
Applying Multi-Criteria Optimisation to Develop Cognitive
Models

Peter C. R. Lane

School of Computer Science,
University of Hertfordshire,

College Lane, HATFIELD AL10 9AB,
Hertfordshire, England
peter.lane@bcs.org.uk

Fernand Gobet

School of Social Science and Law,
Brunel University,

UXBRIDGE UB8 3PH,
Middlesex, England

fernand.gobet@brunel.ac.uk

Abstract

A scientific theory is developed by mod-
elling empirical data in a range of do-
mains. The goal of developing a theory
is to optimise the fit of the theory to as
many experimental settings as possible,
whilst retaining some qualitative proper-
ties such as ‘parsimony’ or ‘comprehensi-
bility’. We formalise the task of develop-
ing theories of human cognition as a prob-
lem in multi-criteria optimisation. There
are many challenges in this task, including
the representation of competing theories,
coordinating the fit with multiple exper-
iments, and bringing together competing
results to provide suitable theories. Ex-
periments demonstrate the development
of a theory of categorisation, using mul-
tiple optimisation criteria in genetic algo-
rithms to locate pareto-optimal sets.

1 Introduction

Cognitive science studies the behaviour of hu-
man (or animal) participants in different ex-
perimental settings, with the aim of devising
explanations for the observed behaviour. An
important aspect of this study is the develop-
ment of computational models which can simu-
late the observed behaviour. Classes of models
are collected together into theories, where a set
of constraints or typical representations are used
to define a collection of similar models. Em-
pirical work collects specific items of observed
behaviour in well-defined experimental settings.
One aim of cognitive science is to locate models
which do well in as many of the experimental
settings as possible.

The problem confronting cognitive scientists
may be viewed as a classic multi-criteria opti-
misation problem. There is a collection of mod-
els (the variables), perhaps drawn from multiple
theories, and there is a collection of experimen-

tal evidence (the constraints). The task of the
modeller is to select from the set of models those
which best fit the multiple experiments. In par-
ticular, selecting a set of models which perform
well on one experiment will affect the available
set of models when considering a second exper-
iment. The aim of this paper is to formalise
the model-selection problem so that optimisa-
tion techniques, specifically genetic algorithms,
may be effectively applied. We study a single
class of experiments, from categorisation, and
three different classes of models.

In brief, the structure of our approach is as
follows. First, the target behaviour in each of
the experimental settings is converted into a sin-
gle quantitative measure: each measure is known
as a constraint. Second, the classes of models
which we are interested in are defined and pa-

rameterised. The space of models is defined by
the possible types of models and also the range
of parameter settings for each model. Third, we
use genetic algorithms [3] to locate optimal sets
of models. Finally, consideration of the mod-
els found by our technique enables us to explore
the range of viable and robust cognitive theories
given the experimental constraints.

We continue this paper in Section 2 by ex-
plaining what a cognitive theory is, and how cog-
nitive models can be specified in terms of their
experimental behaviour. Section 3 defines the
process of finding a cognitive model as a multi-
criteria optimisation problem, and explains how
genetic algorithms can be applied. Section 4
describes in detail the constraints and variables
(models) over which we wish to optimise. Sec-
tion 5 gives details of the problem representa-
tion, and Section 6 describes our initial experi-
mental results. Section 7 discusses some related
work and avenues for further exploration.

28

Attribute (A)
Example A0 A1 A2 A3

A examples
E1 1 1 1 0
E2 1 0 1 0
E3 1 0 1 1
E4 1 1 0 1
E5 0 1 1 1

B examples
E6 1 1 0 0
E7 0 1 1 0
E8 0 0 0 1
E9 0 0 0 0

Transfer items
E10 1 0 0 1
E11 1 0 0 0
E12 1 1 1 1
E13 0 0 1 0
E14 0 1 0 1
E15 0 0 1 1
E16 0 1 0 0

Table 1: The 5-4 structure used in categorisation
experiments (after [9, 12])

2 Developing Cognitive Theories

2.1 Psychological Experiments

Experimental data form the scaffolding upon
which a cognitive theory is developed. Each
experimental result forms a constraint on our
understanding of the phenomenon. As an ex-
ample, we consider the task of categorisation,
which has been studied in intense detail by psy-
chologists and modellers. Initial experiments by
Medin and Smith [9] in categorisation spawned
a large number of follow-up studies. Smith and
Minda [12] describe a collection of thirty previ-
ous experimental results, and analyse a number
of mathematical models of behaviour.

