
What Software Evolution and Biological Evolution
Don’t Have in Common†

Chrystopher L. Nehaniv Jill Hewitt Bruce Christianson Paul Wernick
School of Computer Science
University of Hertfordshire

College Lane, Hatfield, Herts AL10 9AB, United Kingdom
{C.L.Nehaniv, J.A.Hewitt, B.Christianson, P.D.Wernick}@herts.ac.uk

Abstract— Understanding software change as an evolutionary
process analogous to biological evolution is an increasingly
popular approach to software evolvability but requires some
caution. Issues of evolvability make sense not only for biological
and evolutionary computation systems, but also in the realms
of artifacts, culture, and software systems. Persistence through
time with variation (while possibly spreading) is an analogue to
variation (with heritability). Thus discrete individual replicators
are not strictly necessary for an evolutionary dynamic to take
place. Studying identified properties that give biological and
artifact evolution the capacity to produce complex adaptive
variation could shed light on how to enhance the evolvability
of software systems in general and of evolutionary computation
in particular. Evolution and evolvability can be compared in
different domains.

But the evolution of software systems is also very unlike that
of biological entities whose existence, persistence, development,
and integrity as single individuals is actively maintained by
the activity of the entities themselves over a long evolutionary
history. Integrity of software systems – i.e. the assumption that
they are well-defined, coherent individuals that develop – is
presupposed by nearly all software process approaches and limits
their effectiveness. Understanding the long-term evolvability of
software systems as they undergo “descent with modification”
thus requires much more than a traditional Darwinian approach.
We compile and discuss differences and similarities between
software evolution and other instances evolution toward this end.

I. INTRODUCTION

In this paper1 we aim to explore the connections be-

tween software evolution and biological evolution (and also

evolutionary computation). All three share obvious common

features in Darwin’s characterization of evolution as “descent

with modification”, but less obvious analogies and parallels

also occur (Conrad 1990, Wagner & Altenberg 1996, Ackley

2000, Nehaniv 2000, Nehaniv 2002, van Belle & Ackley 2002,

Nehaniv 2003). These include notions such as modularity,

sensitivity to changing requirements, as well as issues of

context, and control of and types of variability that have for

the most part been studied independently by workers in soft-

ware engineering, evolutionary computation, and evolutionary

biology.

There is growing awareness from academia, industry, and

research communities of the importance of evolvability, tenta-

tively defined as the capacity to vary robustly and adaptively

1† This paper extends and supersedes (Nehaniv 2000, 2002).

over time or generations in digital and natural systems. A

dialogue is beginning to emerge between various workers in

areas that might benefit from a possible common framework

addressing software engineering as well as biological and

evolutionary computation concerns.

Darwinian evolution (characterized by heritable variation

and selection) is not by itself sufficient to account for

the capacity to vary and inherent phenotypic expressions

of fitness.2 Darwinian evolution is defined as a popula-
tion process in which a population of entities (“individu-

als”) of any sort whatsoever (organic or not), undergoes

variation with differing reproductive success of individu-

als based at least in part on heritable characteristics (cf.

[Maynard Smith and Szathmáry 1995]). Many instances of

Darwinian evolutionary processes can and do occur, some of

them man-made.3

How inheritable information determines, or more generally,

contributes to other properties of the entity is referred to

as the genotype-phenotype mapping.4 Rigidity of genotype-

phenotype mappings, as often seen in artificial examples of

evolution (such as evolutionary computation), constrains the

dynamics of evolution to a small space of possible biological

or artificial systems. Open-ended evolution is not possible

under such constraints. In biology, evolution by itself, does

not fully explain the advent of genetic systems, the flexible

genotype-phenotype mappings, nor heritable fitness (Nehaniv

2003). This presents a challenge both to biologists seeking

to understand the capacity of life to evolve and to computer

scientists who seek to harness biological-like robustness and

openness in the evolution of artificial systems.

In software evolution, there is no obvious clear analogue

of the individual. Should individuals be defined as source

code programs, installations of particular software systems,

2Here and below variability refers to the type of change that individuals
may undergo from generation to generation.

3Caveat: Darwinian evolution does not exclude the inheritance of acquired
traits — indeed, such there is no reason not use such types of (so-called
Lamarckian or, more correctly, non-Weismannian) inheritance for artificial
evolutionary systems if it proves effective to do so. Moreover, this may well
be a natural type of inheritance in considerations of software evolution (cf.
Wernick 2002).

4Genotype is the inheritable information carried by an individual, while
its phenotype is comprised by all its other properties (including form and
behavior).

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

software releases, organizations that produce software, or in

some other way? As a consequence, it is difficult to identify

any population process consisting of such individuals, or

to identify heritable characteristics, or to define differential

reproductive success. Similarly, what constitutes a “species”?

If it is ability to interbreed, what could this mean for software?

– can Windows 98 interbreed with Windows 2000?

Evolvability in biology has been variously defined as the

“ability to produce adaptive variants when acted on by the

genetic system” (Wagner & Altenberg, 1996), as the “capac-

ity to generate heritable phenotypic variation” (Kirschner &

Gerhart, 1998); and as characterized by ‘evolutionary water-

sheds’ opening the “floodgates to future evolution”, such as

segmentation and body plans (Dawkins, 1987). On the other

hand, unconstrained or inappropriately constrained variability

can lead to lack of stability, “cancer” (uncontrolled growth at

lower levels), non-heritability of fitness, lack of evolutionary

power, and so on.

