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Abstract-This paper addresses multiple loop feed- 
back minimum component OTA-grounded capacitor 
all-pole filters. A general theory and its formulation 
are presented. It is shown that many new interesting 
configurations can be produced, all popular approx- 
imations including the Butterworth and Chebyshev 
characteristics are realizable and some known typical 
structures are also derivable from the method. The 
minimal number of elements, that is, n OTAs and n 
capacitors for n poles is achieved, all capacitors are 
grounded, equal-value transconductances and equal- 
value capacitances can be arbitrarily selected. 

I. INTRODUCTION 

In OTA-C filter design the transconductance gain g m  of 
the OTA is used as a design parameter in the same way 
as R’s are used in conventional active-RC filters and as a 
result several advantages have been achieved [l-121. How- 
ever, the number of active components in OTA-C filters 
is rapidly growing as the filter order increases. The  larger 
number of elements generally increases power consump- 
tion, the occupied chip area, noise, circuit parasitics and 
unreliability. I t  is also well known that grounded capaci- 
tors can be implemented on a smaller area than floating 
ones and they can absorb many capacitive shunt para- 
sitics. Thus reducing the number of elements and utiliz- 
ing grounded capacitors becomes a major consideration 
in H F  continuous-time OTA-C filter design [2-5, 8-10]. 

In active-RC filter design there are mainly three meth- 
ods: cascade, simulation and multiple loop feedback, and 
each approach has its own special advantages [13]. For 
high-order OTA-C filter synthesis, the cascade and simu- 
lation methods have been widely used. Recently multiple 
loop feedback structures have also received much atten- 
tion [5-121. 

This paper will explore new minimum component mul- 
tiple integrator loop OTA-grounded capacitor structures 
of high-order all-pole filters. After a general formulation 
of the method in section 2, we will introduce some typical 
general structures in section 3. The exhaustive enumer- 
ation of filter structures for any given order will be then 
investigated in section 4. Section 5 will present numerical 
design examples, followed by conclusions in section 6. 

11. THEORY AND APPROACH 

Consider the model in Fig.1. I t  consists of n OTA-C 
integrators connected in tandem and a feedback network. 
All capacitors are grounded. Suppose that the feedback 
network is without any components. Then the model has 
the minimum number of components, tha t  is, n OTAs 
and n capacitors for realizing nth-order all-pole filters. 

The feedback network in the model can be characterised 
by the feedback connection matrix F as follows: 

(1) V’ = FV, 

where V,  = [V,I I 5 2  . . .KJ,  Vf = [V,, V,2 
and F = [ f i j l n x n .  The superscript t denotes transpose. 

.Vtnlt, 

Since there are no components in the feedback network, 

1 if there is a connection between Vfi and Voj 
f i j  { 0 otherwise 

Also, in F each row has one and only one unit element, 
for all fij = 1 there are i 5 j ,  and f,, = 1 [ lo ,  111. 

With rj = Cj/gmj,  the part of the n integrators 
connnected in tandem can be described by 

M(s)Vo = 1% - v, 
- 

tvlnere M ( s )  = 

s Tl 
-1 sr2 j I =  

-1 sr, 

For the whole system combining (1) and (2) yields 

A(s)V, = IT$= where A(s )  = M ( s )  + F (3) 

Let us use Ai j (s )  and IA(s)l to represent the cofactjors 
and determinant of A ( s ) .  Using the features of F and the 
structure of M ( s ) ,  we demonstrate that  A ~ , ( s )  = 1. The 
overall transfer function and the sensitivity functions can 
be then derived from (3) [lo], given by 

H ( s )  = V&t/V,, 1 Vo,/V,, = 1/IA(s)l (4) 

S:;(’) = - s r ~ A ~ ~ ( s ) / I A ( s ) I ,  SE(”) = -srnAnn(s)//A(s)l  
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The introduction of F and the relationship between F 
and the feedback connection are crucial for the unified 
analysis, synthesis and structure generation. Equation 
(3) also reveals clearly the filter performance dependence 
on the structure. 

