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Abstract- We compare the performance of autonomous
agents with three different behavior selection architec-
tures (Static-Threshold, Winner-Takes-All and Voting-
Based) in terms of survival in a large and complex dy-
namic virtual environment. Experiment results indicate
both advantages and disadvantages when applying each
architecture in such environmental conditions, and also
shows that the performance of Voting-Based architec-
ture is significantly sensitive to the balance of rates at
which various environmental resources can serve to sat-
isfy an agent's physiological needs. Some problems with
behavior selection architectures are identified and possi-
ble solutions are proposed.

1 Introduction

Behavior selection is one of the critical issues in designing
autonomous agents and robots [Maes, 1995]. In the per-
spective of Artificial Life, an artificial animal must make
appropriate decisions to guarantee its survival in a given en-
vironment using some sort of behavior selection architec-
ture - separately or in combination with other mechanisms
such as learning or evolution [Meyer and Guillot, 1990].

Many behavior selection architectures have been pro-
posed (see [Tyrrell, 1993] and [Guillot and Meyer, 1994]
for an overview). As pointed out by the behavior selec-
tion literatures [Tyrrell, 1993, Bryson, 2000], agents which
are implemented with architectures such as winner-takes-all
and voting-based - or compromise candidates - require dif-
ferent levels of necessary information from the environment
in order to effectively satisfy their internal goals. There-
fore, voting-based agents performing in a large and complex
dynamic environment with a limited sensory range and no
memory may not be able to cope with conflicting situations
to make good enough behavior selection.

In this paper we perform a comparison between Voting-
Based (VB), Winner-Take-All (WTA) and Static-Threshold
(ST) architectures in a large and complex environment.
Previous research [Avila-Garcla and Caniamero, 2002] in-
dicated that assessing the performance of behavior se-
lection architectures is a complex task and generally re-
quires different indicators to allow comparison and under-
standing of their essential properties. In this paper we
compare architectures in terms of three viability indica-
tors [Avila-Garcia and Caniamero, 2002]: Lifespan, Over-
all Comport and Physiological Balance (Section 5). A
large and complex nature-like environment has been cre-
ated (Section 2) to test and compare three different behav-
ior selection architectures (Section 3) respectively defined

in our previous research [Ho et al., 2003, Ho et al., 2004,
Avila-Garcia et al., 2003].

2 Agent Physiology, Environment and Basic
Behaviors

In order to test agents with three different behavior selection
algorithms, a large, dynamic and complex "nature-like" vir-
tual environment has been created by using VRML and Java
programming languages. This environment is fairly differ-
ent from other simple and flat agent test-beds since it has
various types of landforms and concomitant resource dif-
ferences, including areas of oasis, desert, mountains, cave,
river, lake and waterfall. Figure 1 illustrated the virtual en-
vironment model from two different perspectives. Each area
has its unique features that could be used by the agents to
meeting their physiological needs (see below), illustrated as
follows:

* Oasis - this is generally a warm and flat area, which
has three Apple Trees in the summer.

* Desert - a hot and flat area where efficiently provides
body heat to the agents and has Stones and Cactuses.
Cactus is the only resource for agents to increase their
moisture in the winter. To crush the Cactus, agents
need to pick up a Stone. Therefore agents are able
to change the Stone distribution in the environment
by randomly carrying or laying down the Stone after
they have consumed a Cactus.

* Mountain - located between the desert and oasis ar-
eas; some edible Mushrooms exist permanently on the
top of the mountain, however, climbing up the moun-
tain takes an extra amount of internal energy from the
agents.

* River - in the summer, it provides water resource to
the agents and locates next to the oasis. Agents are
able to swim in the river, but they cannot swim toward
the north since it is against the current.

* Lake and Waterfall - these provide another source of
moisture and environmental complexity. The water-
fall connects to the upper river and the lake. Once
agents enter the waterfall area, they will be picked up
by the downstream current and then fall into the lake
area. An agent is not able to either go back to the river
from the waterfall or go back to the waterfall from the
lake.
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Figure 1: The simulated virtual environment viewed from
two different perspectives.

