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Abstract. We provide physically intuitive mechanisms for the effect of noise on

excitation energy transfer (EET) in networks. Using these mechanisms of dephasing-

assisted transport (DAT) in a hybrid basis of both excitons and sites, we develop a

detailed picture of how noise enables energy transfer with efficiencies well above 90%

across the Fenna-Matthew-Olson (FMO) complex, a type of light harvesting molecule.

We demonstrate explicitly how noise alters the pathways of energy transfer across the

complex, suppressing ineffective pathways and facilitating direct ones to the reaction

centre. We explain that the fundamental mechanisms underpinning DAT are expected

to be robust with respect to the considered noise model but show that the specific

details of the exciton-phonon coupling, which remain largely unknown in these type of

complexes, and in particular the impact of non-Markovian effects, results in variations

of dynamical features that should be amenable to experimental verification within

current or planned technology. A detailed understanding of DAT in natural compounds

should open up a new paradigm of ‘noise-engineering’ by which EET can be optimized

in artificial light-harvesting structures.
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1. Introduction

The early stages of natural photosynthesis are able to capture and transport incident

light energy with nearly 100% efficiency, and a clear understanding of these processes

could be immensely valuable for optimizing the efficiency of artificial light-harvesting

devices [1]. Ultrafast nonlinear spectroscopy has been used to probe energy transfer

dynamics in the Fenna-Matthew-Olson (FMO) complex [4, 5, 6], a crucial part of

the photosynthetic system of green sulphur bacteria. Recently, further experiments at

physiological temperatures have been performed [7]. The FMO complex is an example

of a pigment-protein complex (PPC), a network through which electronic excitations

on individual pigments can migrate via excitonic couplings. It functions as a type of

molecular ‘wire’ that funnels light energy captured in the chlorosome antennae to a

reaction center (RC) where the energy is used to initiate chemical reactions [8]. These

experiments have demonstrated the existence of strong quantum coherences between

multiple pigments, and have shown that the highly efficient energy relaxation in this

system proceeds via coherently delocalized exciton states [4]. In addition, wave-like

beating between these excitons has also been observed to persist on timescales > 550

fs, a significant fraction of the typical transport time in FMO [5].

These observations have generated considerable interest in understanding the

possibly functional role of quantum coherence effects in the remarkably efficient

excitation energy transfer (EET) in FMO and other PPCs. It was initially argued

that the fast transfer rates may be attributed to the exploitation of quantum search

algorithms by the quantum dynamics of the FMO complex [1, 5]. However, typical

timescales for relaxation and dephasing in PPCs [23] suggest that any quantum

entanglement will be short-ranged, and as it is generally accepted that efficient quantum

computation requires long range entanglement [24], the application of the principles of

standard quantum computation in this system are far from straightforward. As a result,

the complete formulation of a possible link between quantum coherence and functionality

is still an open problem [9, 10, 11, 12].

Starting with the seminal work of [13, 14, 15, 18, 16, 17], EET has been studied

within the chemical physics community for several decades, yet the topic remains timely

[22, 19, 21, 20] due to the recent development of new experimental methods and also

novel numerical techniques which allow theoretical models of the, still unknown, system-

environment couplings to be tested[30]. Methods and ideas from quantum information

science have also recently started to provide a new and complementary perspective on

EET dynamics. Theoretical investigations of the role of pure dephasing noise in EET

have found that this noise has the ability to enhance both the rate and yield of EET

when compared to perfectly quantum coherent evolution [26, 27]. These results challenge

the traditional view in information processing that noise always degrades the efficiency

of quantum processes, and demonstrates that controllable noise can even be considered

as an additional engineering tool for tasks like excitation transport[28].

In the exciton basis normally used in previous studies [29], dephasing-assisted
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transport (DAT) is understood as resulting from noise-induced transitions between

exciton eigenstates states which cause energetic relaxation of the excitations towards the

RC. Though sufficient to suggest the possible existence of DAT in systems in contact

with an uncontrollable environment, this approach does not currently describe in a

transparent way how does DAT actually work in detail and how it might be controlled

or used. Such an understanding is essential for the fabrication of future artificial systems

in which unavoidable noise might to some extent be employed as a constructive element

that could use DAT processes to optimize light-harvesting and transport [2, 3].

This article revises and extends the physically intuitive picture we presented in

[9] of how DAT and more general noise-assisted transport operates and highlights the

engineering potential of deliberately applying noise in quantum transport networks.

