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Abstract. We introduce mathematically rigorous metrics on agent experiences hav-
ing various temporal horizons. Sensorimotor variables accessible to the agent are
treated as information-theoretic sources modelled as random variables. The time
series from the sensorimotor variables over a given temporal region for different
behavioural contexts ground an agent-based view of the agent’s own experiences,
and the information-theoretic differences between sensorimotor experiences induce
a metric space structure on the set of the agent’s possible experiences. This could
allow an autonomous mobile robot to locate and navigate between its sensorimotor
experiences on a geometric landscape (an experiential metric space) whose points
are its possible experiences of a given temporal scope and in which nearby points are
similar experiences.

1 Motivation and Overview

In order to mathematically formalize and exploit the notion of temporally extended
episodes of experience for autonomous robots, we develop real-time computable
information-theoretic metrics on a robot’s sensorimotor experiences having a given
temporal horizon. These are illustrated with a particular robotic example, and next
applications to ontogenetic robots are discussed.

2 Experience Metrics: The Geometry of Experience

2.1 Information Sources as Random Variables

Consider a sensor or effector that can take on various settings or values modeled as
a random variable X changing with time, taking value x(t) ∈ X , where X is the
set of its possible values. For simplicity in this paper, we take time to be discrete
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(i.e. t will denote a natural number) and allow X to take values in a finite set or
“alphabet” X = {x1, . . . , xm} of possible values. (The approach clearly generalizes
to continuous time and value sets with appropriate changes.)

2.2 Entropy and Information Distance

Entropy is the information-theoretic measure of uncertainty introduced by Claude
Shannon [10] and its units are bits. The entropy H(X ) of a sensor or actuator X is
then H(X ) = −

∑
x∈X p(x) log2 p(x), where p(x) gives the probability of value x

being taken. Conditional entropy H(X|Y) of a random variable X given Y is the
amount of uncertainty that remains about the value X given that the value of Y is
known.

H(X|Y) = −
∑

x∈X

∑

y∈Y

p(x, y) log2

p(x, y)

p(y)
,

where p(x, y) is given by the joint distribution ofX andY .1 The information distance
between X and Y is

d(X ,Y) = H(X|Y) + H(Y|X ).

This satisfies the mathematical axioms for a metric:

1. d(X ,Y) = 0 if and only if X and Y are equivalent.2

2. d(X ,Y) = d(Y ,X ) (symmetry)
3. d(X ,Y) + d(Y ,Z) ≥ d(X ,Z) (triangle inequality).

The satisfaction of these axioms is shown by Crutchfield [1]. Thus d defines a geo-
metric structure on any space of jointly distributed information sources.

2.3 Sensorimotor Variables with Time Horizons

For a particular agent, in a particular environment, consider a sensorimotor vari-
able X . Its distribution will be affected by the agent-environment interaction. In
the context of a particular environment and beginning from a particular moment
in time t0 until a later moment t0 + h (h > 0), we regard the sequence of values
x(t0), x(t0 + 1), . . . , x(t0 + h− 1) taken by an information source X as time-series
data from a new random variable Xt0,h, the sensorimotor variable with temporal
horizon h for sensor (or actuator) X starting at time t0, depending on situated expe-
rience.

1 We assume approximate local stationarity of the joint distribution of random variables rep-
resenting the sensorimotor variables over a temporal window and that this can be estimated
closely enough by sampling the sensorimotor variables.

2 For information sources, “equivalence” refers to re-coding equivalence. That is, the values
of X are a function of those of Y and vice versa. See [1].
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2.4 Information Distance between Time-Shifted Sensorimotor Variables

A particular robot engages in various behaviours and interactions in a particular en-
vironment, and we consider two of its sensorimotor variables X and Y . (Possibly
X = Y .) Consider the values taken by X beginning at time t0 and those of Y be-
ginning at time t1. (Possibly t0 = t1.) Consider the two-component random vari-
able Xt0,h × Yt1,h with horizon h, whose distribution is estimated from the values
(x(t0 + i), y(t1 + i)) ∈ X × Y . The first component here comes from X , starting
from time t0, and second component comes from Y with a temporal shift of t1 − t0
units, starting from time t1. We can also estimate the probability joint time-shifted
distribution and the information distance d(Xt0,h,Yt1,h) between X during the first
temporal region and Y during the second temporal region by measuring the frequen-
cies of occurrence of values (xt0+i, yt1+i) as i runs from 0 to h − 1.

Clearly there are issues related to the size of the temporal horizon h and also
the number of values X and Y may take that affect the accuracy of these estimates.
Also in practice, independent samples of time shifted sensorimotor variables are not
available.3

2.5 Experience Metric

Consider the set of all sensorimotor variables available to an agent. Suppose there are
N such, X 1, . . . ,XN . Let E(t, h) = (X 1

t,h, . . . ,XN
t,h) be the (ordered) set of these

variables considered over a temporal window of size h starting at t. We call E(t, h)
the agent’s experience from time t having temporal horizon h.

