
Supporting Complex Scientific Database Schemas in a Grid Middleware

Helen X Xiang
Computer Science, University of Hertfordshire, UK∗

helen.x.xiang@gmail.com

Abstract

The volume of digital scientific data has increased con-
siderably with advancing technologies of computing devices
and scientific instruments. We are exploring the use of
emerging Grid technologies for the management and ma-
nipulation of very large distributed scientific datasets. Tak-
ing as an example a terabyte-size scientific database with
complex database schema, this paper focuses on the poten-
tial of a well-known Grid middleware—OGSA-DQP—for
distributing such datasets. In particular, we investigate and
extend the data type support in this system to handle a com-
plex schema of a real scientific database—the Sloan Digital
Sky Survey database.

1. Introduction

The Sloan Digital Sky Survey (SDSS) is a project that

has built a very detailed digital map of the visible stars and

galaxies in the night sky [23]. The data produced by the

survey is summarised to a multi-terabyte relational database

containing photometric objects and spectroscopic informa-

tion. The SDSS database is available to the scientists and

the public via the SkyServer (http://skyserver.sdss.org) or

various mirror sites (including one we set up in the Univer-

sity of Portsmouth).

In recent papers [19, 20, 21] we described a how we cre-

ated an experimental distributed version of the SDSS DR5

database, using Grid middleware. This is based on OGSA-

DQP (Open Grid Services Architecture—Distributed Query

Processing), developed by the University of Manchester and

the University of Newcastle upon Tyne [10]. OGSA-DQP

is based on the OGSA-DAI middleware, developed by the

Edinburgh Parallel Computing Centre (EPCC) and the UK

National e-Science Centre (NeSC) [9].

The original SDSS database was implemented in Mi-

crosoft SQL Server. We created a copy of SDSS DR5 SQL

∗Previous address: Institute of Cosmology and Gravitation, University

of Portsmouth.

Server database in the University Portsmouth. A large sub-

set of this database (table objects and data) was then mi-

grated to Oracle database and transferred to a Linux server

in Manchester National Grid Service (NGS). The rest of this

database stays in a Windows server in Portsmouth. We used

OGSA-DAI and OGSA-DQP to integrate the data across

these two sites—forming a logical distributed database sys-

tem. Global distributed queries can be processed over this

logical database system [22].

This experiment exposes some limitations of the emerg-

ing Grid technologies. In particular, this paper will focus

on the extension of data type support in OGSA-DQP that

we added to support a realistic large scientific database.

This paper begins by describing the OGSA-DQP system

and its architecture. In particular, we analyse the OGSA-

DQP workflow and the interactions among its components.

We also explain the data type support and the OGSA-DQP

flow of type information. The paper then describes how we

extend the data type support to support large schemas in

Oracle and SQL Server.

2. The OGSA-DQP System

Extending the multiple-data source functions of OGSA-

DAI, the DQP system is a service based distributed query

processor for planning, scheduling and executing dis-

tributed queries in parallel [1, 2, 4, 7]. OGSA-DQP eval-

uates against distributed data sources that are exposed by

OGSA-DAI data service resources. OGSA-DQP aims to

provide homogeneous access to heterogeneous data sources

over OGSA-DAI middleware. It enables transparent distri-

bution and parallelism among Grid data services, and sup-

ports Grid abstractions for on-demand resource allocation.

The first release of OGSA-DQP was in September 2003,

and the version 3.2 Tech Preview was the latest revision at

the time when our research was undertaken. OGSA-DQP

3.2 Tech Preview is based on OGSA-DAI WSRF/WSI 2.2.

The final version of OGSA-DQP 3.2, based on OGSA-DAI

3, was released as this paper was being written. We expect

most of our conclusions would carry over to the new release.

OGSA-DQP currently supports MySQL and has been

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.129

936

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.129

937

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.129

937

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

OGSA-DQP

Client Application

OGSA-DAI

Database 1

OGSA-DAI

Database 2

OGSA-DAI

Database n. . .

. . .OGSA-DAI

Database 3

Figure 1. Mediator-Wrapper Vision of OGSA-
DQP

test in myGrid project in simple bioinformatics databases

[3].