Starting with an idealized and exactly soluble model of noisy network transport, we

revisit the underlying mechanisms that lead to DAT and then proceed to introduce

additional complexity into this model to reveal how these mechanisms work in

conjunction. Using these insights we analyze simulations of EET in FMO using a hybrid

basis that allows a novel and clear visualization of how these mechanisms operate in

this system and also make quantitative predictions about how they can optimize the

transport. In essence, it allows us to follow the evolution of the initial excitation across

the molecular ‘wire’ as it makes its way to the reaction centre. The exact nature of

the hybrid basis is governed by the relative magnitudes of the site energies and their

couplings to the neighbouring sites. In fact, it has been recently (and independently)

used to explain the experimentally observed quantum coherences in the photosynthetic

apparatus of cryptophyte algae at room temperature [25]. Finally, we expand upon

previous descriptions of DAT in FMO to consider forms of non-markovian dephasing

and show that despite the fundamental mechanisms supporting DAT are robust with

respect to the considered noise model, observable dynamical differences do appear which

should be amenable to experimental testing. These type of evidence would be most

valuable to discern the exact nature of the exciton-phonon coupling in different types

of photosynthetic complexes.

2. The Network model

Following previous theoretical descriptions of PPCs [22, 26, 27], we consider the PPCs

as networks composed of distinct sites, one of which receives a single initial excitation,

while another is connected to the RC. The network ofN sites is described by the coherent

hopping Hamiltonian

H =
N
∑

j=1

~ωjσ
+

j σ
−
j +

∑

j 6=l

~vj,l(σ
−
j σ

+

l + σ+

j σ
−
l ), (1)

where σ+

j = |j〉 〈0| and σ−
j = |0〉 〈j| are raising and lowering operators for site j, the

state |j〉 denotes one excitation in site j and |0〉 is the zero exciton state. The local site

energies are ~ωj, and vj,l are the coherent tunnelling amplitude between the sites j and l.
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We do not assume any particular form for the microscopic coupling that generates these

tunneling amplitudes and we therefore treat them as free parameters when considering

abstract networks as we do in section 3. For the case of the FMO complex we will

use the published Hamiltonian for P. aestuarii taken from Ref.[21], where the hopping

parameters are fixed by the geometry and dipolar-structure of the site interactions. We

will further assume that the system is susceptible simultaneously to two distinct types

of noise: A radiative decay process that transfers the excitation energy in site j to the

environment (with rate Γj) and a pure dephasing process (with rate γj) that destroys

the phase coherence of any superposition of localized excitations. The dynamics of the

network’s density matrix is modelled by a Markovian master equation of the form

ρ̇(t) = −i[H, ρ(t)] + Lrad(ρ(t)) + Ldeph(ρ(t)), (2)

where the local radiative and pure dephasing terms are described respectively by

Lindblad super-operators Ldeph and Lrad,

Ldeph(ρ) =
N
∑

j=1

γj[−{σ+

j σ
−
j , ρ}+ 2σ+

j σ
−
j ρσ

+

j σ
−
j ], (3)

Lrad(ρ) =

N
∑

j=1

Γj [−{σ+

j σ
−
j , ρ}+ 2σ−

j ρσ
+

j ], (4)

where {A,B} denotes an anticommutator. Formally, this approach is equivalent to the

Haken-Strobl model at infinite temperature [17], where pure dephasing is accounted for

in terms of a classical, fluctuating field. The total excitation transfer is measured by the

population transferred to the reaction center, modelled as the ‘sink’ node, numbered

N +1, which is populated by an irreversible decay process (with rate ΓN+1) from a site

k of the network and described by a Lindblad operator Lsink(ρ)

Lsink(ρ) = ΓN+1

[

2σ+

N+1
σ−
k ρσ

+

k σ
−
N+1

− {σ+

k σ
−
N+1

σ+

N+1
σ−
k , ρ}

]

. (5)

The model is completed by introducing the sink population

psink(t) = 2ΓN+1

∫ t

0

ρkk(t
′)dt′, (6)

which will be used as the key measure of the transport efficiency.

