute for evidence.”

([23], p. 19)

Strauss adopts a similar position to Holsti. Strauss

recognises that a contrasting approach to a minute

analysis of texts is to read through the data quickly,

yielding an “impressionistic cluster of categories”. Strauss

does not recommend this contrasting approach, however,

stating that it produces “… conceptually thin and often

poorly integrated theory.” ([10], p. 31). (There is, of

course, the assumption here that one wants to produce

theory. One may be interested in only describing a

phenomenon, prior to attempting to explain it.)

To summarise this issue of the ‘ordinary reading’ of

‘ordinary language’: if one is analysing ordinary language

then one should use a method that encourages a

systematic approach; an approach that makes one’s

assumptions and operations with the data explicit and

available for public inspection. An ‘ordinary reading’ of

‘ordinary language’ is insufficient for scientific inquiry.

In addition, however, all methods have their limitations

and a general strategy for dealing with the limitations of

any particular method is to employ contrasting methods.

So, for example, the PPP project has combined survey

research, Repertory Grid Technique and focus group

discussions. Different methods for analysing different

datasets, where these datasets are collected in different

ways, helps to compensate for limitations. Additionally,

one should also compare one’s findings with literature, in

an attempt to identify confirmatory and dis-confirmatory

evidence [28].

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

3. Method

Our review of the work of Bromley, Holsti, Strauss, and

Miles and Huberman have helped us develop a simple

method for analysing the focus group transcriptions and

publications. As indicated in the introduction, we

conducted two sets of exploratory analyses. In this

section, we first discuss the general method we used and

then consider issues specific to the transcript and the

publications.

3.1 An overview of the method

We used the following method to analyse the qualitative

data:

1. Select the texts to analyse.

We chose the developers’ transcription from

Company 2 because we considered that the issues

raised in the company (from our experience of

collecting the evidence) were not too complex, so

that we would have a fairly ‘simple’ text to analyse.

The selection of papers was more serendipitous, and

is discussed in more detail later in this paper.

2. Identify units of text

Units of text may be single statements, or paragraphs

of text. The statements from the transcription were

easily identified. This is partly because the

transcription was a simplification of the discussion.

Statements from the papers were harder to identify,

because it is not always clear how much of a

statement is sufficient: what counts as a statement

depends on what kind of thing we are interested in.

Having identified a unit of text in one paper (or the

transcription), we sought similar and dissimilar units

from the same paper (or the transcription), and from

the other papers being analysed.

3. Identify key words from each unit of text

Again, this is partially influenced by the kind of

thing we are interested in, and what we are looking

for. But again, thinking about one key word in one

unit can suggest contrasting key words in other

units. It is also important to identify key words in

several sessions of analysis. This is because the

analyst may come to a new session with a different

perspective, and this will help to identify new key

words.

4. Think about each key word. Ask the following kinds

of questions:

What are the different key words?

What ideas is each key word expressing?

What ideas could each key word be expressing?

How does the use of this key word, in this unit of

text, compare with the use of the same, and

different, key words in other units of text?

How do the ideas being expressed with this key

word, in this unit of text, compare with ideas

being expressed with other key words in other

units of text?

How do the ideas being expressed with this key

word, in this unit of text, compare with ideas

expressed in other people’s work? Cite the other

work explicitly.

Are the key words expressing specific ideas for

which there are more general ideas?

Some of these questions focus on the identification

of words taken directly from the text. Other

questions focus on what these words may mean.

Both foci are important for the analysis because they

make the analysis more explicit.

3.2 Analysing the ordinary language of

developers

As already noted, we have collected a variety of evidence

from practitioners at 13 companies. Practitioners were

grouped into senior management, project management,

and developers. For each group of practitioners, we

conducted focus group discussions. These sessions were

attended by between three and six members of a

respective group. In some companies, we were able to

conduct more than one session for a particular type of

group. In each session, the practitioners were asked to

answer and discuss several questions. For this analysis we

have focused on the discussion of the following question:

What are the potential motivators to software

process improvement in your company?

A second question was also used, where necessary, as a

prompt:

What will make it [i.e. software process

improvement] happen?

Table 1 presents the transcription of the developers’

discussion.

