
Snoop Behaviour in Multihop Wireless Networks

Prasad Nambiar
School of Computer Science

University of Hertfordshire
Hatfield, Hertfordshire

AL10 9AB, UK
P.Nambiar@herts.ac.uk

Hannan Xiao
School of Computer Science

University of Hertfordshire
Hatfield, Hertfordshire

AL10 9AB, UK
H.Xiao@herts.ac.uk

James A Malcolm
School of Computer Science

University of Hertfordshire
Hatfield, Hertfordshire

AL10 9AB, UK
J.A.Malcolm@herts.ac.uk

ABSTRACT
The Snoop protocol is one proposal for improving TCP through-
put in wireless networks. We investigated the application of
this protocol in wireless ad hoc networks and observed that
a single hop in the ad hoc network experienced large vari-
ations in round trip time in a very short period. Without
changes to the Snoop protocol to accommodate these dra-
matic RTT variations, Snoop was performing badly com-
pared with regular TCP even when there were no packet
losses or errors. The main cause for this is premature re-
transmissions performed by Snoop. We have modified the
Snoop protocol to avoid these unnecessary retransmissions
by having a higher local retransmission timeout. The results
show us that Snoop benefits from this approach which has
made a significant performance improvement over regular
TCP in multihop wireless networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication—TCP Performance

General Terms
Performance measurement

Keywords
TCP performance; Snoop protocol; Ad hoc network

1. INTRODUCTION
The performance of TCP (Transmission Control Protocol) [1]
over a wireless link has been a research topic for a long time.
Many different proposals have been put forward in relation
to improving the TCP performance [2] and the Snoop proto-
col is one among the proposals for improving its performance
over a wireless link. This protocol [3] was originally proposed
by Balakrishnan et al. in 1995. Over a wired-cum-wireless
link such as illustrated in Figure 1 the overall TCP through-
put may be affected by the erroneous wireless link mainly be-
cause a packet drop occurring over the wireless medium may
be seen as congestion by the TCP sender. But a packet drop
may happen on the wireless medium for various reasons like
collision, mobility, channel errors, etc. [4] Assuming that the
packet drop is due to congestion, the sender may invoke the
congestion control mechanism which is designed to prevent
the source from overloading the network. Traditional TCP
congestion control involves slow start, congestion avoidance,
fast retransmit and fast recovery [5] and basically reduces
the overall throughput. With the Snoop protocol the base
station would cache packets locally enabling it to retrans-
mit the packets if they had not reached the destination. The
protocol suggests validations for duplicate acknowledgments
and timeouts before performing retransmission to prevent
overloading the wireless network with retransmissions.

Figure 1: Snoop in wired-cum-wireless network

The Snoop protocol was originally applied in a wired-cum-
wireless network. For such a network it is assumed that the
wired link is more reliable than the wireless link, so applying
Snoop in the base station tries to hide wireless link losses
from the sender thereby stabilizing the overall throughput.

Multihop wireless networks are networks which use two or
more wireless nodes to convey information from a source to

a destination. Though Snoop was originally proposed for
a single hop wireless link, in principle the Snoop protocol
could be applied in multihop wireless links like mobile ad
hoc networks or static sensor networks. In these networks
Snoop could be applied in two ways. For an ad hoc network
connected to a wide area network (WAN) Snoop could be
positioned at the entry point of the ad hoc network so any
packet loss within the ad hoc network may be hidden from
the WAN (Figure 2a). As well Snoop could be applied to
all the nodes within the ad hoc network (Figure 2b). This
would especially be beneficial when there are many error
prone links in the networks. For both the cases Snoop should
be able to improve the throughput by avoiding unnecessary
congestion control measures at the sender because of some
error prone links.

(a) Snoop at the ad hoc network entry point

(b) Snoop in every ad hoc network node

Figure 2: Application of Snoop in ad hoc networks

According to the design, when Snoop is applied to nodes in a
multihop wireless network (Figure 3) with error-prone links
the throughput is expected to improve. But our simulations
below showed that when Snoop is applied in this configu-
ration, the throughput is actually reduced. In fact Snoop
shows slightly reduced throughput even when there are no
errors. In this paper we consider the problem of reduced
throughput when Snoop is applied in a multihop topology.
The following sections explain why Snoop is showing this
behavior and the steps we have taken to make the protocol
perform better in this situation.