In software evolution, since at least the work of Parnas

(1972) and Dijkstra (1968), issues that impact evolvability

have been identified in the design of software systems (e.g.

structural decomposition, information hiding, modularity, re-

quirements change).

Evolutionary computation has come a long way since Fried-

berg (1959) documented the difficulty of introducing random

variation into conventional computer code. It is now possible

to evolve programs to carry out some simple tasks (and some

not-so-simple ones) by introducing appropriately constrained

variability combined with robustness in the face of unfavorable

variations (e.g. Koza 1992).

Software evolution and maintenance present quite different

modes of variability and of descent with modification than

in biological or evolutionary computation. In this realm, ro-

bustness to change in context of use (e.g. Goguen 1994) and

inertia of legacy-driven concepts of “the system” (Loomes

& Nehaniv 2001) are key concerns, as well as the lack of

well-defined individuals (Nehaniv 2000, Loomes et al. 2005).

Similar ideas such as (appropriate) modularity, duplication

and subsequent divergence of functionality (cf. Ohno 1970),

redundancy, phenotypic plasticity, trade-offs between freedom

at different levels (e.g. Michod & Roze 1999), and the for-

bidding of undesirable variability while allowing potentially

useful variability are common threads in evolvability issues

across domains. What is the “right” level of abstraction in

considering these issues for software systems?

We discuss these similarities and differences between soft-

ware and other evolutionary domains, and address in what

sense it is possible to transcend these disciplines in the study

and application of evolvability, with particular attention to the

special characteristics of software evolution phenomena.

II. EVOLUTION OF ARTIFACTS AND SOFTWARE

In the realm of culture, “imitation broadly construed” serves

as the replication mechanism for an evolutionary dynamic act-

ing on so-called ‘memes’ (Dawkins 1976) which are somewhat

ill-defined entities which comprise the “replicators” in culture,

including fashion, behaviors such as ways of making a baskets

or food-preparation methods, techniques and technologies,

tools and other artifacts. Social learning and imitation can

play the role of replication supporting a kind of heritability

in human and animal cultures (Dawkins 1976, Bonner 1980).

The capacity for generating adaptive variation, i.e. evolvability,

in the realms of design and culture is evidently very high and

seems to be supporting open-ended evolution.

A. Evolution of Artifacts

Human artifacts including objects we use daily, such as

forks, knives, and paper clips are often said to evolve over

many generations of design and use, in an evolutionary

dynamic in which “form follows failure” - i.e. designers

are inspired by their dissatisfaction with a type of artifact

motivating them to make a new one (Petroski 1992). Other arti-

facts, including computer software, persist over time in niches

with changing requirements. The change in circumstances and

context of their use results in the next “generation” of artifacts

having changed form - whether these are new artifacts based

on the old ones (e.g. a new kind of paper clip) or old artifacts

that have been modified (a new version of existing software).

Whether these artifacts persist or cease to be used depends

on a kind of selection for functional and non-functional prop-

erties. For example, legacy software systems may continue to

be used because they do essential work and are too expensive

to understand or replace. A model of car may be successful

because of fuel efficiency or because it looks fashionably

impressive and attracts consumers. This kind of heritability

analogue (persistence of characters over generations of arti-

facts) makes selectable entities of tools, or of the knowledge

of how to make the tools. ‘Tools’ here includes non-physical

tools such as software development methodologies, theories

of evolution, the decimal expansion, methods of calculation,

algorithms, etc. (Nehaniv 1997). Persistence of ‘species’ of

artifacts and memes in particular economic-ecological niches

combined with variability in their design provides for what

appears to be evolution without [explicit] genetics.

Just as biological individuality has arisen in the origin

of eukaryotes (cells having a nucleus) and of multicellular

lifeforms from the combination of previously reproductively

independent entities, new artifacts and software arise from

the combination of existing components into new artifacts.

Thus persistence with variation and selection (and many other

phenomena seen in organismal evolution) are also present in

the world of artifacts providing a dynamic which we might

perhaps not too metaphorically identify with the heritability,

variation and selection of Darwinian evolution.

B. Tools and Cognition

Tools will tend to be used in accidental ways not anticipated

by their designers. Tool design will change as a result of hu-

man needs and desires, and tools will change the humans who

use them. Designs that can support requirements change while

continuing to meet human needs will be more “evolutionarily

pregnant” (to use Dawkins’ phrase) - i.e. more evolvable.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

Evolvable systems are “easy to sellotape”, i.e. easy to adapt

and modify in the face of external changes and unforeseen

circumstances (cf. Gatlin 1972).

Ever since humans (and their ancestors) started extend-

ing their capabilities with tools, we have been “cyborgs” -

organisms whose embodiment is modified and extended via

technologies (Haraway 1991, Nehaniv 1997, Clark 2003).

Tools change what we are and how we interact with our

world, e.g. spoons, drums, clothing, eye glasses, money, lan-

guage, writing, arithmetic, etc. Designers externalize ideas for

magnifying human capacity through the artifacts they create.

