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Abstract. Visual nonverbal behaviour plays a significant role in allowing humans to structure their interactions meaningfully, thus facilitating
communication between individuals. Such behaviour may be exploited in the design of socially intelligent robots. While much visual behaviour
(e.g. facial expression) is hard to detect using a machine vision system, especially in unconstrained situations such as natural interaction, simple
gestures and the positions of interactants are relatively easy to detect. This paper begins with a description of some related work, followed by an
overview of some systems that track and/or interpret human movement. This is followed by a discussion of what is known about the structure of
human interactions and a detailed example of a particular kind of structured interaction (the greeting). Ways in which interactional structure can
be exploited in the development of socially intelligent robots are considered: finally, a specific application involving the use of robots in the
rehabilitation of autistic children is described. We refer to this approach, using knowledge of interactional structure both to generate social
behaviour for a robot and to interpret interactions for a machine vision system, as interactive vision. The work described in this paper is still in its
early stages and there are no experimental results to report as yet: the purpose of this paper is rather to outline ways in which sociological and
psychological work on human interactional behaviour can be exploited in socially intelligent agents and machine vision systems.

In designing robotic agents to interact with humans it is important that the robot be able to determine what the
human is doing and respond appropriately. A number of features of human behaviour are likely to contain useful
information: the most obvious of these is speech, which is our primary channel for information exchange and which
also contains a significant amount of paralinguistic content which serves, for instance, to convey information about
mood, alter the meaning of words and sentences (for instance using a ‘questioning’ tone) and to structure
interactions by helping to indicate when an individual is coming to the end of their turn at speaking.

Other forms of nonverbal behaviour also convey information that is useful in carrying out interactions. Much
work has been done on visual nonverbal behaviour, including such features as facial and gestural expression and use
of space (e.g. Collett, 1983; Hall, 1966; Kendon, 1980; Kendon, 1990; Scheflen, 1973; Ekman and Friesen, 1969
and Gill et al, 1999). It has been argued that visual nonverbal behaviour plays a significant role in allowing humans
to structure their interactions meaningfully, making communication possible, as well as conveying information
about emotion and affecting the meaning of linguistic communication in a similar way to the paralinguistic content
of speech. Furthermore, while much of this information (e.g. facial expression) is hard to detect in unconstrained
situations such as natural interaction, simple gestures and especially information about the use of space are relatively
easy to detect.

Human interactional behaviour possesses a structure (Kendon, 1980; Kendon, 1990; Scheflen, 1973) that can be
exploited in the design of socially intelligent agents, in order both to understand the behaviour of other agents and to
generate behaviours for the agent. A number of systems that recognise and / or engage in human-like interactive
behaviour have already been developed but these systems tend not to make use of the principles of structured
interaction described in the psychological and sociological literature. For example, Oliver, Rosario and Pentland
(1999) describe a vision system to recognise interactions in a surveillance task using coupled hidden Markov models
(Brand, 1997). This work depends on statistical learning techniques to recognise interactions and does not employ
explicit a priori knowledge about interactional structure.

The humanoid robotic head, Kismet, behaves in a human-like manner in order to engage humans and to make its
behaviour easier to understand, for example by showing human facial expressions and gaze patterns (Breazeal and
Fitzpatrick, 2000). Unlike the previously described work, Kismet generates interactive behaviour rather than
attempting to observe it. Kismet provides an example of how human-like social behaviour can be exploited by an
artefact although, again, structured interactional principles are not involved in this work.

Johnson, Galata and Hogg (1998) describe a system that learns interactional behaviours from observations of
human interactions. This system observes interactions and then attempts to engage in them. The interactions



involved are quite simple (in this case a handshake, which would be just one component in a larger greeting
interaction) and principles of structured interaction are again not employed: the system functions by replicating
observed behaviours. However, this is related to the present work in that it involves an agent both observing and
attempting to engage in interaction.

Benford and Fahlén (1993) provide an example of work that does use principles that have been described in the
human sciences. They describe the use of a spatial model of interaction in collaborative virtual environments in
order to facilitate interaction. The principles described are very similar to those from the human sciences literature
on proxemics (the social use of space): this work is thus an example of the usefulness of applying such principles in
computational systems, although the agents in this case are avatars of humans rather than autonomous artificial
agents.