2. SIMULATION OF SNOOP

Figure 3: Multihop wireless topology

2.1 Snoop Implementation in NS2
NS2 is a simulation tool widely used by people in the net-
work research community. NS2 provides substantial support
for TCP, routing and other protocols over different mediums
including wired and wireless networks [6]. The Snoop pro-
tocol is one among the NS2’s supported protocols allowing
one to simulate and study the protocol behavior. But the
current implementation of Snoop in NS2 does not allow to
simulate a desirable topology where the Snoop protocol is
highly applicable. The Snoop protocol was originally ap-
plied in a wired-cum-wireless network. For a typical wired-
cum-wireless link it is assumed that the wired link is more
reliable compared with the wireless link. The NS2 Snoop im-
plementation allows a wired erroneous network simulation to
simulate the effect of the Snoop protocol. This simulation is
achieved using wired nodes and a LAN with high bit error
rate. With this topology the high error rate LAN is seen
as the equivalent of a high error rate wireless link between
the base station and the mobile node. But the implementa-
tion did not allow simulating a real wireless link. So using
the Snoop module, NS2 fails to run a wired-cum-wireless
simulation. We have analyzed the Snoop source code and
made some modifications to allow simulation of Snoop on
wireless links. These changes allowed us to perform more
realistic simulation of Snoop applied topology. Before these
changes simulations were using a full duplex wired link and
so it would not be showing actual wireless link characteris-
tics. For example the long RTT variation we discuss below
would not happen if an error prone full duplex link is used
to simulate the wireless link.

2.2 Simulation Environment
We used NS2 to perform the simulation of a multihop sce-
nario that consist of 5 nodes in a chained fashion. The nodes
are arranged in a linear format so that they take fixed long
route as shown in Figure 3. We applied commonly used
wireless node properties for the simulation. The parameters
used were two way propagation model, 802.11 as the MAC,
omni directional antenna and drop tail interface queue with
length of 50 for every node. We used Ad hoc On demand
Distance Vector (AODV) as the routing algorithm and the
TCPNewReno version of the TCP. FTP traffic is established
from node 1 to node 5 with packet size of 1040 bytes and a
default window size of 20 packets. The maximum through-
put on the simulated wireless link is 1Mbps. The simulation
is run for around 200 seconds. The routing protocol is con-
sidered less important in the scope of this paper since all of
the nodes in this simulation are static.

A set of simulations were performed to get the throughput
of TCP without applying Snoop (Figure 4a). Another set
of tests were performed on the same topology but node 4
having Snoop applied (Figure 4b). For all these simulations

(a) Simulation topology without Snoop

(b) Simulation topology with Snoop

Figure 4: Simulation Topologies

there are no artificially induced errors, only errors occurring
at wireless medium may be present such as channel errors.
The simulation recorded average throughput based on the
actual number of packets received at the sink node.

2.3 Simulation Results
Table 1 shows the simulation results with and without using
the Snoop protocol. It shows the number of packets received
by the destination with and without applying Snoop. In
the simulation where Snoop is involved Snoop is applied to
node 4. Figure 5 highlights the changes in sequence number
increase. When Snoop is applied the TCP sequence number
increase is slower than that with regular TCP which causes
the throughput to come down. The table and figure clearly
show the reduction in throughput when Snoop is applied.

Simulation Type Throughput Number of Packets Received
Without Snoop 173 Kbps 4083

With Snoop 167 Kbps 3934

Table 1: Simulation results with and without using
Snoop

3. ANALYSIS OF SNOOP
From Table 1 it is clear that the application of Snoop is hav-
ing a negative impact on the TCP performance. In an error
free scenario Snoop is expected have no obvious effect on
the performance. In this section we discuss the simulations
and the investigations we have performed to understand and
explain the problem.

3.1 Simulation Environment
In order to look at the effect of Snoop in these simulations
we had to carefully analyze the link between the Snoop node
and the destination node which is the traffic between node
4 and node 5 as shown in Figure 4b. This is the link mainly
getting influenced by the presence of Snoop. For the rest
of this section all measurements are taken in the context of
node 4 and node 5 only. We have applied all other param-
eters for this simulation as described in the section 2. The
simulation recorded the packet processing times at various
layers of the Snoop node and the receiving node, to look at
possible packet queuing at the MAC layer.