As the table indicates, the transcription is actually quite

short, particularly for a group discussion. This is due, in

part, to the fact that this question was only one of several

questions being asked of the developers. Consequently,

developers were not expected to spend too long

discussing the question being asked. Also, the

transcription has been ‘tidied up’. From a pragmatic

perspective, a small transcription is easier to analyse. The

analysis of the four publications is considerably more

demanding due to the large volume of text that needs to

be considered.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

Table 1 Transcription of the developers’ discussion

Text

1 If we could see it work

2 If we have evidence of benefits

3 If it allows you transparency into the current processes

4 If it is imposed. Make it a “got to do it”

5 If it is introduced via phasing. And introduced into a small area and people can see the

benefits then […]

6 […] they will buy in.

7 If it improves the configuration management aspect of our development

8 If we can all work in a standard way

Note: The numbers in the left column are intended for indexing only.

Table 2 Characterisation of papers reviewed in this paper

Author Method Logic Sample Country Evidence

Laporte and Trudel [29] case study historical one America direct empirical

Moitra [30] discursive historical personal

experience

India anecdotal

Sharp et al. [31] ethnography inductive several Unknown

(probably UK)

direct empirical

Stelzer and Mellis [32] literature review inductive-

deductive

56 Europe &

America

indirect

empirical

3.3 Analysing the ordinary language of researchers

Table 2 provides a summary of the four papers that have

been analysed. As the table indicates, there are a mixture

of research methods, logic of analysis, samples sizes, and

sources of the samples. This mixture is desirable because

the papers then complement each other.

Laporte and Trudel [29] report on the process

improvement activities that occurred at a defence

contractor, Oerlikon Aerospace, over several years. In

particular, they focus on the ‘people issues’ of process

improvement.

Moitra [30] provides a pragmatic approach to managing

change in software process improvement efforts, based on

her many years of experience designing and

implementing improvement programmes in many high-

tech organisations in India.

Sharp et al. [31] report on three of their investigations: the

analysis of videotaped presentations and discussions at a

conference, a discourse analysis of archival data (e.g.

trade magazines, journals and conference proceedings),

and the analysis of evidence (for example, collected

through interviews) from five companies.

Stelzer and Mellis [32] conducted a two-stage study. In

the first stage they proceeded inductively, exploring

literature on factors that affect organizational change,

interviewing managers from German software companies

that had implemented ISO-based software process

improvement, and analysing experience reports and case

studies from European software companies that had

implemented ISO-based quality systems. Through these

investigations they compiled a list of ten factors that

seemed to influence the success of organisational change

in software process improvement efforts. In the second

stage of the study the researchers proceeded deductively,

analysing published experience reports and case studies.

The experience reports and case studies were organised

into two sets: one set consisting of reports and studies

relating to ISO-based certification; the second set relating

to CMM-based improvement efforts. For each report or

case study, the researchers examined whether each factor

was reported in that report or case study.

The selection of papers occurred serendipitously in that

they were part of a larger group of papers relating to

organisational change and software process improvement

that we were compiling. It became clear that the

differences in these four papers (e.g. different research

methods, sample sizes) meant that an analysis of these

four papers might produce some interesting and useful

insights; insights that could complement or contrast those

drawn from the analysis of the developers’ discussion.

Due to the intensive nature of the analysis, the analysis of

a larger number of papers was impractical. A quantitative

content analysis of a larger sample of papers stands as one

opportunity for developing this research.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

Table 3 Summary of opinions identified during the content analysis

 Focus Publications

 Opinion group [29] [30] [31] [32] Example statements

1 Developers want

evidence of the benefits

of SPI

Yes See lines 1, 2 & 5 of Table 1.

2 Most developers are

sceptical about process

improvement

 Yes Yes “I have found that the resistance for (sic) change

is mainly because of a perception of: (i)

uncertainty and skepticism about the

effectiveness of the new processes and the

possible benefits from them…” ([30], p. 201)

3 Developers are

passionately committed

to the excellence of what

they do

 Yes “We found a passionate commitment from

software developers to the excellence of what

they do…” ([31], p. 45)

4 Developers believe that

they can achieve very

high standards

 Yes “… and a belief that they [developers] can

achieve very high standards…” ([31], p. 45)

5 Prominence of the

individual

 Yes Yes “The firm belief in their own abilities indicates

the prominence of the individual that we found in

all companies, and which at times was dramatic.