Conversely, the design and use of artifacts often impacts

human cognition in many unforeseen ways. The tools and

artifacts that humans design change our interaction with the

world around us. Evolutionary pathologies (in biology or other

evolutionary systems) are the persistence or accumulation of

undesirable features that may lead to disaster in the long-term,

simply as a consequence of evolutionary dynamics – cf. the

notion of “tragedy of the commons” and other examples from

[Altenberg 2000]. In order to avoid evolutionary pathology in

technological evolution it is useful to ask when designing any

new artifact: How will it serve the interests of people? How

will it enhance human cognitive and social capabilities? What

will be the technologically induced adaptations of humans

to the artifact? Does it, and, if so, how does it integrate

technological and human processes while respecting human

wholeness? Issues of ethics and of empowerment arise with

the introduction of new artifacts. How will this tool affect

human cognition and behavior? How will using and interacting

with this technology change who we are? Will it, and, if so,

how will it help optimize the relationship between the “CYB”

and “ORG” (Mey 1997, Gorayska & Mey 1996, Dautenhahn

& Nehaniv 2000). Tools “configure” their users: the users

of tools must adapt to themselves to their tools. What kind

of cognitive calluses might the use of an artifact engender?

(Nehaniv 1999). If a tool proliferates, what will be the impact

on the environment? And, pragmatically, to what extent are

questions such as these submerged in the face of technology-

driven and economic demands or imperatives?

C. Evolution of Software

In software engineering, change in requirements and context

of use is the major factor in cost and impacts the areas of

requirements engineering, software maintenance, and software

evolution. Evolvability as a capacity to generate adaptive

variation in tandem with continued persistence of software

artifacts would be welcome in software engineering. Factors

supporting evolvability in artifact and software design, systems

theory, and digital evolution have analogues in biological

evolvability. Certain properties of artifacts and of software

are recognized as enhancing their capacity to support and be

adapted to changing requirements and context of use, yielding

flexibility of use and variability tolerance.

Software maintenance - the process of changing a software

system after its release - is the most expensive part of software

costs, estimated as accounting for as much as 80% or more of

effort (e.g. Sommerville 1996, ch. 22; Pressman 1992, ch. 20;

Lehman 2005). Corrective, adaptive, and perfective mainte-

nance of software to satisfy mutable requirements provides a

mechanism for inheritance and (highly non-random) variabil-

ity of software artifacts. Requirements, economic and power

relationships, accountability, and usefulness of the software

in functioning in context all contribute to the dynamic and

social process of software requirements engineering as the

reconciliation of technical and social issues (Goguen 1994,

1996). Brittleness of current software systems in the face

of requirements change is thus a huge problem for software

engineering. Existing software is not robust against changing

requirements and contexts of use.

Re-use (not replication), modularity, information hiding, en-

capsulation, and object-oriented ‘inheritance’ are some mech-

anisms that software engineers have developed in order to

provide robustness to environmental and requirements change

in the course of software evolution. These are intended to

improve the capacity of software for adaptation. Nevertheless,

practical methodologies and theoretical understanding of how

to build maintainable software are still for the most part wide

open research areas. We still do not have really good methods

for how to grow or evolve software systems.

III. EVOLVABILITY IN BIOLOGY AND EVOLUTIONARY

COMPUTATION

Recently it has grown increasingly clear that evolutionary

biology still lacks a complete account of the capacity of

populations of living systems to change their architectures and

increase in complexity in the course of evolution. We have

only very limited knowledge of the origins and evolution of

genotypes and of genotype-phenotype relations. Whereas most

population geneticists start with the assumption of a fixed

-often abstract- genetic system, experience in evolutionary

computation shows that the choice of genetic representation

and the mechanisms for variability crucially affect the capacity

of the evolution to produce non-lethal phenotypic adaptations

(Altenberg 1995, Wagner & Altenberg 1996, Kirschner &

Gerhart 1998).

Thus the evolvability of life on earth - the capacity to pro-

duce complex adaptations, such has new metabolic pathways,

organs, and body plans - is not really explained by merely

saying that it must “somehow” be a result of Darwinian evo-

lution (since many artificial instances of Darwinian evolution

lead to no such adaptations). Evolution, at least in evolu-

tionary computation, obviously fails even on many simple

optimization tasks if the genotype-phenotype relationship is

brittle, e.g. when variability is produced by varying bits or

characters in standard computer programs (Friedberg 1959).5

In contrast to such brittleness in the face of variation, when

variation is less likely to be lethal and more likely to have

a non-negligible chance of producing useful adaptation, even

populations of computer code entities can exhibit complex

5It is interesting to note that similar techniques are sometimes now used to
do coverage analysis for assertion violation as an application of variability to
debugging.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

evolutionary adaptations, as shown by the examples of genetic

programming (Koza 1992) and self-replicating programs in

Tierra (Ray 1992). Populations of individuals with robust

‘encoding’ are more evolvable (cf. Gatlin 1972), and artificial

examples have produced human-competitive applications in

the design of electronic circuits (Koza & Bennett 1999, Koza

2003) and aeronautics (Bannasch 2001).

IV. INDIVIDUALITY, PERSISTENCE AND THE

HERITABILITY OF FITNESS

A. Evolvability without Explicit Genetics

Certain classes of artifacts persist either through successive

generations of design, or merely as (possibly modified) sin-

gle instances as they continue to be used. The context and

requirements of use change with time in ways that cannot

be foreseen - during initial design and development, and

also after deployment. Software systems go through various

versions and releases, and software components are combined

and re-used in new ways. Behaviors, technologies, and ideas

are transmitted between individuals, often with variation and

persistence over long periods. Without a genetic system, could

there be an evolutionary dynamic present in these examples?

If so, how is it instantiated and in which cases do we see

a significant capacity to evolve complex adaptations? What

factors support this kind of evolvability?