3. The fully-connected network

We shall show in the next few sections how the combination of inter-site coherence,

interference of tunnelling amplitudes, and energetic disorder can all conspire to drive

strong DAT. For clarity, we begin by presenting each mechanism separately in simple

network models in which these effects can be isolated. The first system we will consider

is the fully-connected network (FCN). The FCN is characterized by equal hopping

strengths between all sites, i.e. ~vj,l = J for any j 6= l, and for the case of a uniform

FCN, i.e. one in which ωj , γj, and Γj are the same on every site, an exact analytical

solution for the density matrix for arbitrarily large networks can be found [9]. We first
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Figure 1. psink vs. time for a FCN of N = 7 nodes with Γ = 0, J = 1,ΓN+1 = 1, for

the case of no dephasing (circles), pure dephasing (squares), static disorder (triangles),

and static disorder with uniform dephasing (star). Destructive interference in the FCN

can also be effectively removed (in the absence of pure dephasing) by the presence of

static disorder in the local site energies or hopping rates. Such disorder can prevent

the cancellation of tunnelling amplitudes and thus enhances the asymptotic value of

psink. For this case, the site energies are random numbers drawn uniformly from [0, 1],

while the dephasing rates are chosen to equal 1 for all the sites in the dephasing case.

Inset: psink(t) at a fixed time t = 50 as a function of γ.

consider such a uniform FCN with γj = 0, Γj = 0, and one excitation on site 1. The only

irreversible process left is the decay of population to the sink from site N . In Fig. (1),

the time evolution of the sink population for these conditions is shown (circles) for the

case of N = 7. This choice is motivated by the fact that the actual FMO complex we

will analyze in subsequent sections can be modelled as 7 sites network. In the absence

of any noisy process, the asymptotic value of psink is 1/6 and this should be contrasted

with classical hopping for which psink(t → ∞) = 1. The striking difference between these

results can be seen as a consequence of destructive interference of tunnelling amplitudes

in the quantum case. Although individual sites have finite amplitudes J for transfer to

other sites, a superposition state of the form |Ψij〉 = (|i〉− |j〉)/
√
2 cannot propagate in

the network due to the perfect cancellation of the tunnelling amplitudes from each state

in the antisymmetric superposition. This coherent trapping is illustrated in Fig. (2 a).

Having identified these non-propagating states, the excitation asymptotically transferred

to the sink can be understood as being just the weight of the initial state which lies

outside of the ‘invariant subspace’ which consists of all |Ψij〉 which have zero tunneling

matrix elements with the localised state |N〉 and therefore do not feel the presence of the
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Figure 2. A three-site fully connected network (FCN). In (a) destructive interference

of the tunneling amplitudes from each site in an anti-symmetric eigenstate prevent

transfer to the sink site (Blue). In (b) an energy mismatch generates an asymmetric

stationary state which is coupled to the sink and leads to transport. In (c), local

dephasing efficiently removes destructive interference effects and generally leads to

excitation transfer to the sink at a faster time scale than mere energy disorder.

sink. For the case considered here, this insight immediately predicts psink(∞) = 1

N−1
,

in agreement with the result shown in Fig. (1). Invariant subspace analysis of more

complex networks and other initial conditions can be found in Ref. [9].

Purely coherent dynamics can thus impede transport in multiply connected

networks via interference, but in the presence of dephasing noise trapped excitations

can become propagating as shown in Fig. (2 c). This is the first physical mechanism

of DAT: the removal of transport-suppressing interference effects. Fig. (1) shows that

as the dephasing noise strength γ increases, the efficiency rapidly rises to near-perfect

excitation transfer as the phase coherence of the |Ψij〉 states is destroyed. With further

increase in γ, the efficiency drops as noise suppresses tunnelling via the quantum Zeno

effect, as shown in the figure inset. We thus find an optimum dephasing strength

where the combination of coherent tunnelling and dephasing maximizes the transport

efficiency, a generic feature of networks which display DAT as we will discuss again in the

context of the FMO dynamics. This coherent trapping and DAT is related to the type

of ‘dark states’ found in quantum dot and optical systems [31, 32, 33]. If we allow in our

model for site energies to become disordered, another mechanism of DAT appears: line

broadening. Random energetic disorder removes the destructive interference discussed

above, and formally leads to psink(∞) = 1 in the absence of noise. Note however the

different time scale of the process, as illustrated by the triangles sequence in Fig. (1).