In one company, we found a local guru whose

technical judgement was always deferred to…”

([31], p. 46)

6 Preference for local

expertise

 Yes Yes “They (opinion leaders) often act as advisors,

advocates and communication liaisons.” ([32], p.

238)

“In this community, competence is determined by

[a] sense of authority, of having ‘been there and

done that’.” ([31], p. 46)

“… the quality manager said that he would turn

to colleagues who had been the business a long

time rather than a well-known guru.” ([31], p. 46)

7 Discount empirical

evidence in favour of

local opinion

 Yes A community where “… the individualist and his

(rarely her) opinions are highly valued, whether

or not they are supported by evidence.” ([31], p.

47)

“The plenary session’s chair… commented on

the lack of evidence, but no one took up his

invitation to ‘do better’.” ([31], p. 43)

8 Advocation of an

incremental approach to

SPI

Yes Yes Yes See lines 5 & 6 of Table 1.

“… a prime source of ideas should come from

those people who are working, on a daily basis,

with the processes…” ([29], p. 195)

“Staff members should be involved in the

improvement initiatives because they have

detailed knowledge and first hand experience of

strengths and weaknesses of the current

processes.” ([32], p. 236)

9 Developers focus on the

‘doing’ of the process

Yes Yes See lines 3,7 & 8 of Table 1.

“… engineers perceive the change [from SPI

initiatives]… as only for the benefit of the

management.” ([30], p. 201) and this leads to “…

strong resistance from line staff…” ([30], p. 201)

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

The language used by researchers is more technical and

formal than the language used by practitioners. This is not

a comment about the relative competence of practitioners

and researchers, but rather a comment on the process of

communication. Researchers often choose to

communicate in writing as this allows the development of

more abstract and complex arguments. Verbal

communication typically does not allow the development

of arguments with comparable complexity. Written

communication may present separate difficulties for

analysis compared to transcriptions of verbal

communication.

4. Analyses

4.1 Summary of the analyses

Table 3 summarises the main ‘opinions’ identified in the

analysis, the source of those opinions, and some examples

of the statements that express those opinions.

Given that four papers are reviewed there are actually a

surprisingly small number of opinions identified in Table

3. This is a reflection of the fact that the analysis of the

papers was focused by the issues identified from the

transcription. A further point of interest is that the

publication that expressed the most ideas, Sharp et al.

[31], is the publication that is most similar,

methodologically, to the current investigation.

4.2 Evidence, opinion and the credibility of

knowledge

The data presented in Table 1 suggests that developers

want evidence of the benefits of SPI and that they

probably want local empirical evidence. According to

some of the evidence presented in Table 3, however,

practitioners seem to discount empirical evidence in

favour of local opinion (point 7), and practitioners prefer

local expertise (point 6). There is then a possible

contradiction between Table 1 and Table 3: according to

Table 1 developers value empirical evidence; according to

Table 3 practitioners seem to discount any empirical

evidence.

Contradictions in data sets being analysed are potentially

useful in qualitative analysis because they can ‘force’ the

analyst to try to resolve the contradictions, and this

encourages a deeper analysis of the data. Where an

analyst can demonstrate the resolution of contradictions

then this demonstration should increase the credibility of

the analysis conducted, and the credibility of the insights

found.

It seems that one point of resolution between the two data

sets is the emphasis on local information. In Table 1

developers seem to prefer local empirical evidence. In

Table 3 practitioners seem to prefer local opinion. The

data set of four papers presents more empirical evidence

than the focus group data set. Given the ‘empirical

weight’ of the data set of four papers, we might extend

our line of reasoning by suggesting that practitioners

prefer local opinion, then local empirical evidence and

then external empirical evidence. A further extension in

our line of reasoning leads to a suggested hierarchy of

credible knowledge for practitioners, as presented in

Table 4.

Table 4 Credibility of knowledge

Source Type of knowledge

of knowledge Opinion Empirical

Local 1 (most) 2

Remote 3 4 (least)

In this hierarchy, local opinion may be the most credible

type of knowledge to practitioners and remote empirical

evidence the least credible. Sharp et al.’s findings, that

developers are committed to the excellence of what they

do (see Table 3, opinion 3) and believe that they can

achieve very high standards (see Table 3, opinion 4)

perhaps explain their preference for local expertise.

