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ABSTRACT 

This paper presents a comparative analysis of the performance 

of decoupled and adapted Gaussian mixture models (GMMs) 

for open-set, text-independent speaker identification (OSTI-

SI). The analysis is based on a set of experiments using an 

appropriate subset of the NIST-SRE 2003 database and vari-

ous score normalisation methods. Based on the experimental 

results, it is concluded that the speaker identification perform-

ance is noticeably better with adapted-GMMs than with de-

coupled-GMMs. This difference in performance, however, 

appears to be of less significance in the second stage of OSTI-

SI where the process involves classifying the test speakers as 

known or unknown speakers. In particular, when the score 

normalisation used in this stage is based on the unconstrained 

cohort approach, the two modelling techniques yield similar 

performance. The paper includes a detailed description of the 

experiments and discusses how the OSTI-SI performance is 

influenced by the characteristics of each of the two modelling 

techniques and the normalisation approaches adopted.  

1. INTRODUCTION 

Given a set of registered speakers and a sample utterance, 

open-set speaker identification is defined as a two stage prob-

lem [1]. Firstly, it is required to identify the speaker model in 

the set, which best matches the test utterance. Secondly, it 

must be determined whether the test utterance has actually 

been produced by the speaker associated with the best-

matched model, or by some unknown speaker outside the reg-

istered set. The first stage is responsible for generating open-

set identification error (OSIE). The decisions made in the sec-

ond stage can generate either an open-set identification-false 

alarm (OSI-FA) or an open-set identification-false rejection 

(OSI-FR). This paper is concerned with open-set identification 

in the text-independent mode in which no constraint is im-

posed on the textual content of the utterances. It is well known 

that this is the most challenging class of speaker recognition. 

Open-set, text-independent speaker identification (OSTI-SI) is 

known to have a wide range of applications in such areas as 

document indexing and retrieval, surveillance, screening, and 

authorisation control in telecommunications and in smart envi-

ronments. 

One of the key issues in designing an OSTI-SI system is the 

selection of the type of speaker modelling technique. The 

Gaussian mixture model (GMM)-based approach is the most 

common choice for this purpose. In this technique, a speaker 

can be modelled by using either a decoupled-GMM [2] or an 

adapted-GMM [3]. In the former case, each model is built 

independently by applying the expectation maximisation (EM) 

algorithm to the training data from a specific speaker. In the 

latter case, each model is the result of adapting a general 

model, which represents a large population of speakers, to bet-

ter represent the characteristics of the specific speaker being 

modelled. This general model is usually referred to as world 

model or universal background model (UBM). The common 

method used for the purpose of adaptation is based on the 

maximum a posteriori (MAP) estimation [4]. 

Two previous studies by the authors have independently in-

vestigated the performance of OSTI-SI using decoupled and 

adapted models respectively [1][5]. This paper combines the 

results obtained in the said previous studies and presents a 

comparative analysis on the use of decoupled and adapted 

Gaussian mixture models for the purpose of OSTI-SI. 

The remainder of the paper is organised in the following man-

ner. The next section describes the speech data, the feature 

representation and the GMM topologies used in the investiga-

tions. Section 3 details the testing procedure adopted, and 

Section 4 gives a summary of the score normalisations 

adopted. Section 5 provides a comparative analysis of the 

results obtained, and the overall conclusions are presented in 

Section 6. 

2. EXPERIMENTAL CONDITIONS 

The speech data adopted for this comparative study is based 

on a scheme developed for the purpose of evaluating OSTI-SI 

[1]. It consists of speech utterances extracted from the 1-

speaker detection task of the NIST Speaker Recognition 

Evaluation 2003. In total, the dataset includes 142 known 

speakers and 141 unknown speakers. The training data for 

each known speaker model consists of 2 minutes of speech 

and each test token from either population contains between 3 

and 60 seconds of speech. These amount to a total of 5415 test 

tokens (2563 for known speakers and 2852 for unknown 

speakers). Achieving this number of test tokens is based on a 

data rotation approach which is detailed in [1]. For training the 

2048 mixtures of the world model, all the speech material 

from 100 speakers is used (about 8 hours of speech). In the 

dataset there are also 505 development utterances from 33 

speakers which can be used for score normalisation purposes. 