The  design procedure for realizing the all-pole function 

H ~ ( s )  = l / (b ,s”  + bn-isn-’  + . . . + b l s  + 1) ( 5 )  

can be summarized as follows: 1) generate all filter struc- 
tures of order n with different feedback connections, 2) 
select the structure, 3) determine the associated H ( s )  by 
expanding IA(s) 1 ,  4) derive coefficient matching equations 
by comparing H ( s )  with H ~ ( s ) ,  5 )  solve the equations for 
r,, 6) compute the values of C, and gml . 

The most important thing in the process is to gener- 
ate filter topologies, which will be further discussed ir, 
the preceeding sections. To expand lA(s)l to attain H i  
and t o  solve the matching equations for rJ are another 
two concerns. For many low-order and some special high- 
order structures, IA(s)] can be easily handled and the de- 
sign equations may be solved explicitly. However, more 
often some symbolic analysis techniques may be required 
to  deal with ] A ( s ) ]  and in most cases nonlinear equa- 
tion solving approaches such as the Newton-Raphson al- 
gorithm may need to  be invoked to  solve the rJ equations. 
It should also be noted that there are n degrees of freedom 
in deciding C, and gml from rl and this gives much design 
flexibility. For example, we may set the equal transcon- 
ductances g,l = g,2 = = g,, = g m  and calcuiate 
C, = g,r,, or let C1 = C2 = + .  = C, = C ,  that  is. the 
identical capacitances and compute gm3 = C/r l .  

111. SOME T Y P I C A L %  A R C H I T E C T U R E S  

Three typical configurations, that  is, the inverse follon- 
the-leader-feedback (IFLF) , leapfrog (LF) and cascade 
are derivable from the general model and can be designed 
to realize (5) using the above procedure. 

If the elements in the last column of F all are unity 
and the other elements are zero, the circuit has the IFLF 
structure as shown in Fig. 2 and A ( s )  becomes 

sr1 0 0 
-1 sr2 0 

. . .  
0 0  1 0 0  -1 ST, + I  

A ( s )  = 

By expansion using the last column we obtain I<-l(s)l = 

Comparing i t  with ( 5 )  gives the design equations 
ns=lrz=b, j = 1 . 2  ..... n 

By simple manipulation of the equations we obtain 

7 1 7 - 2 . .  . r,sn + T I T 2 . .  . TTa-1sn-1 + . . ’ + q 7 2 s 2  + 71s + 1 

71 = b l ,  T, = b,/b,-l  
Calculating the concerned cofactors of A(s)  we attain 

the sensitivity functions: 

 SE'^) = - [EY=,(~I ,~ ra)s’1/[~,”=1(~1~=1ra)~’  + 11 
Substituting the design equations results in 

SE(s) = -(E,”=, b3sJ)/(Cy=l b3sJ + 1) h = 1,2 ,  ..., n 
The IFLF structure was also obtained by realizing the 

signal flow graph of the transfer function [12]. 
For F with fil = 1, i = 1 ,2 ,  ..., n - 1, j = i + 1 and 

fn, = 1, we have the LF configuration, as shown in Fig.3. 
Similarly the transfer function, design formulae and sen- 
sitivity functions may also be obtained. 

The LF configuration derived above is similar t o  that  
obtained by Nawrocki [ 5 ] .  However the realization tech- 
niques are different. In [5] the operational simulation ap- 
proach of passive low-pass LC ladders was implemented 
and the OTA-C realization needs quite complicated treat- 
ment of terminations. 

Finally when n is even and F = diag{  [ ; ; 1). the 
circuit becomes the cascade of biquadratic sections. 

IV. E X H A U S T I V E  S E A R C H  OF 
S T R U C T U R E S  

In Chis section we investigate the generation of all possi- 
ble filter configurations for a given order n according t o  
the features of the feedback matrix F .  In our discussion 
f n n  = 1 will be implied for all situations. 

