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ABSTRACT 

This paper addresses the performance of various statistical 
data fusion techniques for combining the complementary score 
information in speaker verification. The complementary veri-
fication scores are based on the static and delta cepstral fea-
tures. Both LPCC (Linear prediction-based cepstral coeffi-
cients) and MFCC (mel-frequency cepstral coefficients) are 
considered in the study. The experiments conducted using a 
GMM-based speaker verification system, provides valuable 
information on the relative effectiveness of different fusion 
methods applied at the score level. It is also demonstrated that 
a higher speaker discrimination capability can be achieved by 
applying the fusion at the score level rather than at the feature 
level. 

 

1. INTRODUCTION 

The fusion of the complementary information obtained from 
the biometric data has been a research area of considerable 
interest. The efforts in this area are mainly focussed on fusing 
the information obtained using various independent modali-
ties. For instance, a popular approach is to combine face and 
voice modalities to achieve a better recognition of individuals. 
The motivation behind this approach is that the independent 
information obtained using different modalities is thought to 
possess complementary evidences about the identity attributes 
of a particular person [1]. Hence combining such comple-
mentary information should be more beneficial than using a 
single modality.  Various statistical fusion techniques have 
been developed for this task [2]. These range from using 
different weighting schemes that assign weights to the infor-
mation streams according to their information content, to 
support vector machines which use the principle of obtaining 
the best possible boundary for classification, according to the 
training data. 

Speaker verification is the task of matching the information 
obtained from a given test utterance against the model associ-
ated with the claimed identity. The process involves a binary 
decision depending on whether or not the match score exceeds 
a preset threshold.  It is therefore desired that the metric 
adopted for this purpose can effectively discriminate between 
each true claimant and impostors. The most common approach 
to representing the registered speaker information is through 
training the Gaussian Mixture Models (GMM) on the speech 
feature data [3]. In GMM-based speaker verification, 
likelihood scores are used as matching metrics. Most of the 
verification systems use cepstral features to represent the 
speaker information. Static and delta cepstra obtained from 
speech represent two distinctive aspects of human vocal tract. 
Static cepstra represent the coarse aspects of vocal tract con-

figuration under the assumption of being stationary, while 
delta coefficients represent the time varying (dynamic) 
information such as speaking style, and speaking rate [4]. This 
information can be derived from cepstra based on the linear 
prediction analysis (LPCC), or based on the perceptual 
processing on filter bank analysis (MFCC). Though delta 
coefficients are derived from static coefficients using a 
polynomial fit method, they represent a completely different 
level of information about the speaker and hence can be 
considered independent in terms of the information content. 

Usually, static and delta cepstra are concatenated to represent 
a single feature vector for the task of speaker recognition. This 
is referred to as fusion at the feature level [5]. It is, however, 
reported in the literature that the fusion strategies work best at 
the score level [2]. Hence in this study, the fusion of the 
information obtained from static and delta cepstra is con-
sidered at the score level. 

Various score level fusion schemes are evaluated in this study. 
Amongst these, the Support Vector Machine (SVM) is of 
particular interest. The use of Support Vector Machines in 
speaker verification has been considered relatively recently. 
To date, however, SVM have only been implemented at the 
feature level for speaker verification [6]. In this approach, the 
feature space is projected into some different hyperspaces so 
that the discrimination between the true and impostor speaker 
utterances is maximised. It has also been shown that combin-
ing SVM and GMM would lead to improvement in discrimi-
nation capability. [6]. In the present work, SVM are used at 
the score level (to combine the likelihood scores obtained 
from the static and delta cepstra) with the aim to maximise the 
separation of the true and impostor speakers. The rest of the 
paper is structured as follows. Section 2 gives the theory of 
various fusion schemes. Section 3 details the experimental 
setup. Section 4 discusses the results, whilst Section 5 presents 
the overall conclusions 

 

2. FUSION TECHNIQUES 

2.1. Weighted Average Fusion 

In weighted average schemes, the fused score for each class 
(e.g. j) is computed as a weighted combination of the scores 
obtained from N matching streams as follows. 
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where, jf  is the fused scores for jth class, ijx  is the normalised 

match score from the ith matcher and 
iw  is the corresponding 

weight in the interval of 0 to 1, with the condition  
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There are three sub-classes of this scheme, which primarily 
differ in the method used for the estimation of weight values. 

 2.1.1. Brute Force Search (BFS) 

This approach is based on using the following equation [5]. 
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where
jf   is the jth fused score, p

jx  is the jth normalized score 

of the pth matcher, 2,1=p  and 10 ≤≤ a . 