Table 1 illustrates the basic concepts used in
these experiments, known as the 5-4 structure.
There are four binary attributes. Examples of
category A are typically those closer to having
all four attribute values set, whereas examples of
category B are typically those closer to having
all four attribute values unset. Example E2 is
interesting because it is the only one with two
set values which is in category A.

These data can be used to create different
categories of objects, depending on what inter-
pretation is given to the attributes. For exam-
ple, by making A0 eye height, A1 eye separation,
A2 nose length, and A3 mouth height, we obtain
the face experiment [9, 2]. The thirty different
experiments reported by Smith and Minda [12]
used different interpretations of the attributes,

P(RA|Ei)
Example 1st Avg Time (s)

E1 0.97 0.83 1.11
E2 0.97 0.82 1.34
E3 0.92 0.89 1.08
E4 0.81 0.79 1.27
E5 0.72 0.74 1.07
E6 0.33 0.30 1.30
E7 0.28 0.28 1.08
E8 0.03 0.15 1.13
E9 0.05 0.11 1.19
E10 0.72 0.62
E11 0.56 0.40
E12 0.98 0.88
E13 0.34 0.34
E14 0.27 0.40
E15 0.39 0.55
E16 0.09 0.17

Table 2: Target behaviours in 5-4 structure:
Probability of responding A and time to make
a classification. (Classification times were not
collected for the transfer items.)

and varying instructions for the participants.
If this were a machine learning application, it

would be relatively straightforward to select an
algorithm, with the criterion for success being
generalisation error on the transfer items. How-
ever, in a psychological experiment, what is of
interest is the behaviour of human participants
when carrying out the task. For example, hav-
ing learnt the training items, what proportion of
participants obtain a correct response, both for
the training and the transfer items? How long
does it take a participant to obtain a response
for each item? How many errors are made whilst
learning the training items?

Table 2 provides some figures taken from ex-
perimental data attempting to answer just these
questions. The two columns for response proba-
bility are taken from Smith and Minda [12]. The
first of the two columns is data from a single
experiment, averaged over a number of partic-
ipants. The second is the average result over
30 experiments, performed by different groups
of researchers. The figures for mean classifica-
tion time are taken from Gobet et al. [2]. As can
be seen, there is a large amount of data to cap-
ture for what appears, computationally, a very
simple categorisation problem.

2.2 Defining Cognitive Models

Once the experimentalist has gathered their
data, it is now the turn of the theorist to use
the data to create an explanation of the be-
haviour. An important tool for the theorist is

29

the construction of computational models, sim-
ulations of the behaviour which can be used to
generate predictions of how humans will per-
form. A good theory will produce models which
accurately predict behaviour in a wide range of
experiments, with the minimum of ‘parameter
tweaking’.

There is a wide variety of theories and mod-
els available to the cognitive scientist. However,
there are few comparative studies of how differ-
ent classes of models relate to one another, and
especially how different models compare on the
same empirical data. One of the missing tools
in the theorist’s toolkit is a mechanism for set-
ting up and performing such comparative stud-
ies: the framework proposed in this paper aims
to fill this gap.

Our framework begins with a behavioural
specification for computational models. We ex-
tend a technique proposed by Lane and Go-
bet [5], which suggests that a computational
model should be released in three components:
(1) a well-documented implementation; (2) a set
of tests illustrating each of the key processes
within the model; and (3) a set of canonical re-
sults, for reproducing the model’s predictions in
important experiments.

Components 1 and 2 relate to how the model
is defined. For example, the implementation
might be for a neural network, and the tests
would check that the network performed back-
propagation correctly. Component 3 is more in-
teresting, as it provides a rigorous regression test
for the model. Lane and Gobet [5] intended
the tests to ensure models developed using this
framework could always be confirmed against
their prior evidence, removing the (usually un-
voiced) doubt that version N does everything
that version (N-1) did.