1 Machine Vision for Human Movement Tracking

A number of approaches to the tracking of human movement for machine vision systems have been developed,
employing techniques varying from the recognition of action directly from the image sequence (Davis and Bobick,
1997) to the construction of detailed deformable models (Kakadiaris and Metaxas, 1998). (Essa (1999) and
Aggarwal and Cai (1999) provide reviews of machine vision systems for analysing human movement, while
Crowley (1997) discusses the use of machine vision for the development of more natural interfaces for man-machine
interaction.) To be useful in a robot that is to interact with real people in real settings the vision system itself must
obviously operate in real time and be robust enough to deal with problems such as partial occlusion and recognition
of actions from multiple angles. Obviously simpler systems have a significant advantage when it comes to operating
in real time but they may also be less robust than more complex systems and will certainly be unable to extract
similarly detailed information from the image sequence.

At the simplest end of the spectrum are systems that recognise actions directly from image sequences without
constructing models (Davis and Bobick, 1997; Seitz and Dyer, 1997). Such systems may be quite restricted in the
kinds of actions that they can recognise (e.g. restricted to cyclic motions) and may have significant problems with
self-occlusion and incidental motion (motion that occurs along with an action but is irrelevant to that action, such as
the walking motion when an action is performed by someone who happens to be walking at the same time (Davis
and Bobick, 1997)).

More sophisticated action recognition becomes possible when a model is constructed: this allows actions to be
recognised from the model rather than directly from the image sequence. Incidental motion becomes less of a
problem as actions can be defined in terms of the relevant parts of the model. Many model-based systems can also
infer the location of body parts that are currently out of sight, thus dealing with problems of occlusion. As action
recognition is based on the model rather than directly on the image sequence differing view angles also become less
of a problem: as long as the model can be accurately constructed from different angles actions can be recognised.
Also, three dimensional models can be constructed to allow recognition of a wider range of actions.

Some model-based systems are very simple e.g. Azarbayejani, Wren and Pentland (1996), producing only a very
approximate model of the human body (e.g. different blobs representing limbs, torso and head). Such a model may
be adequate for locating a person in a scene and recognising a limited range of simple gestures (e.g. arms out at side
vs. arms above head) but is certainly not capable of recognising complex gestures and would not be suitable for a
vision system intended to interpret body language. A little more complex are systems employing articulated but two
dimensional models e.g. Ju, Black and Yacoob (1996). Such systems can be capable of recognising reasonably
complex motions: however, human body movement is three dimensional so it seems that such systems may be
inherently limited. Furthermore, two dimensional approaches are likely to have problems with self-occlusion
(Gavrila and Davis, 1995).

At the high end of the spectrum of complexity are systems employing three dimensional articulated models (e.g.
Kakadiaris and Metaxas, 1998; Wren and Pentland, 1998). Such systems should, at least in principle, be capable of
recognising the full range of human body movement. These systems may employ a simple skeletal model, or they
may use deformable models to represent the whole of the human body. However, the latter approach may be of
limited value in the recognition of body movements as, with a few exceptions (e.g. in the face), the detailed
deformations of the human body seem to contribute relatively little to body language. Also, such deformations are
often not visible in natural interactions as interactants are usually clothed. Therefore such approaches, with their
increased computational demands, seem unnecessary in applications dealing with visual nonverbal behaviour. Three



dimensional skeletal models would be ideal, but again the computational demands are high and the existing state of
the art is still quite limited for dealing with natural situations (e.g. Wren and Pentland (1998) only deal with the
upper body of a seated human). Thus, with limited computational resources and a requirement of operating in real
time, approaches using simpler two dimensional models or blob models may be most appropriate despite their
restricted ability to extract detailed information. In any case, as we will discuss, just knowing the positions and
orientations of interactants may be very useful.

2 Structured Interaction

Human interaction has a definite structure that has been hypothesised to operate as a kind of program followed by
the interactants: furthermore, a number of nonverbal metacommunicative behaviours are involved in describing and
maintaining the structure of an interaction (Kendon, 1990; Scheflen, 1973). While human communication involves
all of the sensory modalities (Birdwhistell, 1970; Hall, 1966), many of the behaviours that have been associated with
interactional structure occur in the visual modality. Such behaviours may be divided into two broad types: kinesic
(communicative body movements such as gestures) and proxemic (involving the relative positioning and orientation
of interactants).