Stelzer and Mellis [32] and Moitra [30] both claim that

developers are sceptical (see Table 3, opinion 2). These

insights can be taken as support for both the claims of the

developers (i.e. that they want evidence) and the claims of

Sharp et al. (i.e. that at least some types of evidence are

not acceptable).

McCroskey's investigations (e.g. [33], see also [34-36])

into persuasive communication provides an example that

supports the suggestion of a hierarchy of knowledge.

McCroskey argues that a speaker should first draw upon

the opinions, values and attitudes already held by the

audience; that the speaker should then draw on their own

opinions, values and attitudes; and only when these two

strategies fail (or as a complement to either of these two

strategies) the speaker should draw on third-party facts

and opinion.

The hierarchy given in Table 4 appears to contrast with

the type of knowledge typically valued by academics. It

would seem logical for academics to place a high value on

empirical evidence and to place a low value on

opinion/anecdote e.g. [17].

The issue of the credibility of knowledge, and the related

issue of the preference for local opinion, present a serious

implication for empirical research on software process

improvement. Even if researchers could demonstrate a

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

strong, reliable relationship between software process

improvement and organisational performance, there

would still be the problem of convincing practitioners that

the evidence applies to their particular situation. Phrased

another way, there would still be the need to ‘transform’

the empirical evidence into local opinion. The recognition

of the need to tailor process models and the recognition of

the need to calibrate estimation models (e.g. [37] [38])

both support the argument that each organisation is

distinct, and both undermine any assumption that a set of

findings regarding software process improvement would

ipso facto apply to another organisation.

4.3 Local experts

Local experts are presumably valuable for at least two

reasons. First, the person is an expert in that they possess

technical knowledge of the application being developed,

and the methods being used to develop that application.

Second, the person has the opportunity to demonstrate
their expertise over time in that situation. Related to this,

the time taken for a local expert to state their opinion is

usually going to take a much shorter amount of time than

it would take to conduct and report an empirical

investigation. Therefore an ‘answer’ through local

opinion is available much quicker than through empirical

evidence.

There may also be a third value, one of leadership. It may

not just be that the local expert has an opinion but that

they are an opinion leader (cf. example statements for

opinion 6 in Table 3).

4.4 Incremental software process improvement

The issue of familiarity may help to explain the

advocation, by some developers and some researchers in

the data analysed, of an incremental approach to software

process improvement. Developers are already familiar

with the strengths and weaknesses of the current process.

It may be that developers want to become familiar with

the changes that are being proposed: familiar with the

benefits and drawbacks that these changes bring (see, for

example, line 5 in Table 1). In describing techniques for

bottom-up process improvement, Jakobsen [39] writes of

‘rhythm’s power’:

“We feel safe with the everyday rhythm of our

lives..." ([39], p. 66).

Jakobsen goes on to describe how the change in his

company from process-driven to time-driven activities

changed people’s habits:

“After two weeks, people got into the habit...” ([39],

p. 66; emphasis added).

4.5 The ‘doing’ of process

Developers appear to focus on the benefits relating to the

doing of the process. For example, no references were

made to quality, productivity, cost or duration (see Table

1). Instead, developers referred to configuration

management control, transparency of the process and

standard ways of working.

Cost, quality, duration and productivity are all issues that

would interest managers. The differing interests of

developers and managers are consistent with their

differing roles. Managers are not so interested in the detail

of actually doing development (although perhaps they

should be), but are interested in the inputs and outputs of

that development. Developers, by contrast, would

obviously be interested in the doing of the process. One

implication of this difference is that developers may place

different value(s) or expectations on software process

improvement to that of managers; and a consequence is

that attempts to gain developer ‘buy in’ must address

issues different to those valued by management. This

clearly relates back to the issues of scepticism and what

counts as evidence of benefits. Developers may be

sceptical because they are not being provided with

information on the benefits to the ‘doing’ of the process.

Conversely, addressing developers’ concerns about how

SPI will improve the doing of the process may help to

persuade developers that SPI is worthwhile.