Table 1: The level of heat and cold in different areas of the
environment, and the accessibility of the river in the seasons

of summer and winter

* Cave - there are two caves in the environment for
agents to regain their energy, one located in the oa-

sis area and the other one located in the desert area.

Alternatively, two seasons Summer and Winter, have
been simulated in the environment to have a higher level
of environmental dynamics (Table 1). Each season has the
same duration but different effects on a) the level of heat
and cold in different areas of the environment, b) dynamic
resources allocation and c) the accessibility of the river.

2.1 Physiology and Basic Behaviors

2.1.1 Sensing and acting

Agents are equipped with nine external sensors: seven

Hit-Ray sensors [Blaxxun, 2004] formed a 90 degree fan-
shaped for detecting the objects, landforms, as well as the
environment heat from different types of landforms; agent
body has a landform sensor and also a time sensor for sens-

ing the current season of the environment; Figure 2 shows
the distributions of these sensors.
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Figure 2: Hit-Ray sensors 0 - 7 for sensing both objects and
Landforms, agent body has a landform sensor and a time
sensor.

2.1.2 Physiology

There are four essential internal variables
[Meyer and Guillot, 1990] implementing the agent's
synthetic physiology. The agent must keep those variables
within certain viable ranges in order to survive: (1) Energy,
Moisture and Glucose must be maintain higher than the
minimum value, and (2) Temperature within a range

between a maximum and the minimum values. If one of
these values exceeds the boundary the agent 'dies'. There
are conflicts between the different behavioral alternatives
to satisfy those internal needs, so the agent must decide at
every step of its life what to do next in order to stay 'alive'.

2.1.3 External stimuli

Besides the internal variables, the presence of external stim-
uli is also a factor to influence the outcome of the behavior
selection. There are five types of external stimuli in the en-

vironment including Apple Trees, Water, Mushrooms, En-
vironmental Heat and Cold, some of them are static ob-
jects, such as Mushroom on the top of the mountain area,

Apple Trees in the oasis area; some of them are the spread
through a huge area, for example, the agent's body can be
warmed up in the desert area and cooled down in other ar-

eas. Furthermore, the river provides Water only in the sum-
mer, which is a dynamic external stimulus to the agent.

2.1.4 Motivations

Motivations constitute urges to action based on bodily needs
related to self-sufficiency and survival. They implement
a homeostatic control to maintain the essential physiolog-
ical variables within certain ranges. Agents' motivations
are characterized by: a controlled (essential) physiological
variable, a drive to increase or decrease the level of the con-

trolled variable and an (external) incentive stimulus that can
increase the motivation's intensity. Table 2 shows agents'
motivations with their drives and incentive stimuli.

2.1.5 Behaviors

Following the usual distinction in ethology, our agents
have consummatory (goal-achieving) and appetitive (goal-
directed) behaviors [McFarland, 1999]. A consummatory
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Summer Cool Hot Flowing
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Table 2: Agents' motivations with their drives and incentive
stimuli.

behavior is executed only if it has been selected by the
motivational state of the agent and its incentive stimulus
is being observed. Appetitive behaviors help the agent
to reach incentive stimuli so as to execute consummatory
behaviors. The execution of a behavior has an impact on

(increasing or decreasing) the level of specific physiological
variables. Table 3 shows the agent's behaviors.

The different resource and environment types, the agent
physiology and behaviors, as well as multiple possible be-
haviors and situations where conflicts for action selection
may arise all contribute to the complexity of potential agent-
environment dynamics.1

3 Architectures for Behavior Selection

We have tested 3 types of agent architec-
tures which have been previously used in agent
simulations and robotic experiments: Static-
Threshold [Ho et al., 2003, Ho et al., 2004,
Avila-Garcia et al., 2003], and Winner-Takes-All and
Voting-Based [Avila-Garcia and Caniamero, 2002,
Avila-Garcia et al., 2003]. All of these three behavior

tThis complexity is reflected in situations that may appear in an action
selection problem. For instance, our environment presents situations with:

* The same behavior affecting more than one physiological variable:
e.g., Searching, Avoiding Obstacle or Eating Apple.

* The same behavior correcting more than one physiological vari-
able: e.g., Eating Apple raises the level of both Moisture and Glu-
cose.