It is very easy to verify that there is only one structrure 
for n = 1 and only one is practical of two combinations 
for n = 2, which corresponds to  f i l  = f 1 2  = 1. This 
biquad was previously discussed elsewhere [l, 21. 

When n = 3 [lo], having tried all 6 possibilities of F ,  
we have found that there are only three configurations 
that are realistic: IFLF, LF and cascade. 

For the fourth-order filters, noting that F is an upper 
triangular matrix and with some tedious manipulation of 
lA(s) I we obtain the general transfer function as 

( .) = 1 / { (71 72  73T.t) s4 + (TI 7 2  a f 4 4  + T l  T2 T4 f33 +T17-35-4 f 2 z  

+ 7 2  73T4 f l  1 ) s3 + [ Tl 7 2  (f33 f44+ f34)  S‘Jl‘7-3 f 2 2  f44+71 T4 ( f 2 2  f33 

S f 2 3 )  + T 2 7 3 f l l f 4 4  + TZT4f l l f33  + T 3 T 4 ( f l l f 2 2  + f12) ]s2  

t T l ( f 2 2 f 3 3 f 4 4  + f 2 2 f 3 4  + f23f44 + f24)  + ‘JZ(fllf33f44 

+f l l f ’34)  + 7 3 3 ( f l l f 2 2 f 4 4  + f 1 2 f 4 4 )  + T 4 ( f l l f 2 2 f 3 3  + f l l f 2 3  

t f 1 2 f 3 3  + f 1 3 ) I S  + ( f l l f 2 2 f 3 3 f 4 4  + f l l f 2 2 f 3 4  + f l l f 4 4 f 2 3  

+ . f 1 2 f 3 3 f 4 4  + f l l f 2 4  + f 1 3 f 4 4  + f12f34  + f14) )  

According to the properties of F there are altogether 
24 combinations of filter configurations. .4mong them 10 
structures are proved practical and are shown in Fig. 4. 
The corresponding F s  and IA(s)js are given below. 
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Circuit 1 : f12 = fz2 = f34 = 1, 
T1T3T4)s3 + (7-17-2 + TIT3 + T3T4)s’ + (71 + 7 3 ) s  + 1 

T I T Z T ~ T ~ S ~  + (TlT2T3 + sy,stematic and general. A variety of new structures can 
be generated and designed, and some known filter con- 
figurations are simply the special cases of the approach. 
The generated filter architectures have the fewest com- 

Circuit 2: fiz = f23 = f34 = 1 
TIT2 T3T4s4 +TI TZ T3S3 + (TI 7-2 + 1 T4 + 73 T4)S2 + (Tl + T 3 ) S s  1 T 

Circuit 3 : f1z = f24 = f34 = 1 
T1T2T3T4S4 + T1TzT3S3 + (7172 + T3T4)S2 + (TI + 7 3 ) s  + 1 
Circuit 4 : f13 = f22 = f34 = 1 
71 7 2  73 7 4  s4 + (71 7 2  73 + 71 Q 74 )s3 + (71 72 + 71 7 3 ) S 2  + (71 + 7 4 )  S + 1 

Circuit 5 : f i 3  = f23 = f34 = 1 
TiT2T3T4S4 + T1T2T3S3 + (TiT2 + T1T4)S2 + (Ti + T4)S + 1 
Circuit 6 : f13 = f24 = f34 = 1 
~ 1 ~ 2 ~ 3 ~ 4 s ~  + ~ 1 ~ 2 ~ 3 s ~  + r1r2s2  + (TI + 5744)s + 1 

Circuit 7 : f14 = f 2 2  = f34 = 1 
~ 1 ~ 2 7 - 3 7 - 4 ~ ~  + (TlT2T3 + 7-l7-3T4)s3 + (TlT2 + T1T3)S2 + T I S +  1 

7 - 1 T 2 ~ 3 7 - 4 ~ ~ +  ( ~ 1 ~ 2 ~ 3 + ~ 1 ~ 2 ~ 4 ) s 3 + ( ~ 1 ~ 2 + + 1 ~ 4 ) s 2  + T l S +  1 
Circuit 8 : f14 = f23 = f33 = 1 

Circuit 9 : f14 = f23 = f34 = 1 
71‘?2‘7374S4 + ‘7iTz‘QS3 + (T1T2 + 7-17-4)s~ -/- T I S  -/- 1 

Circuit 10 : f14 = f24 = f34 = 1 
T1T2T3T4S4 + T1T2T3S3 + T1T2S2 + T I S  + 1 

Note tha t  circuits 1, 2, and 10 [ l l ]  are the cascade, LF, 
and IFLF structures, respectively and  the others are new. 