Figure 5: TCP sequence number increase with and
without using Snoop

3.2 Snoop Retransmissions
Snoop protocol aims to reduce the effect of non-congestion-
related losses on TCP performance over wireless links. Snoop
tries to solve this problem by hiding the errors on the link
from the TCP sender so the source will not be aware about
the data loss and, hence, it will not reduce its transmis-
sion rate. Snoop does this by performing local retransmis-
sion of the lost packets and by suppressing duplicate ac-
knowledgments going to the TCP sender. The Snoop pro-
tocol is applied at the link layer of TCP/IP. Snoop mon-
itors every packet that passes through the TCP connec-
tion and maintains a cache of TCP segments sent across
the link that have not yet been acknowledged by the re-
ceiver. If a packet is lost because of errors en route, Snoop
can know about this loss by receiving duplicate acknowledg-
ment. Moreover, Snoop maintains a timer for each packet
and when the timer expires, Snoop knows the packet is prob-
ably lost. Snoop can then do local retransmission of the lost
packet. Also, Snoop will suppress the duplicate acknowledg-
ment and prevent them from reaching the sender. This will
prevent TCP sender from noticing the loss and hence pre-
venting the sender from invoking the congestion avoidance
algorithms and reducing its transmission rate.

In the Snoop implementation whenever Snoop buffers a packet
it assigns a timer to it. This is done so that after the time-
out occurs the packet will be retransmitted if it has not
been acknowledged. Snoop calculates this local retransmis-
sion timeout value based on the previous round trip time
(RTT) values. For Snoop the round trip time is the time
to receive the acknowledgment from the destination for a
packet after the packet leaves Snoop agent. On each new
acknowledgment, Snoop calculates the smoothed round trip
timeout (SRTT) which is running average of the RTT val-
ues. Snoop applies a similar algorithm to that of TCP to
calculate the SRTT. The following algorithm is adopted by
Snoop.

rtt = currentTime - packet sentTime;
srtt = g * srtt + (1-g)*rtt;

(1)

(where g is a smoothing factor between 0 and 1, current
time is the time of receiving acknowledgment)

The smoothed round trip time calculated by Snoop varies
based on the time taken by an ACK to arrive the Snoop
agent. Snoop applies an external parameter to configure the
minimum retransmission granularity by defining the mini-
mum RTO value. This parameter is exposed in NS2-Snoop
as SnoopTick. SnoopTick is a static parameter and can be set
explicitly in the simulation script. The SnoopTick parameter
is used while computing the retransmission timeout. Snoop
calculates the its retransmission timeout as the maximum of
either srtt + 4* rttvar or the SnoopTick value.

retransmission timeout = maximum(srtt + 4*rttvar,
SnoopTick)

(2)

(where rttvar is the variation of rtt)

Because Snoop retransmission timeout is primarily depen-
dent on the SRTT, any variation of SRTT would vary the
retransmission timeout directly. If the SnoopTick value is
also smaller, then a packet arriving at Snoop from the source
at a lower SRTT period might have lower timeout set. Due
to the low timeout value these packet are likely to timeout
before the ACK arrives and Snoop would retransmit them.
This retransmission is premature as Snoop did not give the
destination sufficient time to respond with an acknowledg-
ment. These unnecessary retransmissions cause increased
medium contention and as a result cause the throughput to
come down. If the timeout calculation had not considered
the shortest SRTT values, the timeout would have been large
enough to avoid this unnecessary retransmission.

The value Snoop uses for retransmission timer is thus very
important. If the timer is set too low, Snoop might start
retransmitting a packet that was actually received by the
destination, because Snoop did not wait long enough for the
acknowledgment of that packet to arrive. This applies in
the low error case. Instead, if Snoop set the timer too high,
Snoop wastes time waiting for an acknowledgment that will
never arrive and the sender may timeout before Snoop can
retransmit the packet and this applies in the high error case
[7].

3.3 Effect of Queuing Delay
From the Snoop simulation traces it is clear that the Snoop
module is performing unnecessary retransmissions. One of
the reasons for retransmission by Snoop is the packet’s re-
transmission timer timeout. The packets retransmission timer
is primarily depend on the Snoop’s calculated SRTT. So the
simulation looks to record RTT and SRTT values calculated
at the Snoop node.

