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Abstract

SCENT is simple competitive neural network model
that evolves a tree structured set of nodes in response to
being presented with an unlabelled data set.  The
resulting set of weight vectors and their relationship can
be viewed as giving a hierarchical classification of the
training data.  This paper examines the nature of this
classification for two data sets over several runs of the
network.  The first data set is a set of grey scale images,
chosen because the code-vectors produced by SCENT
can then be visualised in a natural way.  The second
data set is a small set of vectors coding attributes of
animals.  The resulting taxonomy from SCENT can
then be compared with the normal taxonomic groups
that such a set of animals would fall into.  Since the
SCENT model is stochastic different runs produce
different trees, but the variation in results produced over
several runs is small.  The model is shown to be
reasonably robust and the relationship between the
nature of the data and the type of tree produced is
examined.

1 Introduction

This paper describes how hierarchical structure can be
discovered in unlabelled data using a stochastic
evolutionary neural tree  model (SCENT), developed at
the University of Hertfordshire.  The data that we
present to the net in these experiments has no explicit
hierarchical structure, but both data sets have been
chosen to allow various aspects of the resulting
hierarchies to be examined.

Neural networks may be structured to reflect aspects of
their training data.  The benefits of imposing a topology
onto the nodes of a competitive network are well
documented.   For example a self organising map
(SOM) may organise the nodes into a two dimensional
grid, and other models, including SCENT, organise the
nodes into a tree structure [Butchart et al., 1995].
SCENT is an evolutionary model, in which nodes are
added and deleted in response to the data being
classified; the tree structure is a natural way of

representing the way in which nodes grow, producing
children.  Moreover the resulting tree structure provides
hierarchical information about the data, as well as the
conventional codevector clustering present in the leaf
nodes of the tree.  The vectors clustered by a node in
the tree can be interpreted as being recursively
subclustered by the children of that node.  Just as the
weight vectors of leaf nodes provide bottom level code-
vectors the higher level nodes give representations of the
centroids of their corresponding clusters.

The model is briefly described in section 2, and the
performance of SCENT on two data sets is then reported
in the next two sections.  The final analysis section
summarises the overall performance of SCENT and
concludes.

2 SCENT

Detailed descriptions are given [Butchart et al., 1997]
so here only a summary of the model is given.

Learning in SCENT takes place by a simple recursive
search through the tree, with the winner in each subtree,
the node whose weight vector is nearest in Euclidean
space, moving towards the current input vector.  As in
other neural clusterers the movement is mediated by a
learning rate.

At initialisation SCENT consists of a single root node
that will eventually move to the centroid of the data.
As data vectors are presented to the net, nodes may
produce growth.  A node is allowed to grow when its
relative activity, the ratio of the number of times it has
won to the number of times its parent has won, exceeds
a threshold.  If a node has classified vectors that are
relatively near it, so that it is representing a dense
cluster, then it produces two children to subclassify the
cluster.  On the other hand if the data it is classifying is
spatially separated then the growth produces a sibling.
In either case any new node is a noisy copy of the
original.



To fully explore the data it is desirable for the network
to create much tentative growth which may later be
pruned.  If a node does not have a classificatory error
significantly less than its parent, or is insufficiently
active relative to its depth in the tree then it is removed.
Pruning is stochastic in SCENT.  In early epochs
pruning is more likely than later in the classificatory
process when less growth is taking place.  A form of
simulated annealing controls the probability of pruning.
Typically only 20% of all the nodes created will still be
in existence in the final tree.

SCENT is a fully autonomous model.  The net is given
no indication of the appropriate number of classifying
nodes to use, nor any indication of a desirable
hierarchical structure.  The results presented below use
identical runtime initialisations of the program for both
data sets.  However each run of SCENT produces a
unique tree, so that we present results over several runs
to address issues of stability and repeatability.

As a simple codevector classifier of unlabelled data the
performance of SCENT is comparable to the better
unsupervised neural net clusterers, such as Neural Gas
[Martinetz et al., 1993], see [Butchart et al., 1996] for a
full comparison.  Here, though, we investigate the
nature of the hierarchical structure produced for two data
sets where the vectors have a clear semantic and a
meaningful structure.