Using the method we may systematically generate a 
large number of all-pole filters. Generally, for the nth- 
order there are n! possible configurations, of which three 
have been discussed in the preceding section. 

V. DESIGN EXAMPLES 

To realize the 4th-order all-pole characteristic ( 5 )  the co- 
efficient matching equations of circuits 2, 3, 5, 6, 9 and 10 
can be solved explicitly. If the factored form is exploited, 
the design of circuit 1 can also be tackled analytically. 

For the normalized 4th-order Butterworth filter with 
the inverse transfer function l / H d ( s )  = 

the parameter values of all the practical structures are 
calculated from the individual T~ equations by usiqg the 
explicit solutions or any nonlinear equation solvers and 
given in table 1. 

The Chcbyshev filters can also be synthesized. For in- 
stance, the element values as shown in table 2 are deter- 
mined for the realization of tjhe 1dB ripple, unity DC gain, 
frequency-normalized Chebyshev filter with i/H,j(s) = 

3 . 6 2 8 0 8 ~ ~  + 3 . 4 5 6 8 8 ~ ~  + 5.27496s’ + 2.69429s + 1 

VI. CONCLUSIONS 

The multiple loop feedback all-pole OTA-grounded capac- 
itor filter structiircs with the minimum number of com- 
ponents have been studied. The proposed approach is 

s4 + 2 . 6 1 3 1 3 ~ ~  + 3 . 4 1 4 2 1 ~ ~  + 2.61313s + 1 

ponents, n OTAs and n capacitors for nth-order unity 
DC gain all-pole filters. All capacitors are grounded, all 
transconductances can be identical, and the cut-off fre- 
quency is tunable by gm. 
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I I 

Circuit 
1 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Figure 1: Multiple integrator loop feedback model 

TI r2 T3 T.4 

0.28289 3.5833 2.4114 1.48425 
2.4114 1.48425 0.28289 3.5833 
1.28172 1.90934 1.41256 1.04953 
1.91952 2.32445 0.774769 1.04953 
1.23444 3.734 0.53917 1.45985 
1.64476 2.15761 0.974114 1.04953 
1.64476 3.20713 0.655337 1.04953 
2.69429 1.67213 0.285702 2.81871 
2.69429 0.285702 2.81871 1.67213 
2.69429 0.908307 1.41256 1.04953 
2.69429 1.95783 0.655337 1.04953 Fig  

Figure 2: IFLF structure 

Figure 3: L F  coilfiguration 

Table 1: Parameter values for Butterworth filter 

Circuit 1 TI r 2  7-3 T4 

1 I 0.765367 1.30656 1.84776 0.541196 

2 
3 
4 
5 
6 
7 
8 
9 
10 

1.84776 
1.53073 
1.76763 
1.9453 

2.23044 
2.23044 
2.61313 
2.61313 
2.61313 
2.61313 

0.541196 
1.57716 
1.74847 

0.896275 
1.14805 
1.53073 

0.667368 
0.639195 
0.92388 
1.30656 

0.765367 
1.08239 

0.845492 
0.858833 
1.02049 

0.765367 
0.639195 
0.8971 
1.08239 

0.765367 

1.30656 
0.382683 
0.382683 
0.667826 
0.382683 
0.382683 
0.8971 

0.667368 
0.382683 
0.382683 

Circuit 1 + * I- 

Ci rcu i t  6 

I r I 

.ire 4: Fourth-order all-pole OTA-C filter structures 
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