B. Mergers of Selectable Entities

Biological organisms reproduce and thus form readily iden-

tifiable entities comprising populations in which the ingredi-

ents of evolution -heritability, variation, selection- are found.

During major evolutionary transitions such as the origin of

differentiated multicellular organisms, in which new levels of

individuality arise (comprised of pre-existing smaller repli-

cators), what is meant by “fitness”, and questions of its

heritability at various levels are complex issues (Buss 1987,

Michod & Roze 1999). Another example of new selectable

entities arises in symbiogenesis, i.e. the advent of new species

or higher level individuals from mergers of organisms living

in close proximity to one another (e.g. one inside the other).

For instance, “gardens of bacteria” whose reproductive fates

became inextricably intertwined (Margulis 1983) gave rise via

symbiogenesis to the first eukaryotic cells, having components

including a nucleus, numerous energy ‘powerhouses’ (mito-

chondria), and other components (organelles) that were derived

from simpler, previously free-living, bacterial ancestors. At

intermediate stages of such transitions, replication at the higher

level is uncertain; fitness at a new level has not yet congealed

and is still becoming heritable.

In the case of software, re-use and combining of modules,

code, or programs together into more complex systems is

reminiscent of such evolutionary mergers. The merged struc-

tures can then in turn themselves become the focus of further

software evolution.

C. Growth by Accretion

Large software systems’ growth is often characterized by

accumulation of layers of legacy, gradual addition of small

parts and changes, and of re-use of structure without much

regard for what underlies it. Such growth by accretion sug-

gests that in some ways software change may be more like

coral reef growth than, say, bacterial evolution. From this

point of view, software evolutionary processes are far from

Darwinian evolution and more like the growth of a colony of

organisms that interacts with and transforms its environment

(cf. [Jackson, Buss, and Cook 1986]).

D. Persistence as Weak Heritability

A new level of individuality implies a niche for the new

individuals to make their living in. Even before individual

fitness at the new level becomes heritable, entities occupying

the niche have an obvious property: they persist in the niche.

The persistence of entities through time is a property of a

population evolving in its environment and (possibly changing)

niche.6

Natural selection acts to determine whether an individual’s

properties will persist. Thus although successful characteristics

of an individual may certainly be inherited by its offspring,

survival of the individual itself already entails the persis-

tence of that individual’s properties. Persistence is therefore

a (weaker) analogue of heritability. Can one make sense of

evolution in the absence of heritability? Yes, persistence in a

niche - possibly with variability and with spread over time

- plays the same role as heritability in natural extensions of

the Darwinian paradigm (Nehaniv 2000). This new view of

persistence makes it possible to extend this paradigm more

generally into the realm of artifacts and design. Without

our necessarily being able to identify any discrete, self-

reproducing entities, persistence through time while possibly

growing and spreading serves the same role as heritability does

in a classical Darwinian paradigm.

A degenerate case of this is persistence without change,

growth, or variation - e.g. of a stone existing without sub-

stantial change over a long period of geological time. A

less degenerate case is growth and spread without variability,

e.g. in the growth of crystals. Persistence with growth and

variation is apparent in the lifespan of single living things,

maintained software systems, coral reefs, cities, and many

other entities; within these cases we have persistence and

variability providing analogues of heritability without strict

reproduction of individuals. Design and cultural traditions,

and generations of software releases, provide examples closer

to biological evolution acting on populations but still lack

well-defined self-reproducing individuals. Looking at these as

examples along a continuum from persistence of entities to

reproduction of self-reproducing individuals generalizes the

notion of Darwinian evolution to many other realms having

6These considerations of persistence in a niche are related to but not
directly dependent on the notion of ‘species’. A species (in addition to having
other characteristic properties) consists of a population of individuals whose
lineages persist within a common niche.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

many similarities. In particular, in each case one can ask

about the capacity of the generalized evolutionary system to

produce adaptive variation. That is, one can study evolvability

phenomena and the factors that support them in these systems.

It turns out that many non-biological systems showing the

capacity for generating adaptive variation share many features

with biological ones.

V. PROPERTIES OF EVOLVABLE SYSTEMS

For artifacts (including software) we can define evolvability
as the capacity of the systems, organizations and networks
producing them to give rise to adaptive variants that flexibly
meet changing requirements over the course of long-term
change.

Many of the properties thought to enhance software evolv-

ability are strongly analogous to properties considered to be

of great importance in biological evolvability and evolvability

in evolutionary computation. A very incomplete list of (non-

orthogonal) factors includes (see cited references for more

details):

1) Modularity - low interdependence (‘pleiotropy’) be-

tween functionally distinct components, correspondence

of units of coding with units of function (biology:

Conrad, 1990, Wagner & Altenberg 1996; software:

information hiding and encapsulation (Parnas 1972);

cf. functional decomposition, structured programming

(Dijkstra 1968), and “object-orientation”); weak linkage;

compartmentation.

2) Facilitation of extra-dimensional bypass (Conrad 1990),

e.g. via duplication and divergence (Ohno 1970, Nehaniv

& Rhodes 2000): the creation of new routes for evolu-

tionary change by adding new dimensions for potential

adaptive variation.

3) Robustness to genetic variability (Conrad 1990, Ray

1992, Koza 1992)

4) Phenotypic robustness, developmental tolerance and

constraints, embryologies (Conrad 1990; Gerhart &

Kirschner 1997; Kirschner & Gerhart 1998; West-

Eberhard 1998; Maynard Smith et al. 1985); Baldwin’s

effect (the internalization, over generations, of adapta-

tion to external evolutionary pressures).