If the energy difference between sites is much greater than their coherent couplings, the

energy eigenstates are effectively localized, and coherent transport between these sites

is strongly suppressed. Thus EET times may be very long and excitations may decay

before reaching the target[9]. However, pure dephasing causes spectral broadening of the
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Figure 3. Energy level and coupling structure in a hybrid basis for a 3-site FCN

(inset). Coherent couplings are shown by straight arrows. Tuning v12 can bring the

|+〉 state into resonance with site 3 leading to fast transport. The |−〉 is uncoupled

from site 3, but noise induces incoherent transitions between |−〉 and |+〉 (corrugated
arrows), allowing populations initially held in |−〉 to also utilize the fast |+〉 → |3〉
pathway.

sites energies, and if it is sufficiently strong to cause overlap of site energies, additional

incoherent tunnelling between sites can be activated leading to an increase in EET

efficiency as shown in Fig. (1) (stars). Line-broadening is also the basis for the Forster

mechanism, which is frequently used to study EET in chromophoric systems and has

been well understood for some time [13].

It is important to note that highly efficient DAT is not simply achieved by using

noise to drive the dynamics into a purely classical regime, rather it is the combination of

both noise and coherence, which places the system at the boundary between quantum

and classical physics, that makes DAT much more efficient than purely coherent

dynamics. This interplay and its possible use for optimizing transport efficiencies can

be simply illustrated using a hybridized basis set to look at a slightly non-uniform 3-

level FCN with couplings v13 = v23 and site energies ω1 = ω2 6= ω3. Expressing the

FCN Hamiltonian in the basis {|+〉, |−〉, |3〉}, where
√
2|±〉 = |1〉 ± |2〉, leads to the

new level and coupling structure shown in Fig. (3). This figure shows how the system

can exploit coherence to alter the energy landscape via the coherent splitting of the

|±〉 states, and also to change the hopping matrix elements between states. In this

example, the inter-site coherence can be chosen to create a highly efficient transport

pathway to the sink by bringing the |+〉 state into resonance with |3〉 and enhancing

the tunnelling amplitude. However, the other state becomes decoupled from site 3 due

to larger energy mismatch and, in this particular case, cancellation of tunnelling matrix

elements. Population in this state is decoupled from the sink. Now, adding noise to the

system dephases superpositions of localised states |i〉, and in the hybrid basis this opens

an incoherent transition between |−〉 and |+〉. When noise is weak enough to preserve
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Figure 4. Energy level structure of the FMO Hamiltonian in the hybrid basis

described in the text. Only the most significant coherent couplings are shown (green

lines), and the coherent interactions which dominate the dynamics in the absence of

noise are labeled (I)-(III). For FMO, site 3 is coupled directly to the sink. The most

important new transport pathway arising from the presence of noise is labeled (IV).

(a) Population in |+〉 decays quickly into the sink due to nearly-resonant coherent

interaction with site 3. (b) Coherent coupling of |−〉 gives slow population transfer

due to large energy mismatch with site 3. (c) Resonant coherent coupling causes strong

populations oscillations between |−〉 and sites 5 − 7, inhibiting transfer to the sink in

the absence of noise. This pathway is suppressed by dephasing and enhances transport.

(d) In the hybrid basis, a pure dephasing noise opens an incoherent relaxation channel

which allows the population of the |−〉 state to decay into the |+〉 state and then

quickly decay into the sink via path (a).

the coherent level structure for sufficiently long times, the population initially in |−〉
can therefore also take advantage of the fast resonant |+〉 → |3〉 transfer leading to a

large DAT effect.

4. Light-harvesting molecules (The FMO Complex)

Having presented some underlying mechanisms of noise-assisted EET in the FCN

models, we now investigate in detail how they operate in the FMO complex [8].

The FMO complex is a trimer of three identical units, each composed of seven

bacteriochlorophyll a molecules embedded in a scaffolding of protein molecules. We

model the FMO monomer unit as a seven-site network with coupling strengths and

site energies taken from [21]. The typical EET timescale is known to be of several

picoseconds, which is much shorter than the 1 ns typical radiative lifetime of excitons.

The excitation starts on site 1, thought to be the site closest to the base plate, and

site 3 is connected to the RC (sink). Our numbering of the FMO sites follows the

conventional one [8, 21]. The excitation transfer in the FMO complex of P. aestuarii



Noise-assisted energy transfer in quantum networks and light-harvesting complexes 9

undergoing completely coherent dynamics is shown by the green line in Fig. (7), and

only reaches 57% over the typical transfer time of 5ps. This dephasing-free evolution

resembles the FCN case shown by the sequence of circles in Fig. (1) and can be explained

using a similar picture.