We analyzed the simulation results for one run to see the
reason for reduction in performance when Snoop module is

applied. During the simulations the Snoop module retrans-
mitted 427 packets out of the 3934 packets transmitted. In
this case all these packets were actually received by the des-
tination, so it ignores the duplicate packet as an out-of-order
delivery. But these additional packet transmission take time
and can cause extra contention on the medium.

The Snoop round trip time is the time from when a packet
leaves the Snoop node to when the Snoop node receives the
acknowledgment from the destination node. We analyzed
the RTT calculated by the Snoop node at each ACK arrival.
Also we have analyzed the queuing delay of a TCP packet
at the Snoop node and the queuing delay of the packet at
the destination node. Queuing delay here is defined as the
duration between a packet leaving the TCP agent and being
sent out on the medium.

In a two node topology typically the RTT should be the
amount of queuing delay at both nodes and the transmission
time of TCP packet and ACK packet. With static nodes the
transmission time of packet is fairly fixed. We noticed that
the RTT for each packet calculated at Snoop node is hugely
influenced by the combined queuing delay of that packet
at Snoop node and of its acknowledgment at destination.
Figure 6a shows the variations of RTT and queuing delay
during the simulation. The comparison of RTT and queuing
delay is represented in the Figure 6b. In general the RTT is
proportional to the queuing delay, but the plots appearing
out of proportions are of the pre-mature retransmissions.

In a wireless node the main factor for high queuing delay
is the medium contention. Medium contention increases as
more and more packets are waiting to be sent out i.e. when
packets are queued. We have recorded the combined queue
length of Snoop node and destination node to confirm its
effect on the RTT. Figure 6c shows the comparison between
RTT and interface queue length. The RTT varies for the
same combined queue length. Average RTT increases as the
combined queue size of the TCP sink and source increases
and this is probably due to medium contention. This prob-
lem is more relevant to the wireless medium because of the
medium contention.

4. SUPPRESSING RETRANSMISSIONS
We have noted that the principal reason for Snoop perform-
ing poorly in a multihop wireless network is the unneces-
sary retransmissions. We performed several experiments
with the Snoop protocol and compared the resulting per-
formance with regular TCP. In this section we explain the
impact of suppressing premature retransmissions on Snoop
performance.

The problem observed here is because Snoop is timing out
before the acknowledgments are received from the destina-
tion. Snoop implements two validations to detect packet
loss. It detects packet loss when a duplicate acknowledg-
ment is received or if the local retransmission timer expires.
So if the local retransmission timer is not used or not ex-
pired Snoop will still detect the packet loss when the next
duplicate ACK is received. Except the last packet for all
other packets this will be true. We recommend suppressing
these pre-mature retransmissions by way of setting a higher
retransmission timer at Snoop node which could cover the

(a) RTT and Queuing Delay

(b) Variation of RTT against queuing delay

(c) Variation of RTT against interface queue Length

Figure 6: Effect of queuing delay on RTT

problem of variation in RTT. But when the RTT is much
smaller to that of the retransmission timer and if the packet
is dropped, the Snoop node will not be retransmitting the
packet until the larger timeout occurs. This is in contrast
to the original Snoop proposal.

To the simulation topology with one Snoop node (Figure
4b) we applied a higher SnoopTick value of 1 second. In
the Snoop implementation this made sure that the value
of retransmission timeout will be 1 second or higher. The
simulation was setup as explained in section 2 along with
the higher SnoopTick value. Then the simulation was run
with various error rate and for each error rate it was re-
peated ten times to get average throughput. The error was
artificially introduced by dropping packets corresponding to
the applied bit error rate. Analyzing the results it was ap-
parent that the higher Snoop retransmission timeout value
has suppressed the pre mature retransmissions. This has
lead to Snoop performing better than in the without Snoop
case. Table 2 shows the comparison of average throughput
of an FTP connection using the Snoop protocol with that of
an FTP connection using the regular TCP implementation.
The table also lists the results for various bit error rates on
a log scale.

Bit Error Rate Average Throughput in Kbps
(1 in every x bits) (Without Snoop) (With Snoop)

64Kb 117.8 174.9
128Kb 150.7 173.2
256Kb 161.5 172.0
512Kb 166.3 171.1
1Mb 168.5 170.8
2Mb 169.1 170.0
4Mb 169.8 170.0
8Mb 169.9 169.9

No Errors 170.0 170.0

Table 2: Result when Snoop on single node with
higher retransmission timer

Figure 7 compares the average throughputs and its variation
of the above simulation. The vertical bars in the plots show
the standard deviation of average TCP throughput. The
figure shows that from an error rate equivalent of 1 in 1Mbits
(close to the point 5 on the X-axis of the graph), Snoop is
performing much better than the regular TCP. At an error
rate of 1 in 64Kbits Snoop improved the average throughput
by around 50 percent.