2.1 The OGSA-DQP architecture

Adopting the mediator-wrapper approach [18], the

OGSA-DQP prototype uses OGSA-DAI middleware as the

wrappers and DQP as the mediator. In Figure 1, databases

are wrapped by OGSA-DAI data services.

There are two different types of services in OGSA-DQP:

the Grid Distributed Query Service (GDQS) and the Query
Evaluation Service (QES). The GDQS—also known as the

DQP coordinator—is responsible for interacting with the

client applications, and parsing and scheduling distributed

query executions. The QES—also known as the DQP
evaluator—is responsible for the actual query execution

such as joins.

The DQP coordinator is implemented as an OGSA-DAI

data service component for extracting the database schema

information via the data service resources which exposes

the underlying databases. The database schema, metadata

and resource computational information are held in XML

format, and this information helps the query compiler in

the DQP coordinator to make decisions when parsing the

distributed queries, generating and optimising the query

execution plans. Once a query plan is generated by the

query compiler, the DQP coordinator communicates with

the DQP evaluators to run the query and ensures the query

is executed according to its (query) plans. Like any other

OGSA-DAI services, the DQP coordinator can be discov-

ered and invoked from the command line or via the client

software.

2.2 OGSA-DQP Workflow

Figure 2 presents the interactions inside the DQP Query

Compiler. The distributed query departs from the client first

Distributed Query

Query Translator

LogicalOptimiser

PhysicalOptimiser

ParallelOptimiser
(scheduler)

DQPSQLParser

DQPSQLLexer

Decomposed Query (words + Symbols)

Query Plan Partitions

Abstract Syntax Tree (AST)

Intermediate Query Structure

Logical Query Plan

Physical Query Plan

Figure 2. Interactions inside the DQP Query
Compiler

to the Lexical Analyser, which breaks it into words and sym-

bols before passing it to the Query Parser. It is parsed by

the Query Parser to produce an abstract syntax tree (AST).

Then the Query Translator converts the AST to an interme-

diate representation of the query structure. This is fed into

the Logical Optimiser and Physical Optimiser.

The next three phases build the query plan. A query plan

is a tree of operations such as TABLE SCAN and JOIN
operations. The Logical Optimiser analyses SELECT and

other statements and produces a logical query plan, which

consists a series of joins of intermediate-results tuples from

the TABLE SCAN operations. An important function of the

Logical Optimiser is making estimates of the table cardinal-

ities of the intermediate results. It places the smallest car-

dinality of the row set on the left-hand side of each JOIN
operation1. The evaluators support several JOIN imple-

mentations, such as HASH JOIN and HASH LOOP JOIN
operations. It is the Physical Optimiser’s job to analyse

the logical query plan and make decisions on what type of

JOIN operations to use in different query partitions.

After the logical and physical optimisation, the Paral-
lel Optimiser (also known as the scheduler) generates the

query plan for multiple partitions. The query plan partitions

are then sent to the appropriate DQP evaluator for execu-

tion. According to the query plan partition, the DQP eval-

uator then contacts the data source via the OGSA-DAI data

services to obtain the required data. The intermediate data

can flow from one evaluator to the other and the final result

1The cardinality information comes from the physical metadata in the

database itself.

937938938

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

OGSA-DQP
Evaluator 1

OGSA-DQP
Evaluator 2

OGSA-DQP
Evaluator m

Client Application
Distributed
Query

OGSA-DQP Coordinator

OGSA-DQP root Evaluator
Result Sets

Query Plan
Partition 1

Query Plan
Partition 2

Query Plan
Partition m

..
.

OGSA-DAI
Data Service 1

OGSA-DAI
Data Service 2

OGSA-DAI
Data Service m

..
.

..
.

Query Compiler

Query Translator

LogicalOptimiser

PhysicalOptimiser

ParallelOptimiser
(scheduler)

DQPSQLParser

DQPSQLLexer

Figure 3. OGSA-DQP Workflow

sets are sent to the client via the root DQP evaluator.

Figure 3 summarizes the typical interactions among the

OGSA-DQP components.

2.3 Data Type Support

Before extending the data type support we need to iden-

tify the various type systems used in the software. Informa-

tion here is based on the source code of the OGSA-DQP 3.2

Tech Preview.