The strong coupling between sites 1 and 2 in the FMO Hamiltonian inspires a hybrid

basis {|+〉, |−〉, |3〉...|7〉}, where |±〉 = 1/
√
2(|1〉±|2〉). In this basis the Hamiltonian has

the local site energies and coupling structure shown in Fig. (4). An initial excitation on

site 1 corresponds to the initial condition
√
2|1〉 = |+〉+|−〉. As in the FCN example, the

strong coherent interaction between sites 1 and 2 pushes the |+〉 state closer in energy to

state |3〉 and, as shown in Fig. (4), the population in this state decays quickly into the

sink via path (I). Note however that there is a relatively small coherent enhancement

or cancellation of the transition amplitudes between |±〉 and |3〉 as v13 ≪ v23. The

near-resonance of the |+〉 state represents the dominant contribution to the initial fast

rise in psink in the noise-free case as shown in Fig. (5).

Once ∼ 50% of the excitation initially in |+〉 has decayed, the rise-time of psink
becomes much slower as the population initially in |−〉 does not propagate as efficiently

into site 3. To understand this we need to examine the two principal remaining paths

(II) and (III) in Fig. (4). The |−〉 state has roughly the same coupling strength to site

3 as the |+〉 state, however it is at a much higher energy. By turning-off all couplings

in the Hamiltonian so that only path (II) is active, we are able to measure the isolated

population transfer rate via this path, and find that it is over an order of magnitude

slower than the decay rate via path (I) in the absence of noise. The second process

(path (III) in Fig. (4)) would be obscured in a full site or exciton basis, but reveals itself

very clearly in the hybrid picture. As seen in Fig. (4), |−〉 is almost resonant with site

6, and as a result of constructive interference of the tunnelling amplitudes v16 and v26,

the effective coupling of |−〉 and |6〉 is about twice the energy mismatch of these states.

This strongly-coupled resonance causes the population held in state |−〉 to oscillate

across the complex between sites 1 and 2 and site 6. Sites 5 and 7, which are strongly

coupled to 6, also participate in these oscillations and these oscillations are shown in

Fig.(6)a. Direct and indirect coherent transport from sites 5 − 7 to the sink are even

slower than path (II), and these oscillations along path (III) dominate the dynamics

and effectively prevent this population from decaying into the sink via path (II). To

obtain an estimate of the importance of these oscillations we compare the average rate

of change of psink(t) (after the initial fast decay) for the full FMO Hamiltonian and the

same Hamiltonian with the coupling between |−〉 and site 6 set to zero. We find that

in the latter case the transfer rate becomes 50% larger than the former case.

The blue line in Fig. (5) shows the transport obtained with dephasing rates that

were optimized numerically for a transfer time of about 5 ps [9], and which cause psink
to increase to 0.903 over this timescale. This dramatic increase in EET arises primarily

from the noise-induced suppression of pathway (III) in Fig. (4) and the new noise-

induced incoherent transition between |−〉 and |+〉 shown as path (IV) in Fig. (4).
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Figure 5. Site populations vs. time (in ps) for the FMO complex subject to optimized

Markovian dephasing noise. We also show psink for the noiseless case (light green line)

and the transfer efficiency for the Linbladian noise model with optimized dephashing

rates (blue line). For the optimized decay rates, the transport is nearly complete within

the experimental 5ps transport time, and coherent oscillations in the dynamics persist

until 1ps.

Path (IV) allows the population initially in the |−〉 state to decay via the fast |+〉 → |3〉
path (I). In fact we find that dephasing on sites 1 and 2 alone is sufficient to drive psink to

about 0.85. The remaining improvement in efficiency in our optimized simulations arises

from strong dephasing on sites 3− 7. Dephasing on site 5− 7 (along with dephasing on

sites 1 and 2) destroys the coherent oscillations that keep the initial |−〉 population away

from the trap in the noiseless case, and the resulting incoherent transitions along path

(III) rapidly redistribute this population equally amongst states |−〉 and |5〉− |7〉. Line
broadening due to dephasing on sites 3−7 quickly transfers populations from sites 5−7

to the sink via sites 4 and 3, and noise on site 3 further enhances the EET rate via line

broadening effects on paths (I) and (II) of Fig. (4). The suppression of the |−〉 → |6〉
oscillations and the stronger decay of the |−〉 population via path (I) of Fig. (4) are

shown in Fig (6c) and Fig. (6d). Most importantly, it is not necessary for the dephasing

parameters to be exactly equal to the values obtained by optimization. Large variations

in these values still lead to essentially the same evolution of the population in the sink.