Each action in an interaction is hypothesised to occur in a slot, with the meaning of an action depending on the
slot in which it occurs and the completion of an action setting up a new slot. For example, if a waitress approaches a
man in a coffee shop with an inquiring expression then a slot in which he may order coffee is created. Alternatively,
if she approaches him and starts wiping the table then this slot is not created. Equally, should the waitress use the
same facial expression in a different context its meaning might be interpreted slightly differently: in a conversation
with friends it would likely be interpreted as a request for further information about something and certainly
wouldn’t be interpreted as a request for an order (Kendon, 1980).

Essentially this notion of programmatic structure governing interaction corresponds to the notion of behaviour
being organised by scripts or schemata (Schank and Abelson, 1977). It should be emphasised, though, that this
‘programmatic’ structure does not impose a strict set of rules on encounters – humans are noted for their tendency to
act unpredictably. Variation, though, is often a part of the program: a program is likely to posses a set of alternative
behaviours that may fill any given slot and truly idiosyncratic and novel behaviours may be quite rare (Scheflen,
1973). The structure of the program itself may also vary in certain circumstances: sometimes stages in an interaction
may be skipped (as in the case where people who have already greeted each other once at a given event meet again)
or a single behaviour may sometimes accomplish more than one stage at a time (Kendon, 1980).

Purely visual information may be used to at least some extent to identify types of interaction and changes in
stages of interactions. It is useful to distinguish between proxemic and kinesic factors if only because proxemic
information is more easily obtained by a machine vision system.

From a proxemic point of view, interactions (indeed, any activity) occur with a particular space which may be
referred to as a transactional segment. For example, a person watching television will have a transactional segment
covering the space between where he is sitting and the television: other people will likely hesitate to cross this space,
as it belongs to the actor. Interactants form a mutually shared ‘o-space’ consisting of their overlapping transactional
segments. Creation and maintenance of interactional spaces is considered to play an important role in establishing
the joint attention that is necessary for an interaction to occur: any interactional space should differ sharply from the
arrangements that precede and follow it. Also, it should be possible for an interactant to propose a new kind of
interaction by moving to a new position and thus changing the space: the other interactants can then either allow the
change or reject it by shifting in such a way as to cancel out the change (Kendon, 1990). An interactional space may
also be associated with particular objects: for example, people playing a card game will usually be seated at a table
(Kendon, 1980). (The association of certain kinds of action with particular kinds of object has already been
exploited in machine vision (Moore, Essa and Hayes, 1999).)

The above considerations lead to the concept of spatial-orientational shifts (Kendon, 1990), hereafter referred to
as S/O shifts. This phenomenon is particularly useful for our purposes. Because interactions are located in a
particular space S/O shifts may be seen as markers of phases in interactions – a new phase in an interaction must be
marked by a shift in the relative positions and orientations of the interactants, although the shift may sometimes be
very subtle (e.g. involving just a redistribution of weight of the movement of a foot (Kendon, 1990, p192). The
distance between interactants may also be indicative in itself of the type of interaction that they are engaged in: in



American culture four basic distances associated with different
kinds of interaction have been identified (Hall, 1966): see
figure 1.

Kinesic information can also be useful in identifying the
structural features of an interaction. For instance, a ‘head dip’
gesture has been identified as possibly indicating a change in
focus of attention (Kendon, 1990). In addition to this,
particular gestures are associated with particular phases of
particular interactions: turn-taking in conversation, for
example, tends to be associated with postural shifts (Kendon,
1990) and certain kinds of body moves (Gill et al, 1999). Thus,
identification of a gesture will give some indication of the kind

of interaction that is occurring, as well as the current phase in that interaction. It should be noted, however, that
some gestures are quite idiosyncratic and may only have meaning given knowledge about the person performing the
act (Ekman and Friesen, 1969).

3 Greetings: An Example of Structured Interaction

The structure of greeting interactions is described in some detail by Kendon (1990). This section summarises the
stages involved in a greeting interaction in order to illustrate some of the concepts involved in structured interaction.

This description was based on films that mainly featured middle class professionals in the eastern US interacting.
This, of course, suggests that at least some features of interactions as reported in the study apply only to this
particular culture. While interactions vary in different contexts and cultures this study still provides a useful example
of how interactions can be structured: however, it should be noted that interpretations of the purposes of various acts
are preliminary and tentative.