* The same physiological variable being corrected by more than one

behavior: e.g., decreasing Body Temperature can be obtained going
in a mountain, oasis, river or lake.

* The same physiological variable being corrected in both directions:
e.g., both low and high Body Temperature must be corrected.

* The same physiological variable being corrected using more than
one external stimulus: e.g., glucose can be obtained either consum-
ing Apples or Mushrooms

* The same external stimulus helping correct different physiological
variables: e.g., apples help to obtain both Moisture and Glucose.

Figure 3: Behavior hierarchy which is based on the sub-
sumption architecture for a Purely Reactive agent.

selection architectures have (1) the same appetitive -

randomly searching - and reflexive - obstacle avoiding
- behaviors and (2) the same elements introduced in the
next section. They are based on a subsumption control
architecture [Brooks, 1986], as illustrated on Figure 3.

3.1 Behavior Selection Policies

3.1.1 Static Threshold (ST)

Agents with ST behavior selection architecture have fixed
points as behavior performing thresholds. A ST agent exe-

cutes the consummatory behavior only if the specific inter-
nal variable is lower than the static threshold and the agent
encounters the corresponding external stimulus. At that mo-
ment, the agent will stay and consume the resource until the
specific internal variable reaches its upper limit. For Body
Temperature, the agent will stay in the area where can pro-

vide heat or cold to the agent to adjust its own Body Tem-
perature value to the ideal range before it leaves this area.

When the agent is not able to sense any kind of external
stimuli, or its physiological variables are all higher than the
static threshold or in the ideal range, it will be just wander-
ing around and avoiding obstacles.

3.1.2 Winner-Takes-All (WTA)

In order to make the decision of which behavior is going to
be executed in the next time step, WTA behavior selection
architecture calculates and updates all the motivation values
in each time step by using the following formula:

Motivation = Deficit + (Deficit * Cue)

In this formula, Deficit of a specific physiological vari-
able is calculated by the ideal value of that variable minus
the current value. The value of Cue increases when the
agent is getting closer to the corresponding stimulus, and
vice versa. After all motivations' intensity have been cal-
culated, the motivation with the highest value triggers the
relevant behavior to execute in the next time step.

3.1.3 Voting-Based (VB)

VB can be seen as another calculating process building on

the top of WTA, since it takes the results from the motiva-
tion calculation process, and then performs another process

of calculations for behavior executions in the next time step,
as shown in the following formula:
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Motivation Drive Incentive stimulus
(Cue)

Fatigue Energy I Cave

Thirst - Water Moisture T River
(in summer only),

Lake

Thirst - Apple Moisture I Apple Tree

Hunger - Mushroom Glucose I Mushroom

Hunger - Apple Glucose 1 Apple Tree

Body Heat Body Temperature t Desert area

Body Cold - Oasis Body Temperature J, Oasis area

Body Cold - Mountain Body Temperature 4 Mountain area

Body Cold - Water Body Temperature 4 River, Waterfall,
Lake



362

Table 3: Agents' behaviors with their corresponding stimuli, effects and motivations.

behavior = Motivationr * Ratel + Motivation2 * Rate2

As described in the previous subsection, there are be-
haviors which can satisfy more than one motivation. For
example Eating Apple behavior increases the level of two
physiological variables: Glucose and Moisture; the changes
of these two variables will influence the motivation calcula-
tion in the next time step of the simulation. In this equation,
Rate is the speed of consuming a specific external stimulus.
Similar to WTA architecture, the behavior with the highest
value will be executed by the agent in the next time step.

4 Experiments

4.1 Method

For testing the efficiency of three behavior selection archi-
tectures in terms of agents' survival in the proposed envi-
ronment, and particularly investigating the hypothesis we

made for VB architecture - i.e. it is likely to be unable to
perform as well in large and complex environments - we

designed four different experimental settings (see Table 4).
All experimental settings were set up to testing and com-

paring the performance of ST, WTA and VB architectures;
the reason to have different Apple Nutritional Rate is that
we would like to confirm our hypothesis of the weaknesses
of VB architecture and attempt to rectify this problem by
slightly changing the parameters of environmental condi-
tions.