There are many different type systems involved. These

include schema types, which get mapped to Java types that

appear in the tuple types used by query compiler and query

plan. These get mapped to types that appear in the tuple

types used by the evaluator. These eventually get mapped to

types appearing in the final WebRowSet. Figure 4 shows the

data type flow in between different OGSA-DAI and OGSA-

DQP interactions. Table 1 summarises the OGSA-DQP data

type flow in eight steps.

The first two steps happen during the construction of a

DQPDataResource. Type information originally comes

from the schema metadata obtained from the database

through OGS-DAI and ultimately JDBC (e.g. bigint). In

the second step, this is converted to a “Java type”—a sub-

class of java.lang.Class—by the method Types.-
mapSQLTypeToDQPType() in the DQP coordinator.

This is the form of type information used by the query com-

piler (e.g. Long.class).

The third step of type conversion happens

in the final stages of query compilation when

the PartitionWriter class uses method

Types.getEvaluatorType() to convert a “Java

type” to an “evaluator type”—one of the type name strings

enumerated in the class Evaluator. This is the type as it

appears in the XML query plan (e.g. "long").

The fourth step happens when the XML query plan

reaches the evaluator and is processed by the class

ObjectBuilder. The BuildOutputTupleType()

Schema Data Type

Types.getEvaluatorType() ObjectBuilder.BuildOutputTupleType()

ResultField.getFieldTypeString()DQPResultsToWebRowSet.formatMetadata()

Types.mapSQLTypeToDQPType()

DatabaseMetaData.getColumns()

SQL Type

Result Set Type Strategy

DQP (Java) type

Evaluator Type

Tuple Type

Field Type

OGSA-DAI Data Service

TypeStrategyFactory.createTypeStrategy()

Column Type

DQP Coordinator

DQP Evaluator

OGSA-Client

Figure 4. OGSA-DQP Data Type Flow

method in this class converts the type in the query plan to

an integer type code enumerated in the class TypeDefs
(e.g. TypeDefs.INT KIND = 15).

The fifth step happens when the root evaluator has fin-

ished and is ready to return the final results. It does

this by executing a PRINT operator represented inter-

nally by the class PrintOp. This uses the method

ResultField.getFieldTypeString() to convert

the type code to a string (e.g. "int").

This string is stored in a document that is passed to the

putData() of QueryExecutionProcessor. This

document is in turn passed to the convertBlock()
method of DQPResultsToWebRowSet. This class ex-

ecutes the sixth step by calling its formatMetadata()
to write elements in the WebRowSet containing (an in-

significant type name, e.g. "INTEGER", and) an inte-

ger type code enumerated in the class java.sql.Types
(e.g. Types.INTEGER = 4).

In the final step, when the Web row set reaches

the client, WebRowSetToResultSet will pass an

instance of a subclass of AbstractResultSet to

the parse() method of WebRowSetParser. This

will call the putMetaData() method of Abstract-
ResultSet. Here, TypeStrategyFactory instan-

tiates a TypeStrategy for reading this column (e.g.

IntegerStrategy).

Table 2 illustrates the supported databases data type of

the current standard OGSA-DQP release and the detailed

data type mapping during DQP processing2.

2The greyed dateType=“data” and timestamp=“datetime” Type defini-

tions are not supported by the DQP evaluator in the current release.

938939939

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

Table 1. OGSA-DQP Flow of Type Information
Stage Convertor Domain Context

Component Class Method

1 JDBC DatabaseMetaData getColumns values of

TYPE NAME

column of result

OGSA-DAI Extract-

DatabaseSchemaActiv-

ity

2 OGSA-DQP

coordinator

Types mapSQLTypeToDQPType java.lang.Class ob-

jects

initialise() method

DQPDataResource

3 OGSA-DQP

coordinator

Types getEvaluatorType fields of Evaluator

class in coordinator

convertTupleType()