5. Discussion

The content analysis of one transcription and four

publications has produced some pertinent findings. These

findings are pertinent because they suggest reasons for

difficulties in successfully implementing SPI programmes

e.g. that developers want evidence of benefits relating to

the ‘doing’ of the process, and that developers seem to

favour local opinion over independent empirical evidence.

Given the small sample size it is of course necessary to

conduct further analysis using additional focus groups to

validate these findings. As noted earlier, we have 43 focus

group discussions from 13 companies. We intend to use

the method described here to further investigate the

apparent contradiction between developers saying that

they want evidence, and what developers will accept as

evidence. In related research, Baddoo and Hall (e.g. [16,

40-43]) have analysed all of the focus groups in order to

better understand the motivators and de-motivators of

senior management, project management, and developers.

They used multi-dimensional scaling [44] as their main

method of analysis.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

From a methodological viewpoint, content analysis

appears to be useful for analysing ordinary language and

generating interesting insights. Thus, content analysis

provides a method for analysing evidence that is naturally

produced by organisations and their projects. More

specifically, content analysis provides a method for

analysing unstructured evidence (such as meeting minutes

e.g. [45]), and this method complements the automated

collection and analysis of quantitative evidence naturally

produced by projects (e.g. [46-48]).

As noted in the earlier sections of this paper, there are

some potentially significant difficulties with this method.

Our experience from using content analysis suggests that:

Content analysis is demanding in terms of time and

effort. This is because it encourages a very intensive

analysis. Content analysis is also rewarding,

however, in the insights that it generates.

There are difficulties in systematically identifying

and categorising concepts or ideas expressed in the

ordinary language of practitioners and researchers.

This is partly due to the difficulties in understanding

the ‘true’ meaning of a text. This was discussed

earlier, in section 2.

There are difficulties in organising, ‘compressing’

and comparing categories. Earlier, we argued that

two strengths of language are that it is rich and

complicated, as this allows the expression of rich

and complicated ideas. But these strengths introduce

an inherent problem of simplifying and structuring

the complexity and richness of the language.

6. Conclusions

This paper has reported some exploratory work on

content-analysing the ‘ordinary language(s)’ of

practitioners and researchers. The paper has reviewed

advice on conducting content analysis, has presented a

simple method for conducting such an analysis, has

reported some preliminary findings, and has briefly

reflected on the value of content analysis.

The main finding from this analysis is that there is an

apparent contradiction between developers saying that

they want evidence, and what developers will accept as

evidence. This main finding is related to issues such as

hierarchies of knowledge, the value of empirical evidence

to practitioners, local expertise, an incremental approach

to improvement that may develop familiarity with those

improvements, and differences between developers and

managers with regards to their interest in the process. A

serious implication follows from the main finding: even if

researchers could demonstrate a strong, reliable

relationship between software process improvement and

organisational performance, there would still be the

problem of convincing practitioners that the evidence

applies to their particular situation: that the evidence

counts as evidence!.

Acknowledgements

We are very grateful to all the companies and

practitioners for their participation in the PPP project. We

are also grateful to the reviewers for their constructive

comments, particularly those suggesting the importance

of analysing contradictory opinions. The PPP project is

funded by the UK’s Engineering and Physical Science

Research Council (EPSRC) under grant number

GR/L91962.

References

[1] M. Wakulczyk, “Success Is Not Accidental: CMM Level 2

in 2.5 Year”, CrossTalk, Sept. 1997, pp. 1-5.

[2] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis,

“A High-Maturity Example: Space Shuttle Onboard

Software”, in The Capability Maturity Model: Guidelines

for Improving the Software Process, M. C. Paulk, C. V.

Weber, B. Curtis, and M. B. Chrissis, Eds. Addison-

Wesley: Harlow, England, 1994.

[3] M. C. Paulk, D. Goldenson, and D. M. White, “The 1999

Survey of High Maturity Organizations” Software

Engineering Institute, Carnegie Mellon University, Special

Report CMU/SEI-2000-SR-002, February 2000, 2000.

[4] B. Fitzgerald and T. O'Kane, “A Longitudinal Study of

Software Process Improvement”, IEEE Software, 16(3),

1999, pp. 37-45.