Three major phases of the greeting interaction are identified: the distance salutation, the approach and the close
salutation. In some cases the greeting ends with the distance salutation but in others it is followed by the approach
and the close salutation: thus the structure of the greeting may vary with certain components being omitted in certain
situations.

The distance salutation is so named because it is always followed by a phase in which the interactants move
closer to one another. This act establishes that the interactants are now engaged in greeting one another. There are a
number of different acts available to fill the slot: head tosses, head lowers, nodding and waving were all observed.
Different kinds of salutation may have different functions: for instance, the nod is commonly observed as a
‘salutation-in-passing’ that is not followed by the other stages of greeting described here.

The approach occurs between the distance salutation and the close salutation and appears to contain two sub-
phases. In the first of these behaviours associated with withdrawal occur, such as looking away from the other: in
particular there is a sharp look-away immediately before the second sub-phase begins. This also tends to occur just
before the point where utterance exchange becomes possible. In this case, then, there is both a kinesic and a
proxemic indication of progression to the next sub-phase of the interaction. During the second phase of the approach
vocalisation may occur. This phase is also associated with facial and other kinesic signals.

The close salutation occurs in its own location after the approach has been completed. Some form of ritual
interaction is engaged in, three broad kinds of which are distinguished: close salutation without body contact,
handshakes and kisses and embraces. When the close salutation is completed the interactants perform an S/O shift
although this shift is sometimes very subtle and therefore difficult to detect. When this shift occurs the greeting is
considered to be over.

4 Applications of Interactional Structure

In the interactive vision approach we propose applying interactional structure in two ways: to interpret the
interactional behaviour of other agents and to generate appropriate behaviours for an interactive robot. The
discussion here focuses on the visual modality: however, interaction is a multi-channel process (Birdwhistell, 1970)
and the approach outlined here could be usefully extended by incorporating other modalities. Indeed it may well be
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Figure 1: Significant distances in American interaction.
Each distance may be split into a ‘near’ and ‘far’ phase and
exact ranges may vary with context.



that visual behaviours can only be completely understood in association with behaviours that occur simultaneously
in other modalities (Scheflen, 1973).

The proxemic factors outlined above seem reasonably easy to detect using a machine vision system. Similarly it
is possible, though harder, to detect kinesic behaviours. Using this information we can make inferences about the
type of interaction that is being observed in a scene. Once we have identified the interaction and its current phase
then gesture becomes easier to identify as the search space may be reduced to behaviours associated with that phase.
Equally, if we observe a gesture occurring within a given slot of a particular interaction then we can interpret it in
terms of its meaning in that context: this is important as the meaning of behaviours will vary with context
(Birdwhistell, 1970; Kendon, 1980).

Ideally such a system would be able to entertain multiple hypotheses regarding the interaction. This would allow
it to deal with cases where an action incompatible with the current hypothesis occurs by switching to a hypothesis
that is compatible with both the prior observations and the new ones. It would also be both top-down and bottom-up
in nature: visual data can be interpreted as a specific action, leading to a particular assumption about the kind of
action that is occurring which would in turn have implications for the interaction that is currently assumed to be
taking place. This assumption would then be used to guide the interpretation of future input data (see figure 2).

There are, of course, a number of difficulties to be overcome. Firstly, neither kinesic not proxemic behaviour is
culture-independent so that a system based on the behaviours of one culture may not apply to other cultures.
Equally, the appropriate interpretation of an action may vary with context (e.g. a cheery greeting may be appropriate
in many circumstances, but not at a funeral).

A second difficulty is that people cannot be expected to separate their actions into simple discrete units. A
system to analyse interactional behaviour needs to be capable of identifying multiple overlapping actions separately.
It may also be naïve to assume that the meaning of a combination of actions is the same as the meanings of the same
actions when they occur in isolation.

Thirdly, no exhaustive list of possible actions occurring in each phase of an interaction is available. The system
needs to be capable of dealing with cases where an observed action fails to match any of those identified as
belonging to the current phase. There are two solutions here: the first would be simply to expand the search to cover
all actions that the system is capable of recognising. This may result in successful identification of the action but this
would not be guaranteed: furthermore, interpretation of its meaning in the unusual context would remain a problem.
The second solution is to attempt a deeper level of analysis.