3 The Picture Data

The first data set consists of 153 vectors [Gale 1997].
Each vector has 2500 grey scale elements in the range 0-
255 representing a 50*50 grid of pixels.  The vectors
have been formed by scanning a set of pictures with care
being taken to ensure evenly sized and centralised
images.  There is no semantic information included in
the input vectors, which consist purely of the grey scale
images.  There are 17 categories of image, such as
snakes, birds, fish, clocks, tables and guitars.  There are
3 varieties of each category with the exception of pianos
(with 2) and cabbages/lettuces (with 4) giving 51
different images, each image occurs in 3 different
contrast variants.  The high contrast set is shown in
Figure 1.

In the grey scale images white is represented as 255 and
black is 0.  As can be seen from the set of images some
are lighter in general tone (fish, birds, mice etc..) and
some are generally darker (armchair, cabbages, upright
piano etc.).  The lighter images are in general smaller
varying from about 10% of the image (250 pixels) to
about 40% of the image (1000 pixels).  The darker
images are generally larger varying from about 20% to
80% of the image.

3.1 Results

Figure 2 shows a typical result formed by using
SCENT on the 153 vector data set.  Each final and non
final node is represented in the tree by its classifying
weight vector converted back into a 50*50 pixel image.
It generally collects the 3 contrast variants of the same
image together despite the fact that they are presented in
a random order each epoch.   The reason for this can be
seen by considering the metric used by SCENT to
determine the nearest vector for classification purposes.
This metric is the Euclidean distance formula:

d = (x i − w i)2

i=0
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where  d is distance, xi is the ith component of the input
vector and wi is the ith component of the weight vector.

In the lighter images the darkest contrast variants
average pixel values around 125 and the lightest
contrast variants average around 175.  In the darker
images the darkest contrast variants average pixel values
around 50 and the lightest contrast variants average
around 90.

From this it can be seen that, since white is represented
as 255, the difference in vector component for an image
with a non-white pixel as against a white pixel is larger
than the difference in vector component for two contrast
variants of the same image, considerably larger in the
case of a dark contrast darker image.  Hence two different
images will generally have a larger distance from each
other than will two different contrast variants of the
same image.

These pixel values also explain the ability of the model
to separate lighter and darker images, since for each of
the dark images the difference between a white pixel
with no image and a pixel with an image is
considerable (up to 80% of the component's possible
contribution) whereas a lighter image is generally
smaller and each pixel is less different from white.

Figure 2 also illustrates one of the benefits of using this
set of data.  The visual character of the data makes it
possible to see the nature of the analysis provided by
the network.  It can be seen that the weight vectors
move from rough generalisations at the top of the tree
structure to more detailed pictures at the lower levels.
In general the tree splits the lighter and darker images
into separate sub-trees.  The left hand sub-tree has
classified the lighter and smaller images and the other
two sub-trees classifying darker and larger images with
the right hand sub-tree classifying the darkest images.

Within the left hand sub-tree the next level classifies
according to the general orientation of the image.  The
first and second classifying vertical images; the first



classifies all the spiders, the vertical snake (adder), a
floor lamp and a more vertically oriented mouse; the
second deals with the darker variants - all the guitars,
the grandfather clock, the office chair and a rogue potato.
The third classifies the more diagonal elements, both
deer and a snake.  Finally the fourth classifies the
horizontal images, all the birds, all the fish, a snake and
two of the mice.

In the middle sub-tree the first and second sub-part are
leaf nodes.  The first classifies slightly more horizontal
elements, a coffee table, digital clock and a bed, while
the second classifies ones with more dark areas around
the top half, a drum and two tables.  The final one has
more general mid-dark images including virtually all
the frogs and the elk, which is darker than the two deer
and so is in this middle sub-tree.

In the right hand sub-tree we get all the really dark
images.  All the cabbages are in this sub-tree together
with large beds and pianos and the dark chairs and
potatoes.  Of the three sub-classifications the middle one
has the more vertical images the right hand one is a leaf
node with the dark areas slightly to the top of the image
and the left hand one has the largest dark images.

In two cases two leaf nodes appear to be the same as
their parent node.  This is partly because the parent
nodes are classifying two images and the full sized
images show more of a difference and also that the child
nodes are obviously newly created and have not yet had
time to differentiate properly.

SCENT has succeeded in producing a hierarchical tree
structure reflecting the clear visual differences between
the images.