Each experiment run takes about 15 minutes in a Pen-
tium 4 2.0GHz PC with 512MB RAM.

4.2 Results and discussions

Performance results in terms of Life span (Figure 4), Over-
all Comfort (5) and Physiological Variance (6) we obtained
from all experiments runs with four different settings. Life

Setting ST WTA VB
(Apple Nutritional Rate)

(1) 1: 2 10 Runs 10 Runs 10 Runs
(2) 1: 1 10 Runs 10 Runs 10 Runs

(3) 2: 3 10 Runs 10 Runs 10 Runs

(4) 4: 7 10 Runs 10 Runs 10 Runs

Table 4: Apple Nutritional Rate is the amount of Moisture
and Glucose the Apple provides to the agent in each time
step it is consumed, in contrast with that provided by Water
and Mushroom. For example, setting (1) shows the rate as

1:2, which means eating Apple provide half of the Moisture
that Water does per time-step when the agent is consuming
it, and also provide half of the Glucose that Mushroom does.

Span (LS) represents agents' average lifetime in 10 runs in
simulation time steps; Overall Comfort (OvC) is the average
value of all physiological variables and Physiological Vari-
ance (PhV) is the average value of variance of all physiolog-
ical variables - it is the inverse of the Physiological Balance
indicator defined in [Avila-Garcla and Caniamero, 2002].

Agents with ST and WTA architectures obtained approx-

imately the same performance in terms of the lifespan. In
terms of OvC, ST outperforms WTA, while in terms of PhV
the latter is better than the former. These results can be
explained as the difference in persistence when the agent
is executing consummatory behaviors. ST has significantly
more persistence in consuming resources, which means the
agent always consumes a specific external stimulus more

than it needs to be able to survive. In WTA the moment at
which the agent stops consuming one resource and go to sat-
isfy another motivation is given by the competition between
motivations; it can be seen as creating dynamic thresholds
for the agent. Therefore WTA produces less variance in the
satisfaction of its internal motivations (PhV), while appar-

ently has an impact in the their average level of satisfaction
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Behavior Stimulus Effects Motivations
Searching NIL Energy 4, Glucose , NIL

Moisture
Obstacle Avoiding Obstacle Energy 1, Glucose , NIL

Moisture t
Resting Cave Energy T Fatigue

Drinking Water River, Lake Moisture I Thirst - Water
Eating Apple Apple Tree Moisture $, Glucose I Thirst - Apple,

Hunger - Apple
Eating Mushroom Mushroom Glucose I Hunger

- Mushroom
Move to Desert Desert Body Temperature I Body Heat
Move to Oasis Oasis Body Temperature { Body Cold

- Oasis
Move to Mountain Mountain Body Temperature J Body Cold

- Mountain
Move to Water River, Lake Body Temperature { Body Cold

- Water
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Figure 4: Experiment results of Life Span (LS) with stan-
dard errors for three different behavior selection architec-
tures.

Overall Comfort

Figure 5: Experiment
with standard errors.
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Figure 6: Experiment res

(PhV) with standard errors.

,ults of Physiological Variance

(OvC). It is also observable from the experiment results that
ST and WTA are reasonably stable in terms of the three in-
dicators.

Since there are four environment settings with different
Apple Nutritional Rate, they provide actual differences of
cost-benefit scheme for the VB agent to execute the Eating
Apple behavior:

* With setting (1), Apple Nutritional Rate is the low-
est one, the agent simply ignores the existence of the
apple and looks for the water and mushroom all the
time, the reason for this phenomenon is that eating
apple is relatively costly.

* With setting (2), it is very beneficial to eat the apple,
the agent only looks for apple but ignores the exis-
tence of water and mushroom stimuli all the time.

* With setting (3), it is less beneficial to eat the apple,
however the agent behaves roughly the same as with
(1).

* With setting (4), Apple Nutritional Rate has been ad-
justed to be slight more than (1), which meets a bal-
anced point and the agent consumes Apples, Mush-
room and Water stimuli.