[5] J. P. Kuilboer and N. Ashrafi, “Software Process and

Product Improvement: An Empirical Assessment”,

Information and Software Technology, 42(1), 2000, pp.

27-34.

[6] E. M. Gray and W. L. Smith, “On the Limitations of

Software Process Assessment and the Recognition of a

Required Re-Orientation for Global Process

Improvement”, Software Quality Journal, 7(1), 1998, pp.

21-34.

[7] T. K. Abdel-Hamid and S. E. Madnick, “Lessons Learned

from Modeling the Dynamics of Software Development”,

Communications of the ACM, 32(12), 1989, pp. 1426-

1438.

[8] D. Remenyi and B. Williams, “Some Aspects of

Methodology for Research in Information Systems”,

Journal of Information Technology, 10(3), 1995, pp. 191-

201.

[9] B. G. Glaser and A. L. Strauss, The Discovery of

Grounded Theory: Strategies for Qualitative Research.

Aldine de Gruyter: New York, 1967.

[10] A. L. Strauss, Qualitative Analysis for Social Scientists.

Cambridge University Press: Cambridge, 1987.

[11] T. Hall and N. Fenton, “Software Quality Programmes: A

Snapshot of Theory Versus Reality”, Software Quality

Journal, 5(4), 1996, pp. 235-242.

[12] T. Hall and D. N. Wilson, “Views of Software Quality: A

Field Report”, IEE Proceedings on Software Engineering,

144(2), 1997, pp. 111-118.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

[13] T. Hall and D. N. Wilson, “The Real State of Software

Quality - Practitioners' Experiences”, in Software Quality

Management V: The Quality Challenge, vol. 144, C.

Hawkins, M. Ross, and H. C. Sharp, Eds., Mechanical

Engineering Publications Ltd: London UK, 1997, pp. 111-

118.

[14] T. Hall, D. N. Wilson, and N. Baddoo, “Towards

Implementing Successful Software Inspections”, presented

at International Conference on Software Methods and

Tools (IEEE Computer Society), Wollongoing, Australia,

6th-10th November, 2000.

[15] T. Hall, N. Baddoo, D. N. Wilson, and A. W. Rainer,

“Optimising Software Measurement Programmes Using

Practitioner Input”, presented at Australian Conference on

Software Measurement, Sydney, 1st - 3rd November, 2000.

[16] N. Baddoo and T. Hall, “Practitioner Roles in Software

Process Improvement: An Analysis Using Grid

Technique”, Software Process - Improvement and

Practice, 7(1), 2002, pp. 17-31.

[17] N. Fenton, S. L. Pfleeger, and R. L. Glass, “Science and

Substance: A Challenge to Software Engineers”, IEEE

Software, 11(4), 1994, pp. 86-95.

[18] R. L. Glass, “The Software Research Crisis”, IEEE

Software, 11(6), pp. 42-47, 1994.

[19] R. L. Glass, “A Structure-Based Critique of Contemporary

Computing Research.” Journal of Software Systems,

28(1), 1995, pp. 3-7.

[20] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case

Studies for Method and Tool Evaluation.” IEEE Software,

12(4) 1995, pp. 52-62.

[21] B. A. Kitchenham, “Evaluating Software Engineering

Methods and Tools. Part 2: Selecting an Appropriate

Evaluation Method - Technical Criteria”, Software

Engineering Notes, 21(2), 1996, pp. 11-15.

[22] D. B. Bromley, Personality Description in Ordinary

Language. John Wiley & Sons: London, 1977.

[23] O. R. Holsti, Content Analysis for the Social Sciences and

Humanities. Addison-Wesley: London, 1969.

[24] M. B. Miles and A. M. Huberman, Qualitative Data

Analysis, 2nd ed. SAGE Publications: London, 1994.

[25] M. J. Reddy, "The Conduit Metaphor: A Case of Frame

Conflict in Our Language About Language," in Metaphor

and Thought, A. Ortony, Ed., 2nd ed. Cambridge

University Press: Cambridge, 1993, pp. 164-201.

[26] R. P. Weber, Basic Content Analysis, 2nd ed. SAGE

Publications: London, 1990.

[27] R. K. Yin, Case Study Research: Design and Methods, 2nd

ed: SAGE Publications, 1994.