method of Partion-

Writer

4 OGSA-DQP

evaluator

ObjectBuilder BuildOutputTupleType fields of TypeDefs

class in evaluator

run() method of

QueryExecutionEngine

5 OGSA-DQP

evaluator

ResultField getFieldTypeString one of {”int”,

”char”, ”boolean”,

”string”, ”float”,

”double”, ”var”,

”date”, ”datetime”,

”unknown”}

Next() method of

PrintOp

6 OGSA-DQP

coordinator

DQPResultsToWebRowSet formatMetadata fields of

java.sql.Types

putData() method of

QueryExecutionPro-

cessor

7 OGSA-DAI TypeStrategyFactory createTypeStrategy instance of TypeS-

trategy

getResultSet() method

of WebRowSetToRe-

sultSet

8 OGSA-DAI TypeStrategy subclass getType Java types getType() method of

AbstractResultType

3. A Large Database Schema in a Distributed
Environment

The SDSS is a project that has built a very detailed digi-

tal map of the visible stars and galaxies in the night sky. The

SDSS is the first wide-area survey to use electronic light de-

tectors, producing images substantially more sensitive and

accurate than earlier surveys, which relied on photographic

plates. It is one of the most ambitious astronomical surveys

ever attempted. A 2.5 meters SDSS telescope at Apache

Point Observatory near Sunspot, New Mexico, in the United

States is dedicated full-time to the SDSS, and collects im-

ages almost every night (depending on the weather). Once

the survey is finished, the SDSS data will map a quarter of

the whole sky in detail. The data is made available electron-

ically to the scientific community and the general public,

both as images and as digital catalogues of all the objects

discovered. With the release of DR6 in June 2007, data for

approximately 287 million objects in the sky has been made

available so far [11, 15].

So far there have been six major public data releases

from the SDSS project. In the four years since the first

data release (DR1) up to DR6, data volume has grown from

2.34 terabytes of image data and 0.46 Terabytes of cata-

logue data to 10.00 and 4.00 terabytes respectively. Host-

ing a data repository of such a large size on a single site

is becoming costly and there may be a performance bottle-

neck occurred sooner or later. We think the growth of large

databases requires new scientific methods to organise the

rapidly growing volume of data. In the long term, distribut-

ing large datasets such as the SDSS over multiple sites is

seen as the only feasible way to house the data [19].

The SDSS database was only deployed in a Microsoft

SQL Server 2000 instance. The SDSS DR5 database con-

tains 85 user tables, 44 user views, 164 stored procedures

and 173 user-defined functions, which enable advanced data

searches and query optimisation. Indexing is used automat-

ically in the SQL query optimiser to speed up the perfor-

mance of queries.

We wanted to distribute the SDSS dataset to multiple

sites, and investigate the possibility of running distributed

queries using Grid technologies such as OGSA-DQP. Most

of Grid sites run on Linux platform. Since Oracle database

supports all known platforms including Linux, we migrated

the SDSS DR5 database (table schema and data) from

SQL Server to Oracle. To construct the distributed SDSS

database system, we partitioned the SDSS database and dis-

tributed among different sites with either Oracle 10g or SQL

Server 2000 installed.

We used OGSA-DAI middleware and OGSA-DQP

toolkit to deploy our distributed SDSS database system. In

Figure 5, databases are wrapped by OGSA-DAI data ser-

vices (or other Web services that can be invoke for data

analysing processing). OGSA-DQP involves several Grid

services for distributed queries compiling, scheduling and

executing.

The client application issues a distributed query to the

DQP coordinator. The coordinator then compiles the query

939940940

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

Table 2. The supported Data Types flow details in the current release of OGSA-DQP
SQL Type
(Stage 1)

DQP Type (Stage 2) Evaluator Type
(Stage 3)

Tuple Type (Stage 4) Field Type
(Stage 5)

Column Type
(Stage 6)

Type Strategy (Stage
7)

varchar

text String.class strType=“string” STR KIND=16 “string” VARCHAR =12 VarCharStrategy

char

longvarchar

real

double Double.class

float doubleType

=“double”

DOUBLE KIND =25 “double” DOUBLE=8 DoubleStrategy

numeric BigDecimal.class

decimal

integer

bigint

int Integer.class intType=“int” INT KIND=15 “int” INTEGER=4 IntegerStrategy

smallint

tinyint

bit Boolean.class boolType

=“boolean”

BOOL KIND=17 “boolean” BOOLEAN =16 BooleanStrategy

boolean

date Date.class
dateType=“date”

DATE KIND =9902 “date” DATE=91 DateStrategy

time Timestamp.class
timestampType

=“datetime”

DATETIME KIND

=9901

“datetime” TIMESTAMP

=93

TimestampStrategy

timestamp

OGSA-DAI Data Service m
http://hostm:8080/wsrf/services/

ogsadaim/DataServicem

Data Service
Resource 1

SDSS
Data Source 1

Data Service
Resource n

SDSS
Data Source n

. . .