5) Redundancy: belt-and-suspenders phenomena; duplica-

tion of components (von Neumann 1956).

6) Switches - use-retargetable mechanisms which various

different kinds of signals could be configured to control

(via ‘signal transduction’); re-use; genetic regulatory

networks, transcriptional control; homeotic genes and

developmental cascades; hierarchical organization (Si-

mon 1969); informational patterning; positional systems

in development (L. Wolpert); interoperability.

7) Conservation of Core Mechanisms, Diversification of

Regulatory Mechanisms; customization and re-use.

8) Robustness to environmental and context change - fault-

tolerance, requirements engineering, defensive program-

ming: results in (1) reduced lethality due to muta-

tions or varied environmental conditions; (2) support

of phenotypically useful traits without ‘genetic’ change,

modulated to provide (3) control of kind and amount of

phenotypic variation produced to achieve a functional

state regardless of initial configuration and perturbation

of external factors.

9) Search behavior in biological systems: exploratory epi-

genetic mechanisms for variation and selection - har-

nessing evolutionary dynamics: within an individual

(Gerhart & Kirschner 1997) - e.g. the formation (accord-

ing to Darwinian dynamics) of temporary scaffolding

structures (via microtubule synthesis) in cytoskeleton

(cell skeleton), in cell motility, and in reproductive

cell functions (meiosis and mitosis); in self-organizing

processes in ant foraging behavior; in neural and vas-

cular growth and morphogenesis; in evolution within

an immune system; as well as learning, adaptation, and

evolution (Holland 1975).

10) Genotype-Phenotype relations or variability generation

mechanisms under evolutionary control.

Selection for robustness can have as a non-selected by-

product the following properties which enhance evolv-

ability: (1) phenotypic variation becomes tolerated and

possible; (2) phenotypic variability becomes heritable,

since similar genes in similar environment yield similar

development; and (3) developmental versatility leads to

increased phenotypic variability serving as fodder for

the “next round of evolution”.

VI. EVOLVABILITY OF SOFTWARE

A. Presupposition of Individual Integrity

A serious problem, in our view, of most models of software

development and evolution is their blind acceptance of the

“life cycle” metaphor that tacitly presupposes the integrity of

a software system as a single coherent individual which will

“develop” properly from an “embryonic” requirements spec-

ification to a “mature” software system if properly cared for

(Lam and Loomes 1998, Loomes and Jones 1998, Loomes and

Nehaniv 2001, Loomes et al. 2005). However, this viewpoint

is dangerous if “the system” does not refer to any well-defined

entity (e.g. before requirements are discussed), or if it refers

to a multitude of vaguely defined entities of questionable on-

tological status (given e.g. by user expectations, specification

documents, etc.) which may or may not have any existence as a

working “system”, or even to a multitude of deployed systems

under the same product name (such as ‘Microsoft Windows’)

– see (Loomes et al. 2005) for a detailed discussion of this.

This situation in software development and evolution is

radically unlike the case in biological evolution, where indi-

vidual growing and developing organisms actively acquire and

metabolize the resources necessary to construct and maintain

their own persistent individual bodies and integrity in the face

of harsh entropic challenges from the surrounding universe.

Software systems in contrast generally take no active role in

their maintenance, but persist due to inertia or active work

on the part of human communities of actors. Nevertheless,

stakeholders and organizations committed to a developing

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

system can bring about massive absorptions of resources into

attempts to promote a system’s realization and integrity – cf.

(Latour 1987, Wernick et al. - this volume).

Given the considerations on lack of clear individuals in

software evolution discussed here, it is abundantly clear that

the existence and persistence of single entity over a longer

temporal extent is no longer to be taken for granted when

we move from the world of organisms or everyday objects

into the world of software. It might even be the case that the

notion of a developing individual – “the system” is not an

appropriate metaphor in the realm of software maintenance

and evolvability.

B. Evolution, Naming and Persistence Entities

Naming of objects and natural phenomena – whether in-

dividuals or classes of them – works in a particular way that

generally pre-supposes the existence, integrity, and the contin-

ued persistence of the entities named. When we name persons

or animals these assumptions are naturally satisfied, and we are

able to give a name without much ambiguity to a person even

the individual changes and develops through radically different

forms in the course of life [Loomes et al. 2005]. Biological

organisms have a natural persistence and integrity that allows

us to do this. Our usual ways of using giving things names

have been co-opted (or “exapted”, i.e. re-used and adapted

for unanticipated applications over the course of time) to a

new realm when we apply naming to software systems. Mean-

while, software systems and their often dynamically changing

identities and characteristics emerge from and are transformed

by the activity of networks of actors working in contexts

of internal, external, technological and social constraints and

requirements.

In evolutionary computation or in biological systems, there

is generally a good measure of agreement on what constitutes

an individual in an evolving population. In software evolution,

such agreement is markedly absent. (In cases where it seems

to exist, it is the result of tacit acceptance of an arbitrary

norm, e.g. in version numbering, rather than logical necessity

or rational inquiry.)

C. Individuals – Units of Selection

Darwin’s broad sense of evolution in organismal species

as “descent with modification” applies at the level of pop-

ulations of the individuals in a species over time un-

dergoing a dynamical process with heritability, variability,

selection (“struggle for existence”) and limited resources.