In an ad hoc network there may not be any central node
or a fixed route. From the TCP perspective every ad hoc
network node is likely to be identical and so it is not fair to
use or apply Snoop to one node. We have applied Snoop to
all nodes to make the simulation more realistic (Figure 8).

We again performed the simulation with higher SnoopTick
value of 1 second. In these simulations the only difference
is that Snoop is applied to all the nodes. Along with the
application of Snoop we also introduced errors into each of
the nodes on its outgoing packets. The results obtained show
that Snoop is able to make significant improvement to the
performance of TCP in a multihop wireless network. Table
3 shows the average TCP performance with and with out

Figure 7: Average TCP throughput with high re-
transmission timer at different error rates

Figure 8: Simulation topology with Snoop on all
nodes

Snoop. The average throughput at higher error rates are
very low because in this case artificial error is introduced at
each node.

Bit Error Rate Average Throughput in Kbps
(1 in every x bits) (Without Snoop) (With Snoop)

64Kb 2.2 8
128Kb 34.4 60.3
256Kb 114 150.4
512Kb 153.7 162.1
1Mb 163.7 166.6
2Mb 167.8 166.9
4Mb 168.7 167.9
8Mb 169.5 166.9

No Errors 170 170

Table 3: Result when Snoop on all nodes results
with higher retransmission timer

Figure 9 compares the performance of regular TCP with
Snoop and shows the throughput and it deviation at differ-
ent error rates. At error rates above 1 in 1Mbits (the left
hand side of the graph) Snoop has significant improvement
on the TCP performance.

Figure 9 is comparable to that in the original Snoop imple-
mentation paper [3]. In both the cases the pattern of Snoop
behavior is very much similar. The original paper demon-
strated that the Snoop protocol made significant improve-
ments when the error rates are over 1 error bit in 2Mbits.
On lower error rates Snoop behaves as if it is not present
and this ensures no degradation in the performance.

5. OTHER APPROACHES

Figure 9: Average TCP throughput with high re-
transmission timer at different error rates when
Snoop is on all nodes

In the following sections we discuss some of the potential
ways to improve the problem with Snoop in multihop wire-
less links. We also detail the impact of these fixes.

5.1 Reduce Interface Queue Size
A reduction in queue size at the mobile node would avoid the
condition of having high number of packets queued and thus
would provide a less variable RTT. But when more packets
are sent by the TCP source they might be dropped if any
of the node’s queue is full. The overall throughput would
be reduced this time because of the packet drop at nodes
due to insufficient queue size instead of the retransmissions
at Snoop node. Our simulations also included the different
TCP window size along with the the queue size applied. We
analyzed these scenarios and the results are presented in
Table 4. From our simulation results it is clear that reducing
queue size may not be the best solution for supporting Snoop
to perform better in multihop wireless networks.

IF Queue Size TCP Window Size Throughput(Kbps)
50 20 169.6
25 20 169.6
10 20 170.6
5 20 168.6
2 20 167.3
50 5 167.4
25 5 167.4
10 5 167.4
5 5 168.6
2 5 166.8

Table 4: TCP throughput with Snoop on node 4
when queue size and window size vary (See Figure
4b)

5.2 Modify Snoop’s RTO Calculation Logic
The SRTT calculation within Snoop could be modified to
adapt to the variation of RTT. The RTO calculation could
include algorithms to dynamically cater for the large vari-
ation of RTT. The purpose is that the RTO values can be
higher enough to acomodate the above average RTT value
and so in most of the higher RTT cases it would prevent
Snoop from retransmitting packet pre maturely. From our
simulation results we observed that at the Snoop node the

RTT value varies between 0.1 second to over 0.5 seconds.
This is a huge variation, roughly 400 percent. But the ex-
isting Snoop RTO calculation logic is only accommodating
a much smaller variation. The regular TCP retransmission
timeout calculation mentioned in [1] was also amended few
times to accommodate the RTT variance [9]. In the origi-
nal implementation [1] TCP assumed that the variance in
RTT would be small constant. Jacobson’s algorithm rec-
ommended incorporating the measured RTT variance is es-
pecially important on a low-speed link [8]. Karn’s algo-
rithm for selecting RTT measurements ensures that am-
biguous round-trip times will not corrupt the calculation
of the smoothed round-trip time in TCP [10]. Currently
calculation of retransmission timeout in Snoop is based on
smoothed round trip time, which incorporates simple vari-
ance. The amendments applied to regular TCP to improve
the situation are not fully applied to the current Snoop im-
plementation.