. . .

OGSA-DAI Data Service 1
http://host1:8080/wsrf/services/

ogsadai1/DataService1

OGSA-DAI Data Service 2
http://host2:8080/wsrf/services/ogsadai1/DataService2

OGSA-DQPOGSA-DQP

OGSA-DQP Evaluator 1
http://host1:9080/dqp-evaluator/
services/QueryEvaluationService

OGSA-DQP Evaluator 2
http://host1:9080/dqp-evaluator/
services/QueryEvaluationService

OGSA-DQP Evaluator m
http://hostm:9080/dqp-evaluator/
services/QueryEvaluationService

OGSA-DAI Data Service 0

OGSA-DQP Coordinator

OGSA-DQP root Evaluator

Client Application

Data Service
Resource 2

SDSS
Data Source 2

Data Service
Resource 3

SDSS
Data Source 3

Figure 5. A Grid-Based Distributed Database
System

and generates execution plans, which could involve a num-

ber of evaluators. The coordinator then invokes its acquired

DQP evaluators to execute the partitioned query plan. Dur-

ing the query execution, the evaluators retrieve data from

the underlying data sources via the connected data services.

The data can flow between evaluators. The processed data is

then transferred to the DQP root evaluator of the coordina-

tor. Finally, the DQP coordinator passes the result datasets

to the client application.

4. Using OGSA-DQP to Support Large
Schemas with Oracle and SQL Server

Our distributed SDSS database system is currently built

on Oracle 10g (Release 2) and Microsoft SQL Server

2000. This distributed system employs the OGSA-DAI and

OGSA-DQP as a middleware to access and integrated the

distributed SDSS database.

We deployed the OGSA-DQP toolkit (version 3.2 Tech

Preview) and OGSA-DAI WSRF 2.2 on our database

servers. After studying the source code, we found that the

standard OGSA-DQP software has relatively poor support

for databases other than MySQL; in particular the support

for mapping data types lacks many features we require.. We

think similar problems would probably arise using OGSA-

DQP on any other databases with comparable schema com-

plexity.

4.1 Generating the Coordinator Instance

A DQP coordinator factory is created when OGSA-DQP

is deployed. The coordinator factory is used to create coor-

dinator instances. The factory assigns the coordinator a re-

source ID with prefix “dqpogsadai-”. A client can then

make requests to those coordinator instances. This pattern

of creating service instances follows WSRF [8] and related

grid infrastructures.

To configure a coordinator instance, we need to identify

one or more evaluators that can be used by the coordina-

tor, and one or more OGSA-DAI data service resources that

940941941

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

expose the underlying RDBMSs. The coordinator instance

configuration file is in XML format.

When generating a coordinator instance, the database

schemas of the RDBMSs wrapped by these OGSA-DAI

data service resources must be imported. Loading of

database schemas is a crucial part of creating the coordi-

nator instance.

4.2 Type Mapping

Because OGSA-DQP is written in Java, and data types

in RDBMSs do not correspond directly to data types in the

Java programming language, there needs to be some mech-

anism for translating data between OGSA-DQP, which uses

Java types, and RDBMSs that use SQL types. Section

2.3 explains the OGSA-DQP supported data types and

their mapping details. Data types mapped by OGSA-DQP

have been influenced by the original target MySQL test

databases. Compared to those OGSA-DQP test cases, the

SDSS database is far more complex, with much larger data

volumes.

As exposed by the OGSA-DAI data service resource

(which gets its information using JDBC), the SQL Server

SDSS database schema is a 7, 333-line XML file. The Ora-

cle SDSS database schema is a 74, 503-line XML file. The

Oracle version of SDSS schema is a lot larger mainly be-

cause it includes many system tables—unfortunately nei-

ther OGSA-DAI or JDBC provide a simple way of exclud-

ing system tables from schema metadata. Compared with

the standard OGSA-DQP, many additional SQL data types

are needed to import these large SDSS database schema.