However, the values used to obtain Fig. (5) do give coherent oscillations which last up

to about 1 ps, which is roughly consistent with the experimentally observed coherence

time (> 600 ps) seen in FMO at 77 K. Similar robustness is also seen to variations in site

energies and inter-site couplings. This sort of robustness and effectiveness over a broad
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Figure 6. (a) Population of the |−〉 state (red line) and the combined populations

of sites 5 − 7 (blue dashed line) as a function of time for the case of no dephasing

noise. These populations coherently oscillate due to the resonant coupling of |−〉 to

site 6. (b) The population of the |+〉 state in the absence of dephasing. The |+〉 is

close to a direct resonance with site 3 and this population decays rapidly. This gives

the fast initial rise-time of psink in the absence of dephasing. (c) Population of the

|−〉 state (red line) and the combined populations of sites 5− 7 (blue dashed line) as

a function of time with optimized dephasing rates. Coherent oscillations between |−〉
and |5− 7〉 are suppressed and the population in the |−〉 states decays rapidly through

the incoherent |+〉 → |3〉 path described in the text. (d) The population of the |+〉
state with optimized dephasing rates. Oscillatory features are washed out compared to

the case of no dephasing, although the average decay rate is similar to case (b). Note

also that with the optimized dephasing rates the decay of the |−〉 state has almost the

same time dependence as the |+〉 state.

range of parameters is essential for the notion of noise assisted transport to operate in

natural conditions.

Although there is no direct evidence that natural evolution has performed such a

full optimization of the EET process with respect to dephasing noise [34], the analysis

above provides a good example of how one could in principle optimize EET in an artificial

system. By identifying the naturally effective and inefficient pathways, one could apply

noise selectively to create new pathways to circumvent the inefficient ones using the

efficient paths as in path (II), enhance the efficient paths with line-broadening as in

path (I), or even remove unwanted coherent dynamics such as path (III).

While the microscopic interaction parameters of the FMO pigments and the protein
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Figure 7. Site population and psink vs. time (in ps) for the FMO complex. We show

the noiseless case (light green line) and the transfer efficiency for a non-Markovian

model where each site is coupled to structured phonon bath as specified in [21] and

for different values of the local bath damping rate Γ expressed in spectroscopic units

(cm−1). The site population behaviour is plotted for Γ = 1 while oscillations are

strongly suppressed for larger values of Γ.

environment are not well characterized experimentally, our local markovian description

of the noise neglects a number of potentially important processes, and we now consider

two of these. One of these is the role of spatial correlations in the process of EET. The

other is the presence of temporal correlations, or memory in the environment that can

lead to altered exciton dynamics which are not necessarily governed by a Lindblad type

master equation. The first of these, spatially correlated noise can be modelled via the

Lindblad term

Ldeph(ρ) = −
∑

mn

γmn[Am, [An, ρ]], (7)

where Am = σ+
mσ

−
m. After a full optimization of all γmn, we find that psink saturates

at 0.931 after 5 ps. This small improvement indicates that non-local effects may be of

limited importance for EET in the FMO complex. However, there is experimental

evidence for strong spatial correlations in bacterial RC dynamics[35], conjugated

polymers [36], and correlated noise has also been predicted to be relevant in other

photosynthetic complexes [37].
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5. Non-Markovian models

In this last section, we focus on analyzing the possible impact on EET dynamics of

deviations from the Markovian model we have presented in the previous sections. As

stressed before, the theoretical model used in the previous sections treats pure dephasing

in a way equivalent to the phenomenological Haken-Strobl model. However, a number of

recent studies of EET in FMO have looked at the effects of different microscopic models

of the exciton-phonon interaction on the dynamics, and in particular at non-markovian

dynamics arising from strong coupling and/or the form of the spectral function of the

environment [10, 39, 11, 40, 38]. In this section we shall consider the structured bath

spectral density used by Adolphs and Renger in [21]. This spectral density contains a

contribution from a low-energy continuous density of states and a discrete high-energy

mode, and its effects on the dynamics of a dimer molecule have recently been simulated

using a new and numerically exact application of the time-adaptive density matrix

renormalization group (t-DMRG) method [38]. This study showed that the coupling to

the high-energy mode can lead to oscillations in the dimer population dynamics that

persist over the whole transport time, and moreover, that the efficiency of inter-site

transfer in the presence of these oscillations is just as high as when the high-energy

mode is decoupled from the dimer. In order to see if this coexistence of long-lasting

oscillations and efficient transport can operate in more complex networks, we now go

beyond the dimer setting of Ref.[38], and look at the effects of local mode couplings on

the EET dynamics of FMO.