The set of canonical tests proposed as com-
ponent 3 form the foundation for the current
work. A canonical test would be, for example,
to compute the fit of a model against the data
in the first column of Table 2. Before the test
could be applied, the model would have to run
through the entire experiment, like the human,
i.e. be trained, and then predict responses for
each of the examples. The test would then be
whether the predicted results were ‘close enough’
to those observed in the experiments. We take
the value of these tests further, by not restrict-
ing them to a single model. Instead, canonical
results will be a requirement of all models, of
whatever type, which claim to be models of, in
this case, categorisation.

3 Finding Optimal Models

In Section 4.1 we describe some concrete exam-
ples of cognitive theories and the models they
specify. For now, we assume the existence of a
class of models, M, which we want to search.
Our aim is to find one or more m ∈ M satisfy-
ing one or more of the experimental constraints,
the canonical results described above.

Each canonical result is used for computing a
constraint, referred to as fi(m). The constraint
is a function of m, which returns a measure of
how well the model fits the constraint. Without
loss of generality, we assume that we want to
minimise fi(m) ≥ 0.

We now have a classic optimisation problem,
with a set of constraints and a variable to mod-
ify. How we solve this problem depends, in part,
on the question which the theorist wants to an-
swer. For example, locating individual models
which optimise their behaviour on specific con-
straints is a single-criterion optimisation prob-
lem, which may be solved using a number of
techniques; we use Genetic Algorithms [4].

However, if we instead wish to locate mod-
els which satisfy a number of the experimen-
tal constraints simultaneously, the problem be-
comes one of multi-criteria optimisation. The
difficulty with a multi-criteria problem is in find-
ing an appropriate definition of optimality. In
our domain, we typically find that one model
performs optimally on some of the experiments,
whereas another beats it elsewhere. In order
to respect all of our criteria simultaneously, we
would like to obtain the set of models which sat-
isfy the constraints. We wish to find those mod-
els which are not worse in all constraints than
any other model.

Formally, we define dominated and non-

dominated solutions. Model m1 dominates
model m2 if,

∀i • fi(m1) ≤ fi(m2) ∧ ∃j • fj(m1) < fj(m2)

In other words, m1 does at least as well as m2 ev-
erywhere, but there is at least one experiment in
which m1 does better. The set of non-dominated
solutions to a multi-criteria optimisation prob-
lem is known as the pareto-optimal set.

As first suggested by Schaffer [11], Genetic
Algorithms are natural candidates for finding
pareto-optimal sets, because they manipulate a
population of candidates. Goldberg [3] proposed
a technique of nondominated sorting, which we
adapt here.

The genetic algorithm maintains a separate

30

population of individuals for each of the model
classes. Each separate population is evolved us-
ing a standard genetic algorithm. The only con-
tact between the populations is in the fitness
function. Our fitness function gives an individ-
ual a perfect fitness if it is a non-dominated
member of the entire set of individuals. This
ensures that it is maintained within its own pop-
ulation, irrespective of its performance relative
to its neighbours.

4 Specifying the Search Space

4.1 A Space of Cognitive Models

The motivation behind different models of cog-
nitive behaviour varies across cognitive sci-
ence. Three important classes are: mathemati-
cal models, which are motivated purely by trying
to explain particular behaviours; discrimination-
network models, which explain high-level pat-
terns of human memory; and connectionist mod-
els, which loosely model low-level neuronal ac-
tivity in the brain. We describe how the model
works, the parameters which define the model,
and how it is used to predict values for the main
kinds of constraint: probability of responding
with category A, time to respond, and average
number of errors in training.

4.1.1 Mathematical Models

Smith and Minda [12] consider eight mathemat-
ical models, most taken from earlier psychologi-
cal literature on categorisation. We describe one
of these here to illustrate the kind of model be-
ing considered. The aim of all eight models is to
compute, from the training examples, the prob-
ability of responding with category A to a given
example. For the context model, the probability
of responding with category A given exemplar
Ei is defined as:

P(A|Ei) =

∑

j∈CA

ηij

∑

j∈CA

ηij +
∑

j∈CB

ηij

where

dij = c

[

3
∑

k=0

wk|xik − xjk |

]

xik and xjk are the values of the item and
exemplar on attribute k, wk is the attentional
weight to attribute k, c is the sensitivity param-
eter, CA/B are the training examples in cate-

gory A/B, and ηij = e−dij .