We learned from the database migration in [22] (about

data type mapping between Oracle and Microsoft SQL

Server) that there are considerable variations between the

SQL types supported by different RDBMS products. Even

when different RDBMSs support SQL types with the same

semantics, they may give those types different names. For

example, both Oracle and SQL Server support an SQL data

type for storing large binary values, but SQL Server labels

this image and Oracle labels it BLOB.

Because our distributed SDSS database is based on Ora-

cle and SQL Server RDBMSs, we added data type mapping

support for these RDBMSs to OGSA-DQP. This was done

by modifying the Types class in the OGSA-DQP coordi-

nator.

To support the Microsoft SQL Server version of the

SDSS database, we added several new data type mappings

(and associated evaluator types) including:

bigint �→ Long.class

nvarchar �→ String.class

sysname �→ String.class

binary �→ byte[].class

datetime �→ byte[].class

image �→ byte[].class

varbinary �→ byte[].class

To support the Oracle version of the SDSS schema we ad-

ditionally added:

varchar2 �→ String.class

raw �→ byte[]

blob �→ Blob.class

clob �→ Clob.class

number �→ BigDecimal.class

rowid �→ oracle.sql.ROWID.class

long �→ String.class

The Oracle SDSS schema includes many system tables as

well as the user tables, and these include many different

customised types. Examples of include anydata and

EXF$INDEXOPER, but there are very many more of these

and it is impractical to enumerate them all. In the end we

just mapped all unrecognized types to String.class.

The data type mappings above are mostly chosen by re-

ferring to the Sun Microsystems online document Mapping
SQL and Java Types [14] and the book JDBC API Tutorial
and Reference: Universal Data Access for the Java 2 Plat-
form [17]. However, mapping the Oracle data type number
to BigDecimal.class proved to be problematic later

on—please refer to Section 4.3 for more details on this.

4.3 Running A Query

When we ran the following query using the OGSA-DQP

client, the results were correct except that in the test query

submitted to a SDSS Oracle database through OGSA-DQP,

the OBJID column of the result was truncated. The result

for OBJID is 5.8772601400131597E17. The correct

value is 587, 726, 014, 001, 315, 907.

SELECT MATCH, ID, OBJID
FROM FIRST
WHERE OBJID=587726014001315907

The Oracle data type of OBJID column is

number, which we had originally mapped to

BigDecimal.class, following the standard JDBC

documentation [14, 17]. Referencing our Table 2, we find

BigDecimal.class is mapped by OGSA-DQP to an

evaluator type of Double, which corresponds to an IEEE

754 double precision floating point number. According to

the IEEE Standard 754 for Binary Floating-Point Arith-

metic [6], double precision for representing floating point

values has a mantissa of 54-bits:

254 = 18, 014, 398, 509, 481, 984

941942942

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

However, the OBJID values of the SDSS DR5
database range between 587, 722, 951, 693, 303, 809
and 588, 848, 901, 777, 785, 938—this explains why the

value got truncated.

To fix this problem, we changed the mapping of the

Oracle data type number to Long.class by modifying

the method Types.mapSQLTypeToDQPType() in the

OGSA-DQP coordinator. This is acceptable because in our

translation of the original SQL Server SDSS schema to Or-

acle we only converted integer types (bigint, bit, int,

smallint, tinyint) to Oracle number type; float-

ing point types (float, real) were always converted to

float. (Please refer to [22] for more details.)

When we reran the OGDSA-DQP query, we now got an

SQL exception:

java.sql.SQLException: Cannot convert
587726014001315907 to int

We soon found that when the result set contains a column

of type long (or equivalently BIGINT), the metadata in

the WebRowSet that comes back to the client has the col-

umn marked as INTEGER. In the client OGSA-DAI class

AbstractResultSet the column OBJID is then treated

as integer instead of long.

From inspection of the source code of OGSA-DQP we

learned that the types embedded in the WebRowSet were

controlled by inputs to a PRINT operator in the evaluator.

The easiest way to fix the problem was by modifying

the method formatMetadata() in the DQP coordinator

class DQPResultsToWebRowSet so that it later maps

all items with field type int to Types.BIGINT rather

than Types.INTEGER (see Figure 4, Tables 1 and 2). Af-

ter the corrections, the DQP query submitted to Oracle re-

turns the correct value for OBJID.