4 The Zoo Data

The Zoo machine learning database [Murphy & Aha,
1992] is used as the second data set. It contains 101
vectors which  describe 101 instances of animals in
terms of 18 attributes: a naming label “animal name”;
15 binary attributes such as: aquatic or venomous; a
field giving the number of legs, an integer between 0
and 8; and a  type label. The type label indicates a
biological taxonomic group dividing the 101 instances
into 7 categories of animal, each uniquely labelled by an
integer. Six of the categories clearly define large
taxonomic groups, such as: mammals, birds and
insects. The seventh categorises other animals: clams,
crabs, crayfish, lobsters, starfish, octopus, scorpion,
seawasp, slug and worm. An example input vector for
the platypus is presented in Table 1, below.

Data was presented to SCENT in two formats, typed
and untyped. The typed data set contains 17 of the full
18 attributes, it excludes only the animal name from the

database. The untyped data set also does not contain the
animal name label but more significantly the type
attribute was removed and the number of legs attribute
normalised.

Feature Label Value
2 Hair 1
3 Feathers 0
4 Eggs 1
5 Milk 1
6 Airbourne 0
7 Aquatic 1
8 Predator 1
9 Toothed 0
10 Backbone 1
11 Breathes 1
12 Venomous 0
13 Fins 0
14 Legs 4
15 Tail 1
16 Domestic 0
17 Catsize 1

Table 1: The input vector for the platypus instance in
Zoo data set.

4.1 Results

Figure 3 shows a typical tree produced using SCENT
with 101 untyped vectors of the  Zoo data set. Each of
the data vectors is clearly categorised at both super and
sub-ordinate levels. The tree structure produced using
each data set was labelled in two ways. Firstly, the data
vectors represented by each leaf node of the tree were
labelled with the associated animal name tag. Secondly,
the semantic type label of each instance was examined
and the leaf node and super-ordinate clusters were
classified according to each of the 7 labelled groups.
Each super-ordinate class is further classified  at each
subsequent level of the tree. All instances of mammals
are grouped together, in the leftmost clusters of the tree,
and are subdivided into large-predatory, large-non-
predatory, small, aquatic-legged, aquatic-finned. The
middle cluster categorises fish and birds. The birds are
classified in two subtrees, as predatory or non-predatory.
The right hand cluster represents a variety of vectors
from the less well represented classes of animal.  It can
therefore be seen that the emergent clusters produced by
SCENT often correspond with natural taxonomic
groups.

The SCENT program produces similar tree structures to
that shown in Figure 3 for both the typed and untyped
data sets. It is interesting to note that the absence of the
type label, in the untyped data set, has little impact on
the structure of the tree or its hierarchical classification.
The structures of the trees produced by SCENT are



highly similar when clustering both typed and untyped
data and the classification hierarchy has the same super-
ordinate clusters as those identified in the type label.
Typical misclassifications seen in SCENT, such as
aquatic mammals (e.g., dolphin) grouped in the fish
cluster and the instance of newt classified with the
reptile cluster, are no more common in the untyped data
than in the typed data.

The SCENT classification of the Zoo data can be
compared to that produced by a hierarchical version of
the ART network, HART [Bartfai 1995].  Both
networks clearly become increasingly specific at lower
levels and in that sense are hierarchical,  however, there
is no evidence of super-ordinate classification being
developed within the HART tree structure,
consequently the categorisation classes do not reflect
natural groupings.  The lower level classes of the
SCENT model, do however often give natural sub-
groupings, because of the guiding super-ordinate
organisation developed during the tree’s evolution.

Table 2 shows the category prototypes produced by
SCENT for the mixed middle cluster of figure 3 (referred
to as class B). The top level classification is almost all
defined by the attributes no-hair, no-milk, has-eggs,
has-backbone, has-tail. This picks out more than one
taxonomic group. Sub-categories are specified more
precisely. For example sub-classes B1 and B3
(representing all the instances of birds) are
prototypically all of the above attributes together with
feathered, toothed, breathing, not-venemous and not
finned whilst B2 (representing the instances of fish) has
all the above features plus not feathered, not airbourne,
not breathing, not legged, aquatic, toothed and finned.

The superordinate prototypes produced by SCENT do
not rigidly fix the sub-ordinate prototype, that is,  a
sub-ordinate category may contain a “don’t care” item
where its superordinate category has indicated a definite
value of this attribute. This effect may arise from the
stochastic process of node creation within the model,
and it can provide flexibility in the classification of
potentially anomalous data.

It should be noted that the prototypes developed by
either the SCENT or HART models are influenced by
the semantic labelling present in the data set.
Anomalous  labelling within data vectors must therefore
be considered when viewing these results, especially
against  biological taxonomic classification.