Collett (1983) presents one example of such a deeper analysis. In this paper features of salutations of respect are
described: such salutations tend to be asymmetrical and iconically submissive. An asymmetrical action is one in
which one interactant carries out an action that the other does not, such as crouching down before the other. Iconic
submissiveness may show itself in body lowering and in the generation of more activity than the other – again, the
crouch is a good example of an iconically submissive interaction. By detecting features such as these it may be
possible to interpret and classify previously unknown actions to at least some extent. This approach is similar in
principle to that described in Brand and Essa (1995), where the idea of identifying the metaphorical meanings of
gestures based on their physical nature is presented (e.g. a dismissive gesture may appear as though an imaginary
object is being brushed away). Knowledge of the current phase may also be helpful in interpretation of novel
actions: if we are in the close salutation phase of a greeting, for example, then we can assume that the action is some

form of close salutation as this is the only kind
of action identified with this phase.

All of the above, however, presupposes
some means of identifying an ‘action’: this is a
very high-level concept and it is hard to see
how a significant action could be distinguished
from incidental movement. In certain cases,
though, there is a very narrow frame within
which an action must occur, such as in the case
of close salutations: if no action is detected in
this frame it is reasonable to assume that
whatever movement did occur constituted
some kind of close salutation. Sometimes,
though, there may be little to no visual

Interaction analysis

Kinesic analysis Proxemic analysis

Raw visual data

Larger context

Figure 2: Low-level analysis leads to identification of higher-level features
which, in turn, are used to guide future low-level analysis



behaviour. Here it would be helpful to have a system operating in multiple modalities: while there may be no visual
behaviour in some close salutations there is still likely to be a verbal greeting.

The second way in which we propose that structured interaction may be used is action generation. By using
knowledge of structured interaction a robot can generate the appropriate actions in response to an agent engaging in
interaction with it, whether human or otherwise. Of course it will not necessarily be the case that the agent will
replicate human behaviours: indeed, it may well be incapable of this (e.g. if it is not humanoid). However it can
attempt to behave in a functionally equivalent way: for example the first sub-phase of the approach in greeting
contains behaviours associated with withdrawal. Rather than duplicating human glance patterns or other appropriate
behaviours the robot might simply approach in a tentative manner, e.g. by slowing down or repeatedly stopping and
starting. At the very least, any robot that is capable of movement can employ proxemic behaviours.

However, there are again problems. While application of interactional structure in this manner may make
interaction with robots more natural and efficient (as it does in interactions with humans), this will only work if
humans are prepared to respond to the robots as they would to humans. Particularly in the case of non-humanoids it
may be that interactions with pets would be a more appropriate model for robots of certain appearance and
intelligence and in some cases it may be that entirely new interactional structures will need to be created. Still,
Rintel and Pittam (1997) describe how humans have already applied some of the rules for one kind of interaction
(face to face interactions) in a new domain (internet relay chat): it does seem, therefore, that humans can employ
existing interactional structures in new situations.

There are also likely to be difficulties with attempts to use proxemic principles in non-humanoids. In humans
proxemic behaviour is largely due to the desire for different kinds of sensory involvement at different distances. An
artificial agent that simply moved to the American distance for close personal distance (Hall, 1966), for example,
would not create the same visual impression as a human at the same distance unless it was a humanoid. Equally, this
may not be the ideal distance for the kind of sensory information that the robot needs in order to interact effectively.
While artificial agents can certainly engage in S/O shifts and use proxemic behaviour to indicate varying foci of
attention, many aspects of proxemic behaviour cannot simply be mapped from human-human interactions to human-
robot interactions. Again, human interactions with non-humans such as pets could prove a useful model here.

5 AuRoRA

This work is being carried out as a part of the AuRoRA project to develop a robot as a tool in the rehabilitation of
autistic children (AuRoRA, 2000; Dautenhahn, 1999; Dautenhahn and Werry, 2000; Werry and Dautenhahn, 1999).
One of the key deficits in autism is serious difficulty in dealing with social interactions: autistic children tend to
favour structured and predictable environments and interactions and one of the goals of the AuRoRA project is that
interaction with the more predictable robot should serve as a stepping stone to interaction with humans. Using a
structured interactional framework should result in reasonably predictable behaviour as a distinct set of phases must
be moved through: also, use of this framework should make the robot’s interactive behaviour more similar to that of
humans. The possibility of using different actions to fill the same slots also creates the potential for varying degrees
of unpredictability in the robot’s behaviour. As the robot will recognise and respond to nonverbal behaviour it
should be possible to encourage the use of nonverbal expression in the children while its use of interactional
structure may help to develop an understanding of such structures.