5. Discussion

Section 2.3 of this paper summarised the OGSA-DQP

data type flow in eight stages. We spent a lot of time work-

ing out the data type mapping between different stages.

OGSA-DQP is dealing with too many different type sys-

tems, and this caused various difficulties when customizing

types to support our requirements. We believe there must

be scope for simplification of the steps involved in the data

type flow of OGSA-DQP.

On the other hand, the current release of OGSA-DQP

claims to support Microsoft SQL Server but in fact it does

not include many of the common SQL Server data types.

We suggest support for more standard data types should be

added to OGSA-DQP.

The architecture and software of the OGSA-DQP system

seems to have developed out of the earlier systems Polar and

Polar*. Polar [13] was developed as a parallel (not neces-

sarily distributed) object database. The later Polar* system

[12] took Polar as a foundation but moved to the Globus

platform, to create a distributed object database for the Grid

(using MPICH-G for the exchange operator). These earlier

systems were implemented in C++, and the authors of [12]

say:

Polar* adopts the model and query language of

the ODMG object database standard [5]. As

such, all resource wrappers must return data us-

ing structures that are consistent with the ODMG

model. Queries are written using the OGDMG

standard query language, OQL.

In turn, OGSA-DQP seems to have been developed from

Polar* by moving from a C++ evaluator—with direct use

of Globus and MPI [16]—to a Java evaluator, using OGSA-

DAI and SOAP. Up until release 3.1, OGSA-DQP was still

using the old Polar* distributed query compiler (written in

C++), and it was still using OQL as the input query lan-

guage (rather than SQL). Only in the most recent release of

OGSA-DQP was the query translator converted to Java, and

the input language changed to SQL.

So the components of the OGSA-DQP system seem to

have had a complicated development, changing through dif-

ferent languages. We think this may help explain the mul-

tiple type systems in the current software. In other words,

we think they may be a legacy from older versions of the

system.

If a similar system was designed assuming a pure Java

and SQL implementation from the start, we believe it might

only need about two type systems: JDBC’s set of SQL

types, and some form of “Java type” for internal use in the

query compiler and evaluator.

6. Conclusions

This paper focussed on data type support in a well-

known (experimental) Grid-based middleware for querying

distributed databases—OGSA-DQP. We applied this mid-

dleware to a large-scale scientific database with a complex

schema (SDSS). We described the various data type systems

involved in the OGSA-DQP data type mapping process.

When we came to apply OGSA-DQP to our large sci-

entific database, we found that many required data types

were not supported. We enlarged the data type support in

OGSA-DQP to parse the SDSS database schema exposed

by the OGSA-DAI data service resource based on Microsoft

SQL Server and Oracle database instances. Data types

mapped by the standard OGSA-DQP have apparently been

influenced by the original simple MySQL test databases.

The SDSS database is a lot larger and with more complex

data types. In order to parse the SDSS database schema,

we modified the OGSA-DQP Types class and added im-

proved data type support.

942943943

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

We went on to improve the data type mapping to avoid

certain data being truncated during queries.

An additional problem not discussed in detail above oc-

curred in UNION ALL queries integrating results of queries

from different RDBMSs implementation. We needed to al-

ter the data type mapping in the Types class to make sure

data of the same schema object from Microsoft SQL Server

and Oracle is mapped to the same data types in OGSA-DQP.

After modifying the OGSA-DQP coordinator source code,

we were able to successfully ran union queries across mul-

tiple machines with integrated results.

With these problems relating to data types resolved, we

went on to perform a series of queries of increasing com-

plexity across our distributed database. See [22] for details

of other modifications made to OGSA-DQP to support large

scale queries.

Based on our experiences with this realistic use case,

Section 5 contained some general observations about the the

type systems utilized in OGSA-DQP. We believe that there

is scope for considerable simplification, and such a simplifi-

cation could make future versions of this middleware more

useful in practise. Meanwhile, we have adapted the existing

OGSA-DQP software to provide support for additional data

types, particularly those common in Oracle and Microsoft

SQL Server databases.

References

[1] M. Alpdemir, A. Gounaris, A. Mukherjee, D. Fitzger-

ald, N. Paton, P. Watson, R. Sakellariou, A. Fernandes,

and J. Smith. Experience on performance evaluation with

OGSA-DQP. In Fourth UK e-Science All Hands Meeting,

2005.