In (4) VB presents good opportunistic behavior as the
agent 'goes for' all types of resources. This implies that
when the agent encounters a resource, even if it was not
looking for it, the agent will consume it. The more oppor-
tunistic behavior ofVB in (4) is reflected in a LS increment,
which is statistically higher than in the other three settings
and also very close to that obtained by ST and WTA. It is
interesting to note that, in terms of LS, WTA performs ap-
proximately the same with with all the settings, as the rate of
resource consumption does not affect its ability to perform
opportunistic behavior.

It can be observed that the VB agent in setting (4) is more
'open-minded' for executing other behaviors, which does
not happen in other environment settings; we say that the
agent in those settings is 'close-minded'. This also indicates
that in the large size environment with more complex agent
physiology and multiple resources possibly satisfying mul-
tiple needs, agents have to be open-minded - attempting to
execute more different types of behavior, and taking the op-
portunities which offered by the environment. Opportunism
has actually been characterized as one of the desiderata for
behavior selection [Maes, 1995, Tyrrell, 1993]. In these ex-
periments using a large and complex environment we see
that opportunism indeed play an important role in the be-
havior selection process.
VB also obtained higher average satisfaction of their in-

ternal needs (OvC) than WTA in all the settings, equivalent
to that of ST. Moreover, it obtained worse PhV than WTA
although better than ST. This is because VB makes use of
dynamic thresholds - like WTA -, although its more cost-
effective policies improve the performance in terms of OvC
while at the cost of more variance in the satisfaction of mo-
tivations (PhV).
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Sensed
(Move to) Water

FALSE

TRUE

Drinking Stop
Water Drinking
TRUE FALSE

FALSE FALSE

Table 5: Details of assigning the values to a and under specific circumstances

5 Conclusions and Future Directions

We have presented an experimental study of the perfor-
mance of different behavior selection architectures in a

large and complex virtual environment with various envi-
ronmental settings. The different viability indicators that we
have used to measure the performance - Life span, Overall
Comfort and Physiological Variance - showed fundamen-
tal differences between three behavior selection architec-
tures: Static-Threshold (ST), Winner-Take-All (WTA) and
Voting-Based (VB).

Our results illustrated that in terms of stimuli consum-

ing cycles, WTA architecture produces the least amplitude
thus it has good Physiological Variances comparing to ST
architecture. They also confirmed that VB architecture is
affected by the balance of environmental and physiological
parameters for calculating the cost and benefit factors, in
comparison to other architectures such as ST and WTA in
order to be efficient.

There is an important problem which was created by the
persistence of the behavior selection architecture and the
conditions of the environment. Water stimuli from the en-

vironment includes the River and the Lake areas, when the
WTA and VB agents stay in one of this areas, they carry on

the behavior of Drinking Water and prefer staying in these
areas even when there is a chance to move to another area,

such as the Desert area which connects to the Lake. This
problem seems to expose the hidden flaw of WTA and VB
behavior selection architectures generated by extra persis-
tence for their consummatory behaviors. We propose a so-

lution for this problem by introducing new boolean parame-

ters a and to the motivation calculation process, as follow:

Motivation = Deficit + (Deficit * Cue) * a + (Deficit * Cue) *

The values of parameters a and ,3 are intended to cancel the
persistence effects, in the case here, when the agent is stay-
ing in the areas of water stimuli and intending to take the
opportunity to execute the Drinking Water behavior succes-

sively in a short period of time. (The details of assigning the
values to these two parameters under specific circumstances
are shown in the Table 5.)

Another direction of future research work is to ap-

ply information about the environment gathered by the
agents' interaction histories, which can be constructed
from agents' significant experiences in their autobiographic
memory [Nehaniv and Dautenhahn, 1998]; and this is pos-

sible for not only for VB, but also for ST and WTA
behavior selection architectures. Our previous research
work [Ho et al., 2003, Ho et al., 2004] showed evidences
that agents with autobiographic memory can outperform re-

active agents with static threshold architecture in both single

agent and multi-agent experiments. Thus information about
the environment in agents' autobiographic memory could be
used as the Cue in the process of motivation calculations in
regarding to this work. In addition to this, events in agents'
autobiographic memory should also be weighted with re-

spect to the significance of a particular event to the agent.
We believe that the information available in agents' auto-
biographic memory would be able to compensate for the
weaknesses of VB and enhance the performance of other
architectures in complex environments.
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