"A" "B"

"B"
"A"A0=1

A1=0 A1=1

Figure 1: An example discrimination network,
classifying the 5-4 structure

The model is completed with a ‘guessing’ pa-
rameter, used to model the fact that sometimes
people simply guess a category, without doing
any reasoning. The probability that the model
will guess is γ, with a 0.5 probability of choosing
category A.

The model provides a direct probability of re-
sponding with category A, which may be com-
pared directly with the gathered experimental
data. Although there is no learning, we may
estimate the number of errors during training
from the expected error. As the model does not
capture the processes occurring within the ex-
perimental participant, no timing information is
provided by the model. However, to facilitate
the experiments in this paper, we add a param-
eter to the model, classification time, (ct), whose
value gives the fixed time to make a classifica-
tion.

Similar to the context model is the prototype

model, which uses a similar set of formulae, but
calculates similarity to a canonical example, not
all the examples. The two mathematical models
are defined by seven parameters: { w0, w1, w2,
w3, c, γ, ct }, where Σ3

i=0
wi = 1

4.1.2 Discrimination-network models

Discrimination-network models, such as
EPAM [2] or CHREST [1], capture the processes

underlying behaviour. The core representation
for learnt knowledge is a discrimination net-
work, as illustrated in Figure 1. Information is
stored as chunks at individual nodes. Tests on
the links between nodes are used when sorting
a pattern from the root node (the black disc).
The dashed links indicate naming links, which
are used by CHREST to associate categories
to perceived information. The discrimination
network is built up incrementally as the model

31

is given each input in turn.
The model gives a definite categorisation for

each stimulus, so, to obtain probalities of re-
sponse, we need to simulate a number of mod-
els. Variations in the level of performance are
achieved by making learning conditional. When
a training example is given to each model, it
will attempt to learn the pattern based on a
probability of learning, ρ.1 The probability of
response is then obtained from the number of
trained models which produce category A in re-
sponse to each example.

Mean number of errors is given by count-
ing the errors of all the models during learn-
ing. Time to categorise is given by parameters,
which govern the amount of time it takes to sort
a stimulus through the discrimination network.
The times are computed as follows: a time to re-
act to the stimulus, r, and a time to sort through
each of the tests, t.

The CHREST model is defined by three pa-
rameters: { ρ, r, t }

4.1.3 Connectionist models

The typical connectionist network [8] comprises
a set of nodes interconnected by weighted links.
The links pass activation between the nodes.
Each node computes a simple function. Learn-
ing is a process of modifying the weights on the
links between nodes. We use a simple, single-
unit network (a perceptron) to model the cat-
egorisation experiment, similar to the mathe-
matical models, except the decision function for
choosing category A is:

3
∑

i=0

wi × xi > θ

The model is a learning model, and the
weights, wi, may be trained using the rule:

∆wi = η × xi × (target − output)

where output is the current output value, and
target is the desired output. η is a parameter
governing the learning rate.

Rather like the discrimination-network mod-
els, connectionist models have a definite output,
and so, to get a population of models, we train
100 models to run the experiments. The model
is defined by two independent parameters: η, the
learning rate, and ρ, the probability of learning
an example.

Errors during training are counted, to obtain
the average error rate during learning. There is

no equivalent of time to categorise, so, as with
the mathematical models, we add a parameter
for the categorisation time.

The perceptron is defined by four parame-
ters: { θ, η, ρ, ct }

4.2 The Constraints

Given a model and an experiment, we can ob-
tain the predicted behaviour of the model on
the experiment. Considering the probability of
response, we thus obtain 16 predicted and tar-
get figures for each (experiment, model) pair.
Following standard practice in psychology, these
16 figures are converted into a single measure
of fit between the target behaviour and the
model. This measure may be computed in dif-
ferent ways, of which we consider two: the sum-
squared error (SSE) and the average-absolute
difference (AAD).