[28] K. M. Eisenhardt, “Building Theories from Case Study

Research”, Academy of Management Review, vol. 14,

1989, pp. 532-550.

[29] C. Y. Laporte and S. Trudel, "Addressing the People

Issues of Process Improvement Activities at Oerlikon

Aerospace," Software Process - Improvement and

Practice, 4(4), pp. 187-198, 1998.

[30] D. Moitra, "Managing Change for Software Process

Improvement Initiatives: A Practical Experience-Based

Approach," Software Process - Improvement and Practice,

4(4), pp. 199-207, 1998.

[31] H. Sharp, H. Robinson, and M. Woodman, "Software

Engineering: Community and Culture," IEEE Software,

17(1), pp. 40-47, 2000.

[32] D. Stelzer and W. Mellis, "Success Factors of

Organizational Change in Software Process

Improvement," Software Process - Improvement and

Practice, 4(4), pp. 227-250, 1998.

[33] J. C. McCroskey, "A Summary of Experimental Research

on the Effects of Evidence in Persuasive Communication,"

The Quarterly Journal of Speech, 55, pp. 169-176, 1969.

[34] J. C. McCroskey, “Toward an Understanding of the

Importance of ‘Evidence’ in Persuasive Communication”,

1995, available at:

http://www.as.wvu.edu/~jmccrosk/21.htm

[35] J. C. McCroskey and R. E. Dunham, “Ethos: A

Confounding Element in Communication Research” 1995,

available at: http://www.as.wvu.edu/~jmccrosk/23.htm.

[36] J. C. McCroskey, V. P. Richmond, and J. A. Daly, “The

Development of a Measure of Perceived Homophily in

International Communication”, 1995, available at:

http://www.as.wvu.edu/~jmccrosk/60.htm.

[37] D. R. Jeffery and G. Low, "Calibrating Estimation Tools

for Software Development," Software Engineering

Journal, 5(4), pp. 215-221, 1990.

[38] G. Tate and J. Verner, “Software Costing in Practice”, in

The Economics of Information Systems and Software, R.

Veryard, Ed., Butterworth-Heinemann: Oxford, UK, 1991,

pp. 101-126.

[39] A. B. Jakobsen, “Bottom-up Process Improvement Tricks”

IEEE Software, 15(1), 1998, pp. 64-68.

[40] N. Baddoo and T. Hall, “De-Motivators of Software

Process Improvement: An Analysis of Practitioners'

Views”, Journal of Systems and Software, 66(1), 2003, pp.

23-22.

[41] N. Baddoo and T. Hall, “Motivators of Software Process

Improvement: An Analysis of Practitioners' Views”,

Journal Of Systems and Software, 62(2), 2002, pp. 85-96.

[42] N. Baddoo and T. Hall, “Software Process Improvement

Motivators: An Analysis Using Multidimensional

Scaling”, Empirical Software Engineering, 7(2), pp. 93-

114, 2002.

[43] N. Baddoo, “Motivators and De-Motivators in Software

Process Improvement: An Empirical Study”, Doctoral

thesis, Department of Computer Science, University of

Hertfordshire, 2001, pp. 259.

[44] A. Mead, “Review of the Development of

Multidimensional Scaling Methods”, The Statistician, vol.

41, 1992, pp. 27-39.

[45] A. W. Rainer, “An Empirical Investigation of Software

Schedule Behaviour”, Doctoral thesis, Department of

Computing, Bournemouth University, 1999.

[46] J. E. Cook, “Process Discovery and Validation through

Event-Data Analysis”, Doctoral thesis, Department of

Computer Science, University of Colorado, 1996.

[47] J. E. Cook and A. L. Wolf, “Software Process Validation:

Quantitatively Measuring the Correspondence of a Process

to a Model” ACM Transactions on Software Engineering

and Methodology, 8(2), 1999, pp. 147-176.

[48] A. L. Wolf and D. S. Rosenblum, “A Study in Software

Process Data Capture and Analysis” presented at 2nd

International Conference on the Software Process, Berlin,

Germany, February 25-26, 1993.

Proceedings of the 2003 International Symposium on Empirical Software Engineering (ISESE’03)
0-7695-2002-2/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