Populations rather than individuals evolve (although indi-

viduals may change and develop in their life times (as,

for example, in the life cycle of a butterfly), but well-
defined individuals are required for the Darwinian theory

to apply [Maynard Smith and Szathmáry 1995], [Buss 1987],

[Michod 1999]. Persistence of changing entities becomes a

weaker analogue of individuals in an evolutionary dynamic

and occurs also for other candidate spheres of evolutionary

phenomena such as memes, software, or physical technologi-

cal artifacts ([Nehaniv 2000] and above).

The software engineering community uses the term ‘evo-

lution’ in a broader sense that also focuses on the descent

with modification of software systems, but does not actually

presuppose populations of competing individuals of the same

species. Competition is instead for a given niche, and the

makers of new software products may seek to invade, create

or expand software niches.

Where software systems are seen as being modified and

maintained in the face of changing requirements and contexts

of use [Goguen 1994], [Lam and Loomes 1998], selection is

not usually discussed, but explicit empirical laws for the

evolution of particular classes of software systems can be

formulated [Lehman 1980].

D. Genes, Species, Individuals

Even more importantly, software evolution differs from

biological evolution in a fundamental manner: There is cur-

rently no well-circumscribed notion of what constitutes an

individual software system, nor of heritable material, nor of

species. The lack of clear-cut software individuals is a serious

obstruction to the use of Darwinian evolutionary analogues

for software. Related to this is the fact that one has no clear

analogue of ‘gene’, the unit of heritable material. Genetics

in biology does not completely determine or ‘specify’ an

individual, but constrains its potentialities for developing in

interaction with its environment. Genes are what make these

potentialities heritable and subject to natural selection. In

software evolution, it might be otherwise, e.g. program code

may determine software behavior completely; but for software,

no one has as yet produced a compelling answer to the

question “what is [or should be] a gene?”

Biological species are often defined by the capacity to

interbreed, and by isolation or barriers to breeding outside the

group. For software, what should constitute a species has no

obvious clear answer. Software does reproduce by interbreed-

ing: incremental releases are in some sense uniparental, and

systems that combine multiple software components can not be

usefully said to be of the same species as their components.7

Could we see the customization of a generic software

product via parameters and installation options as phenotype

variation? Would this put the generic product in the role of

species and the individual copy as individual? Customization

could also form the basis of ideas for changes in future

releases. Perhaps a ‘system as fielded’ could be considered

an individual, and its lines of code or its constituent modules

might be considered as ‘genes’ (potentially inheritable – re-

useable – in other programs). However, all these suggestions

are highly debatable, and many alternative, equally plausible,

but conflicting interpretations of gene, species, and individual

in the realm of software seem possible.

7This last example seems to be closer to an instance of symbiogenesis,
the creation of new species by mergers of old ones – see above and
[Margulis and Sagan 2003].

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

VII. CONCLUSIONS

Modularity, genotype-phenotype relations, the ability to

replicate, heritability of fitness, and evolvability are derived

states of biological systems that have scientific explanations

(some currently still being worked out). Integrity of coherent

individuals cannot be presupposed for software evolution.

Persistence over time with variational change can play the

role of heritability with variation in a Darwinian (but not

necessarily Weismannian evolutionary dynamic). From this

point of view, evolution and evolvability of artifacts and soft-

ware systems, designs, culture and memes can be compared.

Studying the properties that make such evolution possible, and

that make biological and cultural systems exhibit evolvability,

shed useful light on ways to improve evolutionary computation

and the design and evolution of software systems in general.

This study also reveals a cross-disciplinary unity at a high

level of the mechanisms of evolvability in different realms

including biology, artifacts, culture, and software systems, but

with some very important differences that cannot be ignored.

Software evolution is quite different from biological evolu-

tion or instances of evolution in artificial life and evolutionary

computation. This is due in large part to the lack of an

adequate analogue of individual. Software systems at present

do not have ‘inherent coherence’: unlike biological individuals

they do not at present engage actively in their own production,

self-maintenance, and adaptation to the environment. The

dynamics of reification, persistence, and continuity of software

“individuals”, as well as an explicit, defensible definition of

the term (or, alternatively, of an analogous concept replacing

the notion of “individual”), must be addressed by a successful

theory of software evolution.

REFERENCES

[Ackley 2000] Ackley, D.H. ”Real artificial life: Where we may be”. In
M.A.Bedau, J.S.McCaskill, N.H.Packard, and S.Rasmussen (eds.) Ar-
tificial Life VII (Proceedings of the Seventh International Conference
on Artificial Life), Cambridge, MA: The MIT Press (A Bradford Book)
(2000).

[Altenberg 1995] Altenberg, L. 1995, Altenberg, L. 1995, Genome growth
and the evolution of the genotype-phenotype map. In W. Banzhaf and
F. H. Eeckman, eds., Evolution as a Computational Process, Springer
Verlag, pp. 205-259.

[Altenberg 2000] L. Altenberg, Evolvability Checkpoints Against Evolution-
ary Pathologies, Invited paper for the Evolvability Workshop at the
Artificial Life 7 Conference, Portland Oregon. http://homepages.
feis.herts.ac.uk/˜comqcln//al7ev/cnts.html

[Bannasch 2001] Bannasch, R. (2001) From soaring and flapping bird flight
to innovative wing and propeller constructions. Progress in Astronautics
and Aeronautics 195:453-471.

[Bonner 1980] Bonner, J. T. (1980) The Evolution of Culture in Animals,
Princeton.