SSE =
15
∑

i=0

(pi − ti)
2

AAD =

[

15
∑

i=0

|pi − ti|

]

/16

where pi is the ith predicted response, and ti
the ith target behaviour.

The criteria are thus defined by selecting
the experiment to perform, a target response to
model, and a measure of fitness. Results are re-
ported by describing the constraint. For exam-
ple, in Table 3, the constraint ‘SSE 1st’ refers to
using the first piece of experimental data, and
fitting using sum-squared error. (The 1st, 2nd,
3rd etc refer to the data presented in Smith and
Minda [12]. AVG is the average across all the
thirty datasets considered there. Target figures
for 1st and AVG can be found in Table 2.)

5 Representing the Models

In order to apply a genetic algorithm to search
the space of models, the models must all be rep-
resented in a consistent manner. The models are
represented as a list:

(model-type param-1 param-2 ...)

The model-type will define which of the
classes of models the definition refers to, e.g.
context-model, or discrimination-network. The
parameters are simply the real numbers defining
the model, as described above. Thus, a context
model would be defined as:

(context-model w0 w1 w2 w3 c γ t)
To facilitate cross-over between models, we

have a fixed size of list, so that every model is de-

1. This parameter is taken from Gobet et al. [2].

32

(a) Mathematical Connectionist Discrimination-network
Constraint Context Prototype Perceptron CHREST

SSE 1st 0.053 0.186 0.180 0.893
SSE 2nd 0.033 0.124 0.267 0.528
SSE Avg 0.022 0.073 0.078 0.507
AAD 1st 0.045 0.085 0.099 0.191
AAD 2nd 0.030 0.065 0.083 0.144
AAD Avg 0.034 0.060 0.053 0.160
Time AAD 0.616 0.594 0.599 0.069

(b) Mathematical Connectionist Discrimination-network
Constraint Context Prototype Perceptron CHREST

SSE 1st 0.143 0.270 0.443 1.117
SSE 2nd 0.117 0.187 0.136 0.556
SSE Avg 0.050 0.120 0.209 0.713
AAD 1st 0.064 0.099 0.142 0.206
AAD 2nd 0.064 0.081 0.075 0.136
AAD Avg 0.045 0.071 0.091 0.157
Time AAD 0.487 0.465 0.373 0.076

(c) Mathematical Connectionist Discrimination-network
Constraint Context Prototype Perceptron CHREST

SSE 1st 0.118 0.249 0.339 1.183
SSE 2nd 0.126 0.198 0.222 0.570
SSE Avg 0.070 0.094 0.127 0.689
AAD 1st 0.067 0.100 0.091 0.218
AAD 2nd 0.046 0.080 0.151 0.160
AAD Avg 0.041 0.065 0.084 0.162

Table 3: Performance on each constraint separately: (a) model optimised on each constraint sepa-
rately, (b) model optimised on sum of all constraints, (c) including non-dominated sorting.

fined with the same number of parameters; some
model types will simply ignore the extra param-
eters. Cross-over is performed by simply picking
a point in the list at random, and then creating
two new individuals from the two halves. Mu-
tation is performed by picking a parameter at
random, and adding a random number between
-1 and 1. (Or, for the model-type, picking a type
at random from the list of possible models.) Af-
ter any such operation, the new model is nor-
malised, to ensure the parameters are suitable
for the model type. For example, all the pa-
rameters should be positive numbers, and, some
weights are rescaled to sum to 1.

6 Experiments

To illustrate the complexities and challenges
with our approach, we discuss the results from
three sets of experiments. The first develops op-
timal models for each criterion separately. These
optimal models provide a base-line for consid-
ering the models found in the more complex,
multi-criteria optimisation setting. The second
uses a simple aggregative technique to pool all
the criteria into a single measure of fitness. The
third uses non-dominated sorting in a genetic
algorithm to find a pareto-optimal set.

6.1 Optimising Single Models

Table 3(a) lists the optimised performance of in-
dividual models on selected criteria. The genetic
algorithm was run separately for each class of
models with a population of 100 individuals in
each case, and for 100 cycles. The best perform-
ing individual model of each class was used in
the evaluation.