The robot being used in this project is an Applied AI Systems Labo-1,
which is essentially a small flat-topped buggy (see figure 3). This limits the
behaviours that the robot can employ: obviously it has a very limited capacity
to perform kinesic behaviours, although the sensor array on the front can be
made to turn from side to side. Most of the robot’s nonverbal behaviours,
though, will necessarily be proxemic in nature. At the present time the robot
is only capable of sensing the children through fixed infrared sensors and a
positional heat sensor. The robot is also capable of speech, greatly enhancing
its interactive potential, but this paper is concerned with nonverbal
behaviour.

The children are free to interact with the robot in an unconstrained
manner: this poses a particular challenge for the development of a vision
system as most systems that attempted detailed tracking of the human body

Figure 3: The AuRoRA robot with an
autistic child: interactions between child
and robot are highly unconstrained.



are able to assume that the human will remain at a given location and in the same approximate position (e.g.
standing facing the camera and only moving the arms). Often only a part of the body is tracked (e.g. just the upper
body) to reduce the complexity of models and thus save computation. These constraints clearly cannot be relied
upon in this project: the child is engaging in full-body movement and will move around the room at will, shifting
between standing and kneeling / crawling positions. These complexities are a part of the reason why this project will
be largely dependent on proxemic rather than kinesic information. There is also the added complication of the
presence of other moving objects in the scene: while many existing human tracking systems assume that only the
person being tracked is moving, in this case both child and robot are moving. Additionally, two to three observers
are usually present: these observers will also be moving within the scene observed by the vision system.

An obvious problem with attempting to apply the interactive vision approach with autistic individuals is that this
approach is based on the nonverbal behaviour and interactional structures of psychologically ‘normal’ people. There
is no guarantee that autistic individuals will behave in the same way: indeed, abnormal movement patterns have
been associated with autism (AUTCOM, 2000; Teitelbaum et al, 1998) and autistic use and recognition of gestures
and facial expression appears to be limited (Hobson, 1986a; Hobson, 1986b; Attwood, Frith and Hermelin, 1988). It
seems likely that the interactive behaviour of the robot will at least need to be quite simple and it is possible that the
use of this approach will not be particularly helpful in the AuRoRA project. However, even in this case the approach
outlined here should still be useful more generally in the field of human-robot interaction.

Currently experiments are in preparation to test the usefulness of the concepts described in this paper. These
experiments will focus on interactions between humans (both autistic and non-autistic) and the robot and will focus
on proxemic features of behaviour such as relative position and orientation of interactants and use of S/O shifts. By
explicitly observing these features of behaviour and interpreting them in terms of a model of a particular kind of
interaction (e.g. greetings), the effectiveness of the vision system should be enhanced as outlined above. It is also
intended that interactions between pairs of humans will be investigated: this will allow us to determine to what
extent the social model can be independent of the types of agents involved in the interaction. We suspect that while
the broad structure of the interaction will remain the same, humans will not interact with robots in exactly the same
way as they would with other humans: as the robot neither looks nor behaves in a human manner humans are likely
to treat them differently, as outlined above, although the work of Rintel and Pittam (1997) suggests that humans will
nonetheless attempt to apply existing interactional structures in the new situation. A part of the challenge of
designing behaviours for the robot will be getting it to behave in ways that humans will recognise as equivalent to a
human behaviour in the current phase of the current interactional structure.

6 Conclusion

In conclusion, this paper has proposed an interactive vision approach to enhancing the abilities of robots to interact
with human beings through the use of visual nonverbal signals that provide information about interactional structure.
Such nonverbal signals can be used by robots (or, indeed, non-robotic artificial agents) in generating their own
behaviour, in order to make them appear more believable as interaction partners and to allow them to engage in
more effective interactions (as in Benford and Fahlén (1993)). These signals can also be used to interpret the
interactional behaviour of others, whether interaction partners of the robot or other interacting agents. A number of
these nonverbal signals can be identified by even quite simple vision systems as they are proxemic in nature,
although the more complex kinesic signals should prove an increasingly useful part of this approach as machine
vision technology develops. While there is as yet no experimental data to report, it is proposed that this is a
promising approach to enhancing the social behaviour of artificial agents.
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