2.1.2. Matcher Weighting using FAR and FRR (MW – 

FAR/FRR) 

In this technique the performance of the individual matchers 
determines the weights so that smaller error rates result in 
larger weights. The performance of the system is measured by 
False Acceptance Rate (FAR) and False Rejection Rate 
(FRR). These two types of errors would be computed at 
different thresholds. Threshold that minimises the absolute 
difference between FAR and FRR on the development set is 
then taken into consideration. The weights for the respective 
matchers are computed as follows [7]. 
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where u=1, 2, v =1, 2 and u is not equal to v with the 
constraint  1=+ vu ww  

The fused score using different matchers is given as 
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where, 
kw  is the weight from the kth matcher, p

jx  is the jth 

normalised score of matcher p and jf  is the fused score. 

2.1.3. Matcher Weighting based on EER (MW - EER) 

The matcher weights in this case depend on the Equal Error 
Rates (EER) of the intended matchers for fusion. EER of 
matcher m is represented asmE , m=1, 2 and the weight 

mw   

associated with matcher m is computed as [8]. 
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Note that 10 ≤≤ mw , with the constraint given in (2). It is 

apparent that the weights are inversely proportional to the 
corresponding errors in the individual matchers. The weights 
for less accurate matchers are lower than those of more 
accurate matchers.  The fused score is calculated in the same 
way as in equation (1).   

 

2.2. Fisher Linear Discriminant (FLD) 

In FLD, the linear boundary between the data from two classes 
is obtained by projecting the data onto the one dimensional 
space [9]. 

For data x, the equation of the boundary can be given as  

bxwxh T +=)( ,                 (7) 

where, w is a transformation matrix obtained on the 
development data and b is a threshold determined on the 
development data to give the minimum error of classification 
in respective classes. The rule for class allocation of any data 
vector is given by 
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2.2.1. Training the FLD 

Given a range normalised data 
ix   from class Ci having a 

multivariate Gaussian distribution with the 
statistics 21],,[ andiSm ii ∈ , where 

iS  and 
im  are a scatter 

matrix and mean for the particular class i. The scatter matrix is 
given as [9] 
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where, T is a transpose operation. 

The overall within class scatter matrix 
WS  and the between 

class scatter matrix 
BS  are given by 
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The transformation matrix w is obtained using the equation 
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2.3. Quadratic Discriminant Analysis 

(QDA) 

This technique is the same as FLD but is based on forming a 
boundary between two classes using a quadratic equation 
given as [10] 
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For training data 1 and 2 from two different classes, which are 
distributed as 21],,[ andimN ii ∈∑ , the transformation 

parameters A and b can be obtained as 
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The classification rule in QDA is of the same nature as in 
FLD, only the equation is replaced appropriately. 
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2.4 Logistic Regression (LR) 

The assumption in this technique is that the difference 
between log likelihood functions from two classes in data x is 
linear in x [9]. 
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Parameters in the above equation can be calculated with the 
maximum likelihood approach with an iterative optimisation 
scheme on some development data. Details can be found in 
[9].                                                                                  

The allocation rule for the test data is given as 
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2.5 Support Vector Machines (SVM) 

SVM is a classification technique based on forming a hyper 
plane that separates data from two classes with a maximum 
possible margin. SVM is based on the principle of Structural 
Risk Minimization (SRM) [11]. SRM principle states that 
better generalization capabilities are achieved through a 
minimization of the bound on the generalization error.  The 
SVM uses the following function to map a given vector to its 
label space (i.e., -1 or +1) 
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where ( )ixxk ,  is a kernel function that defines the nature of 

the decision surface that separates the data, x is the input 

vector of a test set, ix  is the input vector of the ith training 

example, l is the number of training examples, b is a bias 
estimated on the training set, 

iy  is the class specific mapping 

label and 
ia  are the solutions of the following Lagrangian in 

the quadratic programming problem. 
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with the constraints, 
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More details of this equation are given in [11]. In the resulting 
solution, most 

ia  are equal to zero, which refer to the training 

data that are not on the margin. The training examples with 
non-zero 

ia  are called support vectors, which are the input 

vectors that lie on the edge of the margin. Introducing new 
data outside of the margin will not change the hyper plane as 
long as the new data are not in the margin or misclassified. 
Therefore, the classifier must remember those vectors which 
define the hyper plane.  

The kernel function ( )ixxk ,   can have different forms. More 

details can be found in [11]. In this work, linear and 
polynomial kernel functions with a degree of 2 (quadratic) are 
used. These are given by following equations, 
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2.6. Range-Normalisation Techniques 

Range-normalisation is the task of bringing raw scores from 
different matchers to the same range. This is a necessary step 
in any fusion system as fusing the scores without such 
normalisation would de-emphasise the contribution of the 
matcher having a lower range of scores. Two different 
normalisation techniques have been evaluated in this paper 
[8].  

2.6.1 Min-Max Normalisation (MM) 

This method uses the following equation 
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where, x is the normalised score, n is the raw score, and max 
and min functions specify the maximum and minimum end 
points of the score range respectively.                        