[Buss 1987] L. W. Buss (1987). The Evolution of Individuality, Princeton
University Press.

[Clark 2003] A. Clark, Natural-Born Cyborgs. Oxford University Press,
2003.

[Conrad 1980] Conrad, M. 1990, The geometry of evolution. Biosystems
24:61-81.

[Dautenhahn and Nehaniv 2000] Dautenhahn, K. and Nehaniv, C. L. 2000,
Living with Socially Intelligent Agents: A Cognitive Technology View,
in Human Cognition and Social Agent Technology, K. Dautenhahn, ed.,
John Benjamins, pp. 415-426.

[Dawkins 1976] Dawkins, R. 1976. The Selfish Gene, Oxford University
Press.

[Dawkins 1989] Dawkins, R. 1989, The Evolution of Evolvability. In: Arti-
ficial Life, C. Langton, ed. Addison-Wesley.

[Dijkstra 1968] Dijkstra, E. W. 1968, Goto statement considered harm-
ful, Communications of the Association for Computing Machinery,
11(3):147-148.

[Friedberg 1959] Friedberg, R. M. 1959, A learning machine, IBM J. Res.
Dev., Part II, 3:181-191.

[Gatlin 1972] Gatlin, L. L. 1972, Information Theory and the Living System,
Columbia University Press.

[Gerhart and Kirscher 1997] Gerhart, J. and Kirschner, M. 1997, Cells, Em-
bryos, and Evolution: Towards a Cellular and Developmental Under-
standing of Phenotypic Variation and Evolutionary Adaptability, Black-
well Science.

[Goguen 1994] Goguen, J. 1994, Requirements Engineering as the Recon-
ciliation of Technical and Social Issues, in Requirements Engineering:
Social and Technical Issues, edited Marina Jirotka and Joseph Goguen,
Academic Press, 1994, pp. 165-199.

[Goguen 1996] Goguen, J. 1996, Formality and Informality in Requirements
Engineering, Proceedings, Fourth International Conference on Require-
ments Engineering, IEEE Computer Society, April 1996, 102-108.

[Gorayska and Mey 1996] Goryaska, B. and Mey, J. L. 1996, Of Minds
and Men, in Cognitive Technology: IN Search of a Human Interface
(B. Gorayska and J. L. Mey, eds., Advances in Psychology, vol. 113)
Elsevier/North Holland, pp. 27-39.

[Haraway 1991] Haraway, D. 1991, A Cyborg Manifesto: Science, Tech-
nology, and Socialist-Feminism in the Late Twentieth Century. In D.
Haraway, Simians, Cyborgs and Women: The Reinvention of Nature,
Routledge, pp. 149-181.

[Holland 1975] Holland, J. 1975, Adaptation in Natural and Artificial Sys-
tems, MIT Press.

[Jackson, Buss, and Cook 1986] Jackson, J. B. C., Buss, L. W. and Cook, R.
E. 1986. Population Biology and Evolution of Clonal Organisms. Yale
University Press.

[Kirschner and Gerhart 1998] Kirschner, M. & Gerhart, J. 1998, Evolvabil-
ity, Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 8420-8427, July.

[Koza 1992] Koza, J. R. 1992, Genetic Programming: On the Programming
of Computers by Means of Natural Selection, MIT Press.

[Koza 2003] Koza, J. R. 2003. Human-competitive applications of genetic
programming, Advances in evolutionary computing: theory and appli-
cations, Springer-Verlag.

[Koza and Bennett 1999] Koza, J. R. and F. H. Bennett III, 1999, Automatic
synthesis, placement, and routing of electrical circuits by means of
genetic programming. In: Advances in Genetic Programming, vol. 3,
MIT Press, pp. 105–134.

[Lam and Loomes 1998] W. Lam and M. J. Loomes (1998). Requirements
Evolution in the Midst of Environmental Change: A Managed Approach,
Proceedings of the Second Euromicro Conference on Software Mainte-
nance and Reengineering (CSMR’98), IEE Press, pp. 121–127.

[Latour 1987] B. Latour (1987). Science in Action, Harvard University Press.
[Latour 1996] B. Latour (1996). Aramis or the love of technology, translated

by C. Porter, Harvard University Press.
[Lehman 1980] M. M. Lehman (1980). Programs, Life Cycles and Laws of

Software Evolution, Proceedings of the IEEE 68(9):1060–1076,
[Lehman 2005] M. M. Lehman (2005). The Role and Impact of Assumptions

in Software Development Maintenance and Evolution, Proc. Intl. IEEE
Workshop on Software Evolvability 2006, 3-14, IEEE Computer Society
Press.

[Loomes and Jones 1998] M. J. Loomes and S. Jones (1998). Requirements
Engineering: A Perspective through Theory-Building, Proc. Third In-
ternational Conference on Requirements Engineering, IEEE Computer
Society Press, pp. 100–107.

[Loomes and Nehaniv 2001] M. J. Loomes and C. L. Nehaniv (2001). Fact
and Artifact: Reification and Drift in the History and Growth of
Interactive Software Systems, Proc. Fourth International Conference on
Cognitive Technology: Instruments of Mind, Springer Lecture Notes in
Computer Science, vol. 2117, pp. 25-39.

[Loomes et al. 2005] M. J. Loomes, C. L. Nehaniv, P. Wernick, ”The Naming
of Systems and Software Evolvability”, IEEE International Workshop on
Software Evolvability, IEEE Computer Science Press, pp. 23-28, 2005.