The calculation of the optimal value can be further compli-
cated because of the fact that in a multihop wireless network
Snoop could be applied to all nodes. In this case the RTO
calculation might need to depend on the number of hops
from that specific node to the destination.

6. FUTURE WORK
We have applied the higher minimum retransmission timer
to the Snoop protocol and performed some simulations. In
real world solutions involving Snoop it is likely that Snoop
shall be applied to all the nodes in a network because unlike
a wired-cum-wireless scenario there are no base station or
central node in an ad hoc network. When a real congestion
occurs in the ad hoc network it is possible that many of the
Snoop agents could trigger retransmissions. There is work
to be done to analyze the effect of Snoop retransmissions in
an already congested network.

Although the higher retransmission timer is helping to boost
Snoop performance compared to its original approach, the
throughput could be further improved if a mechanism for
optimal timeout value could be implemented. Also so far
our simulations concentrated only on static ad hoc networks.
Since in a typical ad hoc network there may not be any
fixed routes, a packet could travel via different routes at
various times. Because of these potential route changes it is
required to monitor the Snoop behaviour and performance
in such networks. We are planning to work on the various
applications of Snoop in a multihop dynamic ad hoc wireless
networks.

7. CONCLUSION
The Snoop protocol has been proposed to improve TCP
throughput in a wired-cum-wireless environment. It can
also improve TCP performance quite well in wireless links
but has a problem; when the retransmission timeout is set
to very low, the Snoop protocol performs premature retrans-
missions. This results in the degradation of TCP throughput
and so creates a negative effect on a wireless network. We
have applied a higher retransmission timer and have proved
that it helps Snoop to improve its performance in a multi-
hop wireless network. Our simulations show that a wireless
network is more complicated than just a point to point link
with a higher error rate.

8. REFERENCES
[1] Transmission Control Protocol, RFC 793, Sep. 1981.

[2] Ahmad Al Hanbali, Eitan Altman and Philippe Nain,
A Survey of TCP over Mobile Ad Hoc Networks, IEEE
Communications Surveys and Tutorials, 2005, volume
7, pages 22-36.

[3] Hari Balakrishnan, Srinivasan Seshan, Elan Amir and
Randy H. Katz, Improving TCP/IP Performance over
Wireless Networks, ACM International Conf. on Mobile
Computing and Networking (Mobicom), 1995.

[4] Xiang Chen, Hongqiang Zhai, Jianfeng Wang and
Yuguang Fang, TCP Performance over Mobile Ad Hoc
Networks, Canadian Journal of Electrical and
Computer Engineering (CJECE) (Special Issue on
Advances in Wireless Communications and
Networking), 2004.

[5] M. Alman, V. Paxson, W. Stevens, RFC 2581- TCP
Congestion Control, Network Working Group, 1999.

[6] VINT project, Network Simulator (NS) Manual, The
Network Simulator ns-2: Documentation,
http://www.isi.edu/nsnam/ns/ns-documentation.html.

[7] Mohammed Alnuem, James A.Malcolm, Enhancing the
Snoop Protocol on Wireless LANs with high error rates
TR 497, University of Hertfordshire.

[8] Requirements for Internet Hosts – Communication
Layers, RFC 1122, Oct. 1989.

[9] Computing TCP’s Retransmission Timer, RFC 2988,
Nov. 2000.

[10] Karn, P. and C. Partridge, Improving Round-Trip
Time Estimates in Reliable Transport Protocols,
SIGCOMM, 1987.

	Introduction
	 Simulation of Snoop
	Snoop Implementation in NS2
	Simulation Environment
	Simulation Results

	 Analysis of Snoop
	Simulation Environment
	Snoop Retransmissions
	Effect of Queuing Delay

	 Suppressing Retransmissions
	 Other Approaches
	Reduce Interface Queue Size
	Modify Snoop's RTO Calculation Logic

	 Future Work
	 Conclusion
	References