6.2 Optimising Across All Criteria

6.2.1 Single Theory Optimisation

A simplistic technique for optimising across mul-
tiple criteria is to create a single fitness function
which includes all the criteria in one. As all
our criteria are similar, minimising a function to-
wards zero, the simplest combined fitness func-
tion is to sum the individual criteria together.
The fitness function is:

∑N
i=0

fi(m), where N is
the total number of constraints.

A simple genetic algorithm was used to
evolve a population of 100 individuals, over 100
cycles. The algorithm was run separately for
each of the model types. The performance of
the model which performed best on the summed
fitness function is reported in Table 3(b) against
each of the separate criteria.

33

Cycle Cont Prot Perc CHREST
(a)
1 100 100 100 100
2 0 0 0 400

(b)
1 100 100 100 100
2 0 28 350 22
3 0 0 400 0

Table 4: Evolution of population proportion: (a)
over all constraints, (b) without the time con-
straint.

6.2.2 Multiple Theory Optimisation

By creating our initial population with exam-
ples from all classes of models, we can make
the different models compete with one another,
and attempt to evolve examples of those theo-
ries. We seeded our population with 100 exam-
ples of each of the four example model classes,
and tracked the proportion of each model class
in subsequent generations. Each generation was
created from the top 10% of the preceding gen-
eration. Table 4(a) shows the number of mod-
els of each type in the first few evolutionary cy-
cles across all constraints. As can be seen, the
CHREST family of models immediately dom-
inates the field, as the algorithm prematurely
converges. Table 4(b) shows the result when the
criterion for time was removed from the fitness
function; again, premature convergence is seen,
this time to the connectionist models.

6.3 Multi-Criteria Optimisation

We maintain four independent populations of
models, each population evolving separately
with 100 examples, maintaining the top 10%
of each population to generate each subsequent
population. The fitness of an individual is 0
if it is a non-dominated member of the total
four populations, or the computed sum of fit-
ness against all the constraints, if not. Table 3(c)
shows how the best models from each population
perform against the separate criteria.

6.4 Discussion of Experiments

The experiments emphasise the value of using
optimisation techniques when developing cogni-
tive models. In particular, several of the opti-
mum values obtained improved on those in the
original publications. Table 3(a) gives results
for optimising single model types on specific cri-
teria. The context-model has a typical average
sum-squared error of 0.02, whereas Smith and

Minda [12] give a value of 0.065 for the same
model with the same data. The CHREST model
gives an average difference in the times of 69 ms,
whereas Gobet et al. [2] report a difference of
closer to 300 ms. The problem of multiple com-
peting constraints is highlighted by the results
in Table 3(b). For all constraints except time,
the context model performs best. The other
model types vary a bit in their performance,
with the Perceptron and Prototype models being
very close in their fits, but outperforming each
other on different tasks. For the time to make a
classification, the CHREST model outperforms
the other classes quite comfortably.

From a cognitive perspective, the mathemat-
ical models have been heavily tailored towards
giving a good performance on the 5-4 structure.
They do this by using many parameters, which
must be carefully tuned. The connectionist and
discrimination-network models, however, begin
from a more general conception of the underly-
ing processes occurring within a human learner.
In particular, CHREST can capture the changes
in the response timings quite closely. The gen-
eral sensitivity of the mathematical models to
their parameter settings is sharply demonstrated
in Table 4, where they cannot directly compete
with the process models, and soon drop out of
the population. This result has important gen-
eral applicability, as it suggests that optimisa-
tion involving different types of individuals must
take into account the rate of convergence of in-
dividual kinds of models. This result has led
us to adopt separate populations when evolving
models from multiple theories; for details see [6].

Table 3(c) demonstrates that the perfor-
mance of individual models does not deteri-
orate (compared with Table 3(b)) when non-
dominated sets of models are preferred. Obtain-
ing non-dominated sets enables conclusions to
be drawn about the validity of models against
all criteria simultaneously.