Let E = E(t, h) and E′ = E(t′, h) be experiences of an agent from time t and
t′, respectively, both with horizon size h. Define a metric on experiences of temporal
horizon h as

D(E, E′) =

N∑

k=1

d(X k
t,h,X k

t′,h),

where d is the information distance.

Theorem 1 D is a metric on the set of experiences of an agent having a fixed tem-
poral horizon h.

Proof: That the metric axioms holds for D follows from the fact that they hold com-
ponentwise, since d is a metric. �

As a corollary, we note that D = 1

N
D, the average experience distance per sensori-

motor variable, is also a metric on the set of experiences of an agent having a fixed

3 Previous work on sensory reconstruction and sensorimotor learning by Olsson et al. [8, 7]
can be considered as using as large as possible horizon (starting t0 = 0 and h the number
of observations made). Sometimes also temporal shifts by a small amount t1 − t0 to study
temporal correlations in information (such as occur, e.g. in optical or tactile flow) [9].
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temporal horizon h. The units of D are bits and those of D are bits per sensorimo-
tor variable. Thus D provides a geometric structure on the set of experiences of an
agent.4

3 Autonomous Robot Experiments

3.1 Experimental Set-up

Sensorimotor variable data for a SONY AIBO robot programmed with behaviour-
based techniques to explore a 2m × 2m environment were gathered previously to
study information distance characterizations of sensorimotor interactions [3]. These
data are reanalyzed here using the tools of the experience metric introduced above
for temporal horizon of size 40 with resolution of five values for each sensorimotor
variable X (i.e. |X | = 5), where time is measured in units of approx. 100 msec.
More details of programming and data-gathering, sensitivity to parameters, and ex-
amination of other aspects of the temporal experience metric are described in [4].
The seventy-seven sensorimotor variables used can be partitioned into two classes
(read-only) variables (41 “sensors”) and (read-write) variables (36 “motors”) – see
Table 1.

Table 1. AIBO Telemetry Collected

Sensors # Motors #

IR-Distance 1 Leg Joint Positions 12

Accelerometers 3 Head Joint Positions 4

Temperature/Battery 2 Tail Joint Positions 2

Buttons 8 Motor Force / Duties 18

Visual 27

Total Sensors 41 Total Motors 36

Data from sensorimotor variables was sampled at approximately 10 times per sec.
Figure 1 shows the trajectory of the robot in the arena lasting 90.3 seconds. For this
data set, the experience metric was used to examine the similarity of 17 sensorimotor
experiences ending at the waypoints shown.

3.2 Results

Figure 2 shows a local neighborhood in the experiential metric space for experiences
in this data set: Centering at walk5 (see caption) the closest experiences in the data
set are the temporal region walk9 leading up to waypoint 9, lying just beyond the
4 More detailed proofs and other metrics on sensorimotor experience (in the sense of this

paper) are given in [5].
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Fig. 1. Trajectory of the autonomously wandering AIBO robot in 2m × 2m arena. Numbered
waypoints mark ends of temporal windows considered. For each, behaviour in the temporal
horizon (h = 40) were characterized by external observers as either walk (circles) or turn
(squares); waypoint 1 involved the robot’s start-up.

ball of radius 40 bits centered at walk5 (w5), followed by walk11 (w11), which
lies within the ball of radius 60 bits. Turns (prefixed t) and start up s1 lie further
away.

Figure 3 shows a dendrogram resulting from complete linkage clustering of the
experiences using the experience metric D. Generally, clusters consist of experiences
externally characterized by human observers as either walking or turning, but the
robot-centered metric splits off some subclusters and gives finer distinctions.

4 Discussion and Conclusion

We have shown how an autonomous robot can apply a metric (computed in real-
time) to assess the similarity of its experiences in a geometric space consisting of
its possible experiences over a given size temporal horizon, and that these tend to
agree with external observer notions of similarity. The next steps are to apply this
experience metric to allow the robot to help it to re-engage in known experience,
to predict and explore experiences near the boundaries of its previously mastered
behaviours and experiences (cf. [12, 11, 2, 6]).

We remark that the systematic comparison of experience at different temporal
horizons is possible using restriction mappings and the experience metric at the
shorter scales [5]. Morever, as development progresses, fine resolution on sensori-
motor variables could be mapped naturally onto an initial coarse resolution of sen-
sorimotor variables to scaffold ontogeny.
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Fig. 2. Local neighborhood in the experience metric space. For the sensorimotor experi-
ence walk5 (w5) ending at waypoint 5 with a temporal region with horizon of size 40 and
resolution (bin size) of 5 values per sensorimotor variable, experiential distances to other expe-
riences in the data are visualized. Points are experiences human-characterized either as walk,
turn or start-up denoted by first letter w, t, or s followed by waypoint number (see Fig-
ure 1). Horizontal axis (resp. vertical axis) shows contribution in bits to experience distance
from “sensory” read-only variables (resp. “motor” read-write variables). Experience distance
to the experience at the origin is the sum of these two coordinates. Dotted lines show the
boundary of the balls with radii 10-80 around experience walk5. Caveat: Distances between
other experiences depicted are generally much larger than they appear in the local picture.
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