We will focus here just on the discrete part of the spectral density, and consider a

model in which each FMO chromophore is linearly coupled to a harmonic mode with

frequency ωH = 180cm−1, with strength g =
√
SHωh and SH = 0.22, following [21]. To

describe these couplings we add to the previous Hamiltonian in Eq. (1) the following

two terms

HB =

7
∑

j=1

~ωha
+
j aj , HSB =

7
∑

j=1

g(ai + a+i )σ
+
j σ

−
j , (8)

withHB being the free Hamiltonian for the two-level bath with creation and annihilation

operators a+ and a, respectively, and mode frequency ωH , while HSB is the system-bath

interaction Hamiltonian with interaction strength g. We note that the frequencies and

interactions strength of the couplings predict a reorganization energy, a measure of

the coupling strength to the localized mode, of SHωH , which corresponds to a mode

occupation of just SH = 0.22 when the mode relaxes into equilibrium with respect

to the exciton-mode interaction at T = 0 K on a single isolated chromophore with a

single excitation present. It is therefore reasonable to consider the local modes within

a two-level approximation, and numerically monitoring of the populations in each local

mode confirmed that no local modes were strongly excited or saturated over the whole

time interval of the simulations. We also consider the case in which each bath mode

can be damped with a damping rate Γ, which gives a smooth spectral width to the

bath density of states and hence a decay of the correlation time of the environment.
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When this damping is large, the bath spectral density is essentially unstructured in

frequency space and induces a purely Markovian dissipation on the exciton dynamics.

The damping is introduced by considering a Lindblad term Lbath
rad (ρ) of the form as in

Eq. (4) with the same rate Γ for all the local baths.

In Fig. (7) we show the site population behaviour as a function of time for the case

of Γ = 1 and the transfer efficiency psink for different values of Γ. Coupling to lightly

damped coherent modes (Γ = 1) gives a very large improvement of the transport, as

compared with the noiseless case, with psink ∼ 0.95 at 5.5 ps. This is close to complete

transfer. Note that for this case the populations, notably in sites 1 and 2, display

strong oscillations for up to 5.5 ps, i.e., the whole transport time. This is perhaps

interesting as it shows that persistent oscillations are not necessarily inconsistent with

fast and total transport. This should be contrasted to the Lindblad dephasing model

of the previous sections, in which we found that excitonic coherences are observable

only over the first 20% of the total transport time when the transport is optmized.

Another interesting observation is that this non-markovian model appears to be able

to implement the enhancement and suppression of pathways through the FMO energy

landscape very well, better in fact than the optimised markov case. Comparing Fig. (5)

and Fig. (7) we see that in the local mode simulation, the bath strongly suppresses the

transfer of populations from sites 1 and 2 to sites 5 − 7 which occurs via the resonant

path (III) in Fig. (4) in the absence of noise. While markovian noise evetually destroys

these coherent oscillations ‘across the molecule’, there is still a substantial leakage via

incoherent tunneling into sites 5 − 7and their total population reaches as high as 0.3

at 1ps. In the local mode case, the total population of sites 5 − 7 never rise above

0.05. Apart from sites 1 and 2 , the only sites to become significantly populated are

sites 3 and 4, which are closely linked to the sink. The local modes seem to localise the

excitations more effectively around the sink and prevents the exploration of inefficient

paths like (III) in Fig. (4).

From the point of view of noise engineering, it seems that the application of non-

markovian, quantum noise might allow for a more precise control of the direction and

speed of the dynamics. However, it remains to be shown that the strong effect we see is

not just due to a fine tuning of exciton and mode parameters in the Hamiltonian, i.e .

we would like to see how robust this non-markovian DAT is. This point can be partially

investigated by looking at the damping of these modes. As illustrated in Fig. (7),

damping the modes leads to an incremental improvement of the transport efficiency as

the damping rate Γ acting on each site is increased from the value Γ = 1 (blue curve) to

Γ = 10 (red) and Γ = 100 (black). This incremental improvment in transport efficiency

coincides with increasingly fast decay of the oscillations of the population dynamics

(not shown). This shows that the long-lasting population oscillations in this noise

model which are seen for weak mode-damping are likely to involve exciton coherences

mediated by the local modes.