[2] M. N. Alpdemir, A. Mukherjee, A. Gounaris, A. A. A. Fer-

nandes, N. W. Paton, and P. Watson. An experience report

on designing and building OGSA-DQP: A service based dis-

tributed query processor for the Grid.

[3] M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton,

A. A. A. Fernandes, R. Sakellariou, P. Watson, and P. Li.

Using OGSA-DQP to support scientific applications for the

Grid. In P. Herrero, M. S. Prez, and V. Robles, editors, SAG,

volume 3458 of Lecture Notes in Computer Science, pages

13–24. Springer, 2004.

[4] M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Pa-

ton, P. Watson, A. A. A. Fernandes, and D. J. Fitzger-

ald. OGSA-DQP: A service for distributed querying on the

Grid. In E. Bertino, S. Christodoulakis, D. Plexousakis,

V. Christophides, M. Koubarakis, K. Bhm, and E. Ferrari,

editors, EDBT, volume 2992 of Lecture Notes in Computer
Science, pages 858–861. Springer, 2004.

[5] R. Cattell et al. The Object Database Standard: ODMG 3.0.

[6] IEEE 754: Standard for binary floating-point arithmetic.

http://grouper.ieee.org/groups/754/.

[7] A. Mukherjee and P. Watson. Adding dynamism to OGSA-

DQP: Incorporating the DynaSOAr framework in distributed

query processing. Technical Report 979, Newcastle Univer-

sity, School of Computing Science, Aug 2006.
[8] OASIS. Web Services Resource Framework (WSRF).

http://www.oasis-open.org/committees/tc home.php?

wg abbrev=wsrf.
[9] The OGSA-DAI project home page. http://www.ogsdai.org.

[10] The OGSA-DQP project.

http://www.ogsadai.org/about/ogsa-dqp.
[11] The SDSS Data Release 6 (DR6).

http://www.sdss.org/dr6/start/aboutdr6.html.
[12] J. Smith, A. Gounaris, P. Watson, N. Paton, A. Fernandes,

and R. Sakellariou. Distributed query processing on the grid.

In Third Workshop on Grid Computing (GRID2002), 2002.
[13] J. Smith, P. Watson, S. de F. Mendes Sampaio, and N. W. Pa-

ton. Polar: An architecture for a parallel ODMG compliant

object database. In CIKM, pages 352–359, 2000.
[14] Sun Microsystems, Inc. Mapping SQL and Java types.

http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/getstart/

mapping.html.
[15] A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik,

J. Raddick, C. Stoughton, and J. vandenBerg. The SDSS

SkyServer—public access to the Sloan Digital Sky Server

data. In SIGMOD Conference, pages 570–581, 2002.
[16] D. W. Walker and J. J. Dongarra. MPI: a standard Message

Passing Interface. Supercomputer, 12(1):56–68, 1996.
[17] S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner.

JDBC API Tutorial and Reference: Universal Data Access
for the Java 2 Platform (2nd Edition). Pearson Education,

June 1999.
[18] G. Wiederhold. Mediators in the architecture of future in-

formation systems. pages 185–196, 1998.
[19] H. Xiang, M. Baker, and R. Nichol. Experiences mirroring

and distributing the Sloan Digital Sky Survey. In Fifth Inter-
national Conference on Grid and Cooperative Computing
Workshops (GCC 2006), Changsha, China, pages 518–521.

IEEE Computer Society, October 2006.

http://doi.ieeecomputersociety.org/10.1109/GCCW.2006.38.
[20] H. X. Xiang. Experiences acquiring and distributing a large

scientific database. submitted to 2008 International Confer-

ence on Database Theory and Application, Hainan Island,

China, 2008.
[21] H. X. Xiang. Experiences acquiring and distributing a large

scientific database. submitted to 2008 International Con-

ference on Computer Science and Software Engineering,

Wuhan, China, 2008.
[22] H. X. Xiang. A Grid-based Distributed Database Solution

for Large Astronomy Datasets. PhD thesis, Portsmouth, UK,

February 2008.
[23] D. G. York et al. The Sloan Digital Sky Survey: Techni-

cal summary. Astronomical Journal, 120:1579–1587, 2000.

http://www.sdss.org.

943944944

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