[Margulis 1981] Margulis, L. 1981, Symbiosis in Cell Evolution, Freeman.
[Margulis and Sagan 2003] Lynn Margulis and Dorion Sagan (2003). Ac-

quiring Genomes: A Theory of the Origins of Species, Basic Books.
[Maynard Smith and Szathmáry 1995] J. Maynard Smith and E. Szathmáry

(1995). The Major Transitions in Evolution, W.H. Freeman.

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

[Mey 1997] Mey, Jacob. 1997, Personal communication, questions presented
at Second International Conference on Cognitive Technology, 25 August
1997, University of Aizu, Japan.

[Michod 1999] R. E. Michod (1999). Darwinian Dynamics: Evolutionary
Transitions in Fitness and Individuality, Princeton University Press.

[Michod and Roze 1999] Michod, R. E. and Roze, D. 1999, Cooperation
and conflict in the evolution of individuality. III. Transitions in the unit
of fitness. In: C. L. Nehaniv, editor, Mathematical & Computational
Biology: Computational Morphogenesis, Hierarchical Complexity &
Digital Evolution, Lectures on Mathematics in the Life Sciences, vol.
26, American Mathematical Society, Vol. 26: 47-91.

[Nehaniv 1997] Nehaniv, C. L. 1997, Algebraic Models for Understand-
ing: Coordinate Systems and Cognitive Empowerment. In: Second
International Conference on Cognitive Technology: Humanizing the
Information Age, IEEE Computer Society Press, pp. 147-162.

[Nehaniv 1999] Nehaniv, C. L. 1999, Story-Telling and Emotion: Cognitive
Technology Considerations in Networking Temporally and Affectively
Grounded Minds, Third International Conference on Cognitive Technol-
ogy: Networked Minds (CT’99), pp. 313-322. http://homepages.
feis.herts.ac.uk/˜comqcln/nehaniv_ct99.pdf

[Nehaniv 2000] C. L. Nehaniv (2000). Evolvability in Biological, Artifacts,
and Software Systems. In: C. C. Maley and E. Boudreau (Eds.), Ar-
tificial Life 7 Workshop Proceedings - Seventh International Conference
on the Simulation and Synthesis of Living Systems, Reed College, pp.
17-21.

[Nehaniv 2002] C. L. Nehaniv, “What Do Software Evolution and Biological
Evolution Have in Common”, Software Evolution and Evolutionary
Computation Symposium Abstracts, EPSRC Network on Evolvability
in Biological and Software Systems, pp. 1-2, 2002.

[Nehaniv 2003] C. L. Nehaniv (2003). Evolvability, BioSystems: Journal of
Biological and Information Processing Sciences 69(2-3):77–81.

[Nehaniv and Rhodes 2000] Nehaniv, C. L. & Rhodes, J. L. 2000. The Evo-
lution and Understanding of Biological Complexity from an Algebraic
Perspective, Artificial Life, 6(1): 450-67.

[Ohno 1970] Ohno, S. 1970, Evolution by Gene Duplication, Springer Ver-
lag.

[Parnas 1972] Parnas, D. 1972, On the criteria to be used in decomposing
systems into modules, Communications of the Association for Comput-
ing Machinery, 15(2):1052-1058.

[Petroski 1992] Petroski, H. 1992. The Evolution of Useful Things, Vintage
Books.

[Pressman 1993] Pressman, R. S. 1993, Software Engineering: A Practi-
tioner’s Approach, 3rd ed., McGraw-Hill. cob. 1997, Personal com-
munication, questions presented at Second International Conference on
Cognitive Technology, 25 August 1997, University of Aizu, Japan.

[Simon 1969] Simon, H. 1969, The Sciences of the Artificial, MIT Press.
[Sommerville 1996] Sommerville, I. 1996. Software Engineering, 5th ed.,

Addison-Wesley.
[van Belle and Ackley 2002] Van Belle, T, and Ackley, D.H. “Code Factor-

ing and the Evolution of Evolvability”. In The Proceedings of GECCO-
2002 (2002, July).

[von Neumann 1956] von Neumann, J. 1956, Probabilistic Logics and the
Synthesis of Reliable Organisms from Unreliable Components, in
Automata Studies (C. E. Shannon and J. McCarthy, eds., Annals of
Mathematics Studies, Number 34), Princeton, pp. 43-98.

[Wagner and Altenberg 1996] Wagner, G. P. & Altenberg, L. 1996, Complex
Adaptations and the Evolution of Evolvability, Evolution, Vol. 50, No.
3, pp. 967-976, June.

[West-Eberhard 1998] West-Eberhard, M. J. 1998, Evolution in the light of
developmental biology, and vice versa, Proc. Natl. Acad. Sci. USA
95:8417-8419.

[Wernick 2002] Wernick, P. 2002, Analogies for Software Evolution: Dar-
win or Lamarck? Software Evolution and Evolutionary Computation,
University of Hertfordshire, 7-8 February 2002 (EPSRC Network on
Evolvability in Biological and Software Systems Symposium)

[Wernick et al. 2006] Wernick, P., Hall, T., and Nehaniv, C. L., Software
Evolutionary Dynamics Modelled as the Activity of an Actor-Network,
Proceedings 2nd Intl. Workshop on Software Evolvability, IEEE Com-
puter Society Press, (this volume - 2006).

Second International IEEE Workshop on Software Evolvability (SE'06)
0-7695-2698-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