2.6.2. Z-score Normalisation (ZS) 

This method transforms the scores having some Gaussian 
distribution to a standard Gaussian distributional form. It is 
given as 
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Where, n is any raw score, and mean and std are the statistical 
mean and standard deviation operations. 

 

3. EXPERIMENTAL SETUP 

3.1. Speech Data 

The speech data used in this work is from the TIMIT database.  
Material from all the 630 speakers is used. For each speaker, 
the utterances ‘sa1’ and ‘sa2’ are used for the development 
and testing respectively. The rest of the 8 utterances for each 
speaker are used for developing the speaker representation as a 
Gaussian Mixture Model (GMM) with 32 components. 

3.2. Feature Extraction 

The extraction of cepstral parameters is based on first pre-
emphasising the input speech data using a first order digital 
filter with a coefficient of 0.95 and then segmenting it into 20 
ms frames at intervals of 10 ms using a Hamming window. 16 
LPCC coefficients are then obtained via a linear prediction 
analysis. For obtaining MFCC, speech spectrum for each 
frame is weighted by a Mel scale filter bank. The discrete 
cosine transformation of the log magnitude outputs of these 
filters gives the MFCC for that speech frame. For each type of 
cepstra, a polynomial fit method is used to obtain the delta 
coefficients [4].  

3.3. Testing  

The scores generated with the development utterances are first 
used to obtain the training parameters in various fusion 
techniques. True and impostor scores from static and delta 
streams are pooled and then normalised according to the 
chosen range-normalisation scheme. Parameters obtained in 
the fusion schemes are then used in the test phase to transform 
the normalised test scores according to the fusion scheme. The 
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verification performance is then obtained on the transformed 
scores in terms of equal error rates (EER) via the DET curves 

.  

4. RESULTS AND DISCUSSIONS 

The experimental results are presented in the following tables. 
It can be seen that (in most cases) the ZS normalisation is 
exhibiting more effectiveness than the MM normalisation. In 
some cases though, the two approaches provide comparable 
performance. 

It can be observed that the way fusion techniques work for 
combining the static and delta features is not identical in the 
two considered cases of LPCC and MFCC.  In the case of 
LPCC features, improvements are seen in majority of the 
fusion cases by fusing the scores from static and delta features 
as compared to the feature level concatenation. In some cases 
such as Linear SVM and LR, the results are even better than 
using the individual feature streams.  Thus under this 
experimental setup, LR and Linear SVM give the best results 
for LPCC features. In the case of MFCC data, all of the fusion 
techniques except MW-EER indicate that score level fusion 
can give better performance than the feature level 
concatenation. But no fusion techniques for MFCC are seen to 
exceed the performance of the baseline MFCC static features. 
Thus the best results obtained in this case are still with MFCC 
static features. 

Thus it can be said that the speaker verification systems can 
benefit through the score level fusion, but this depends on the 
types of feature as well as the normalisation method used. 

Cepstra EER 
% 

Cepstra EER 
% 

LPCC static (s) 1.76 MFCC static (s) 2.06 
LPCC delta (d) 39.64 MFCC delta (d) 38.89 
LPCC (s + d) 2.44 MFCC (s + d) 3.23 

Table 1: Baseline Results 

EER % BFS MW 
(FAR/F

RR) 

MW - 
EER 

FLD 

LPCC (s + d) 2.17 3.17 2.16 10.64 
MFCC (s + d) 2.21 4.45 2.45 2.27 

 

EER % QDA LR SVM 
Linear 

SVM 
Poly 

LPCC (s + d) 4.60 3.87 4.20 4.39 
MFCC (s + d) 2.27 2.73 2.32 3.17 

Table 2: Score Level Fusion (MM Normalisation) 

EER % BFS MW 
(FAR/F

RR) 

MW - 
EER 

FLD 

LPCC (s + d) 1.74 2.70 2.06 2.85 
MFCC (s + d) 2.22 3.83 2.30 2.27 

 
EER % QDA LR SVM 

Linear 
SVM 
Poly 

LPCC (s + d) 1.75 1.14 1.08 1.71 
MFCC (s + d) 2.27 2.79 2.34 2.65 

Table 3: Score Level Fusion (ZS Normalisation) 

5. CONCLUSIONS 

It can be concluded from this study that the combination of 
complementary information from the speech static and delta 
cepstra can improve the performance in the speaker 
verification. Improvements are of greater extent in the case of 
LPCC features. In this case, the fusion of the information at 
the score level is more effective than that at the feature level. 
Amongst various fusion methods considered, SVM approach 
has appeared to provide the best performance in terms of 
reducing error rates in speaker verification. Finally the ZS 
normalisation method exhibits better performance than MM 
normalisation for the fusion task. 
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