Increasing the damping of the local modes makes the effective environment seen by

the excitons more markovian in nature and lead to increases in the tranport efficiency
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as evidenced by the behaviour of psink. This conclusion that increasing markovianity

increases the transport rate differs from the one obtained within a different noise model

put forward recently in [39], where an enhancement of the transfer rate was observed

when the exciton-bath interaction was treated without the markov approximation. It

seems clear that linking markovian or non-markovian effects to an improved or slowed

down transfer is not straightforward and strongly depends on specific features of the

noise model being considered, and perhaps there is no universal, model-independent,

relation between non-markovian effects and efficiency of EET. As a result, we can

conclude that while the process of EET in FMO is clearly noise-assisted, in the sense

that evolution under the exciton Hamiltonian cannot account alone for the observed

transport efficiency, the EET dynamics and the transport efficiency as measured by

psink are very sensitive to the specific noise model. In particular, efficient transport with

long-lasting oscillations might arise from any combination of weak markovian damping,

slow, non-markovian environments as in Refs.[10, 40], spatially-correlated baths [36], or

coupling to local modes as shown here.

As the role of noise is clearly crucial for efficient EET, further experimental results

are needed to discriminate these different noise models. One important issue related to

this is whether or not, at physiological temperatures, the net effect of the dephasing due

to the coupling of the complex to the protein environment can be modelled in terms of

a classical, fluctuating field or must be treated explicitly as a quantum environment, like

the zero temperature localized mode model discussed in this section. The dynamical

behaviour of quantum correlations amongst the excitons [11], and also between the bath

and exciton system [41], is also expected to be sensitive to the noise model, and the

recent formulation of efficient techniques for the tomographic characterization of many-

body systems [42] may allow for experiments which can directly probe the nature of the

exciton-protein coupling in photosynthetic complexes.

6. Conclusions

We have revisited the basic mechanisms by which pure dephasing noise can open up

or suppress pathways through the energy landscape of a quantum network, and have

shown how these processes can dramatically increase the eficiency of EET relative to

their noiseless evolution. Using these insights, we contructed a hybrid basis for analysing

the FMO dynamics and indicated the key pathways which are responsible for the

inefficiency of the EET in the absence of noise. For excitations to propagate efficienctly,

these pathways must either be avoided or inhibited, and we have shown within a fully

Markovian approach how pure dephasing noise acheives this, and how it effects each of

the principal pathsways individually. As the identification of the transport-suppressing

pathways is made without any reference to the noise model, we believe that any noise

model that enhances tranport must more or less carry out this strategy of supresing

the inefficient paths and enhancing the direct relaxation channels. This intuition is

supported by our results using the non-markovian local mode model, where we find a
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very effective suppression of the inefficient pathways, leading to a transport time which

can even exceed the optimised markovian dynamics. The results obtained from these

models emphasize how knowledge of the underlying Hamiltonian, when expressed in

an appropriate basis, might allow the possiblility of using appplied noise almost as an

enginering tool for the creation of artifical light-harvsting architectures. Though we

have demonstrated the technique for the Fenna-Matthew-Olson (FMO) complex, we

could use such a path analyisis to quite literally follow the movement of the excitation

across any network to the sink, and enhance the energy flow with selective application

of appropriate noise interactions.

We have also shown in our local mode noise model, that the experimentally observed

transfer time can occur through dynamics which preserve coherences and entanglement

across the whole transport time. The optmized markovian theory can only preserve

coherences for 20% of this time. The potential relevance of this observation for

understanding the long-lasting coherences observed in FMO and other photosynthetic

complexes still remains unclear, and in particular, the effects of temperature must be

understood before a connection to the experimental data can be made. However,

this model provides an interesting new system for studying quantum noise-assisted

transport, and further emphaises one of the underlying message of this paper, which

is; the neccesary tasks of enhancing exciton transport revealed by our path analysis

can be acheived by a rich variety of noise models, each of which can generate very

different dynamics. As noise is a crucial part of the efficiency of EET in photosynthetic

complexes, the need for experimental discrimination of noise models is paramount. Such

studies would also provide clues to the still unanswered question of whether quantum

mechanics, in the form of coherence and entanglement, is necessary for EET or if it

is just an inevitable consequence of quantum mechanical evolution on the short length

and timescales found in pigment-protein complexes. Answering this question will require

further studies in energy transport across connected networks in the presence of various

noise models, with interesting ramifications for the role of coherence and entanglement

in the dynamics of interacting systems.
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