The bottom-up development of hierarchical models,
such as HART, forces the propagation of any mis-
identification of critical features through to the
developed prototypes. Models which follow a top down
approach to classification, such as SCENT, do not suffer
from this problem.  The initial selection of critical
features is made using the variance of the entire data set,

thus producing a coarse grained measure of
classification.  Subsequent selection of critical features is
made on progressively smaller sets of input vectors (as
patterns are classified, fewer need classifying), the
classification therefore becomes more fine grained or
focused as the tree evolves.

The development of classification hierarchy models such
as HART and SCENT allows for rapid high level
analysis of  data sets. Critical features of the data are
easily identified, as are any  features of  little statistical
significance, at a number of levels within the natural
hierarchy of the data set.

The SCENT model is capable of learning stable
hierarchical clusters that include both super and sub
categories from semantic data.

5 Analysis and Conclusion

The SCENT model contains many elements of
stochasticity, such as: the random order of vector
presentation, the noisy process of growth, and the non-
deterministic pruning of unsuccessful growth.  Whilst
this allows for exploration of the architectural and
classification spaces available to the model, it also
imples that each run produces a unique structure.
Stability and repeatability therefore become important
aspects of SCENT’s performance.  In order to address
this issue, the two zoo data sets, with and without the
type label, together with the picture data were presented
for four separate runs.  The structural features of the
resulting trees are presented in Table 3.

It is apparent, first of all, that the there is variation in
the overall structure of trees produced in different runs,
however this variance is not excessive.

Overall the trees produced for the picture data set were
larger than those produced for either of the zoo sets.
This is accounted for exclusively by these trees having a
greater branching factor; indeed the zoo data tended to
produce slightly deeper trees.  In view of the model's
growth criterion for new clusters, downwards for dense
data points and sideways for spatially separated data,
this implies that the picture data has greater spatial
separation.

The two zoo data sets produced trees of slightly different
shape.  The removal of the type label caused the trees to
be shallower but with more branches, which as before
shows the untyped data to be the more spatially
separated.  The reason for this is that two similar
vectors with identical type fields are slightly less
similar when the type field is removed.  The full
theoretical relationship between training data, in
general, and the resulting structures produced by
SCENT is an issue currently being investigated.  From



the results and analysis presented here it can be seen
that the SCENT model is capable of discovering

interesting structure in unlabelled data, as well as
providing a straightforward codevector reduction.
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Tables and Figures

Feature Label Class B SubClass
B1

SubClass
B2

SubClass
B3

SubClass
B4

SubClass
B5

2 Hair no no no no * no
3 Feathers * yes no yes * no
4 Eggs yes yes yes yes yes *
5 Milk no no no no no no
6 Airbourne * * no * * no
7 Aquatic * * yes * * *
8 Predator * no * yes * yes
9 Toothed * no yes no * yes

10 Backbone yes yes yes yes * yes
11 Breathes * yes no yes * *
12 Venomous * no * no * *
13 Fins * no yes no no *
14 Legs * * no * * *
15 Tail yes yes yes yes * yes
16 Domestic * * * no * no
17 Catsize * * * * * no

Table 2: Catgory Prototypes for middle cluster of figure 3, the Zoo Tree.  “Yes” indicates attribute presence (weight
value >=1.0). “No” indicates absence of attribute (weight value <=0.0). “*” indicates a don’t care value for the
attribute (1.0> weight value >0.0)



Data Source Leaf Nodes Av. Branching Av. Depth

Pictures 30 3.2 3
38 3.5 3.2
34 3.2 3.2
27 3.2 2.7
Average 32 Average 3.27 Average 3.02
St. Dev.  4.1 St. Dev.  0.12 St. Dev.  0.20

Zoo Typed 30 2.53 3.57
23 3.30 2.65
24 2.77 3.58
30 2.56 3.77
Average 27 Average 2.79 Average 3.39
St. Dev. 3.3 St. Dev. 0.31 St. Dev. 0.44

Zoo Untyped 29 3.00 3.03
32 3.07 3.25
32 2.94 3.00
24 3.18 2.83
Average 29 Average 3.05 Average 3.02
St. Dev. 3.3 St. Dev. 0.09 St. Dev. 0.15

Table 3: Summary of the tree structures produced by SCENT over the three data sets and four runs.

Figure 1: The 51 high contrast pictures from the 153 pictures in the complete data set