7 Discussion

There have been some prior uses of optimisation
to discover cognitive models. In particular, Rit-
ter [10] analysed some connectionist models for
grammar learning, and found that automated
optimisation outperformed the hand generated
models discussed in the literature. More re-
cently, Tor and Ritter [13] used a genetic algo-
rithm to optimise the parameters in a complex
cognitive model of problem solving. There are
two main differences between this earlier work
and that presented here. First, we have pro-

34

vided a formal framework in which many differ-
ent experimental results (constraints) and differ-
ent models (variables) may be defined and ma-
nipulated in a multi-criteria optimisation prob-
lem. Second, by applying non-dominated sort-
ing techniques to portions of this search space,
we can answer more complex questions about
suitable and optimised models.

In other work, we have further shown how the
evolutionary process can be adapted to support
the search for a wide range of models, as quickly
as possible [6, 7]. Further work will expand the
range of theories and domains, and develop tools
to assist the modeller attempting to explain cog-
nitive behaviour.

8 Conclusion

We have introduced a formal definition of the
task of developing a cognitive model. Specifi-
cally, we have proposed that generic behavioural
tests can be created for most kinds of empiri-
cal data gathered in psychological experiments.
These generic tests can be used as constraints in
an optimisation problem, with a parameterised
space of models as the target variable. Our pi-
lot experiment, developing a model of categori-
sation, demonstrated the value of optimisation
within cognitive science. In particular, some of
the models found by our system outperformed
those in the published literature. The location
of pareto-optimal sets is non-trivial in this do-
main, and instead locally optimal sets for spe-
cific criteria must be sought. Further work is
needed to extend the range of models and ex-
periments. Particularly important will be the
construction of heuristics, or analysis tools, to
target the evolution of appropriate models.

Acknowledgements

We thank Pat Langley for comments on an ear-
lier version of this paper.

References

[1] F. Gobet, P. C. R. Lane, S. J. Croker,
P. C-H. Cheng, G. Jones, I. Oliver, and
J. M. Pine. Chunking mechanisms in hu-
man learning. Trends in Cognitive Sciences,
5:236–243, 2001.

[2] F. Gobet, H. Richman, J. Staszewski, and
H. A. Simon. Goals, representations, and
strategies in a concept attainment task:

The EPAM model. The Psychology of

Learning and Motivation, 37:265–290, 1997.

[3] D. E. Goldberg. Genetic Algorithms in

Search Optimization and Machine Learn-

ing. Reading, MA: Addison-Wesley, 1989.

[4] J. H. Holland. Adaptation in natural and

artificial systems. Ann Arbor: The Univer-
sity of Michigan Press, 1975.

[5] P. C. R. Lane and F. Gobet. Develop-
ing reproducible and comprehensible com-
putational models. Artificial Intelligence,
144:251–63, 2003.

[6] P. C. R. Lane and F. Gobet. Discovering
predictive variables when evolving cognitive
models. In Proceedings of the Third Inter-

national Conference on Advances in Pat-

tern Recognition, 2005.

[7] P. C. R. Lane and F. Gobet. Multi-task
learning and transfer: The effect of algo-
rithm representation. In Proceedings of the

ICML-2005 Workshop on Meta-Learning,
2005.

[8] P. McLeod, K. Plunkett, and E. T. Rolls.
Introduction to Connectionist Modelling of

Cognitive Processes. Oxford, UK: Oxford
University Press, 1998.

[9] D. L. Medin and E. E. Smith. Strate-
gies and classification learning. Journal of

Experimental Psychology: Human Learning

and Memory, 7:241–253, 1981.

[10] F. E. Ritter. Towards fair comparisons of
connectionist algorithms through automat-
ically optimized parameter sets. In Proceed-

ings of the Annual Conference of the Cog-

nitive Science Society, pages 877–881. Hills-
dale, NJ: Lawrence Erlbaum, 1991.

[11] J. D. Schaffer. Some experiments in ma-

chine learning using vector evaluated ge-

netic algorithms. PhD thesis, Vanderbilt
University, Nashville, 1984.

[12] J. D. Smith and J. P. Minda. Thirty cat-
egorization results in search of a model.
Journal of Experimental Psychology, 26:3–
27, 2000.

[13] K. Tor and F. E. Ritter. Using a genetic
algorithm to optimize the fit of cognitive
models. In Proceedings of the Sixth Inter-

national Conference on Cognitive Modeling,
pages 308–313. Mahwah, NJ: Lawrence Erl-
baum, 2004.

35