In this study, each speech frame of 20ms duration is subjected 

to a pre-emphasis and is represented by a 16th order linear 

predictive coding-derived cepstral vector (LPCC) extracted at 

a rate of 10ms. The first derivative parameters are calculated 

over a span of seven frames and appended to the static fea-

tures. The full vector is subsequently subjected to cepstral 

mean normalisation. 
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The GMM topologies used to represent each enrolled speaker 

in the studies involving decoupled and adapted models are 

32m and 2048m respectively, where Nm implies N Gaussian 

mixture densities parameterised with a mean vector and di-

agonal covariance matrices. In the case of the decoupled mod-

els, the parameters of each GMM are estimated using the 

maximum likelihood (ML) principle through a form of the 

expectation-maximisation (EM) algorithm [2]. In this case, an 

initial estimate of the model parameters for the EM algorithm 

is obtained by using a modified version of the LBG procedure, 

termed distortion driven cluster splitting (DDCS) [6]. In the 

case of the adapted models, the parameters of each GMM are 

estimated from the world model using a form of the MAP 

estimation procedure [3]. 

3. TESTING PROCEDURE 

In each test trial, first, the following are obtained. 
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If O is originated from the mth registered speaker and nML ≠ m 

then an OSIE is registered and the score discarded. Otherwise, 

SML is normalised (with one of the score normalisation tech-

niques considered in the next section) and stored in one of two 

groups depending on whether the observation is originated 

from a known or an unknown speaker. After the completion of 

all the test trials in a given investigation, the stored SML values 

are retrieved to form the empirical score distributions for both 

known and unknown speakers. These distributions are then 

used to determine the open-set identification equal error rate 

(OSI-EER), i.e. the probability of equal number of OSI-FA 

and OSI-FR. 

When λλλλn is a decoupled-GMM, the log-likelihood score for 

the sample utterance O as shown in (1) is computed as: 
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where nn

cc bw
λλ represents the weighted Gaussian probability 

density function for the cth mixture in the nth speaker model  

(or world model), N is the total number of mixtures in the 

speaker models and the world model respectively and T is the  

number of observations ot in each test trial. 

When λλλλn is an adapted-GMM, the score is computed as: 
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where nn

tctc
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λλ

),(),( φφ represents the weighted Gaussian probability 

density function for the mixture given by φ(c,t) in the nth 

speaker model  (or in the world model). The function φ(c, t) 

represents the indexes of the C mixtures yielding the highest 

weighted probabilities for the feature vector ot in the world 

model.  

4. SCORE NORMALISATIONS 

The scores computed according to equations (3) and (4) are 

affected by three main factors: distortions in the characteristics 

of the test utterance, misalignment of speaker models due to 

differences in the training conditions, and the problem of un-

seen data [3]. In order to tackle these problems, score 

normalisation methods can be used. The normalisations con-

sidered in this study are the world model normalisation 

(WMN), the cohort normalisation (CN), the unconstrained 

cohort normalisation (UCN), T-norm and various forms of Z-

norm. Further details about these methods in the context of 

OSTI-SI can be found in [1].  

5. EXPERIMENTAL RESULTS 

Table 1 presents the results obtained for the considered model-

ling techniques in the first stage of the OSTI-SI. These results 

clearly show that the adapted-GMMs performed significantly 

better than the decoupled-GMMs. It appears that the coupling 

between the world model and each adapted-GMM seems to 

help the first stage of the OSTI-SI because of the better han-

dling of the unseen data [3] as well as the contaminations of 

the test data. 

 Decoupled-GMMs Adapted-GMMs  

OSIE (%) 33.7 ± 1.8 27.0 ± 1.7 

Table 1: Relative performance of the considered modelling 

techniques in the first stage of OSTI-SI. The error rates are 

given with a 95 % confidence interval. 

Table 2 shows the performance of the considered modelling 

techniques in the second stage of the OSTI-SI with various 

score normalisation methods. It also includes relative effec-

tiveness of these modelling techniques without any form of 

score normalisation i.e. when the likelihood scores were de-

termined according to equations (3) and (4).  

Normalisation  Decoupled-GMMs Adapted-GMMs 

None 43.6 ± 2.4 47.8 ± 2.3 
WMN 29.6 ± 2.2 22.9 ± 1.9 

WMNZ 26.8 ± 2.1 20.7 ± 1.8 

CN 22.5 ± 2.0 20.7 ± 1.8 

CNZ 20.9 ± 1.9 19.1 ± 1.8 

UCN 19.1 ± 1.9 18.5 ± 1.8 

UCNZ 20.7 ± 1.9 18.3 ± 1.8 

T-norm 34.2 ± 2.3 18.6 ± 1.8 

TZ-norm 29.6 ± 2.2 18.0 ± 1.7 

Table 2: Results obtained in the second stage of the OSTI-SI 

(results are given in terms of OSI-EER(%) with a 95% confi-

dence interval). 

These results indicate that without any form of normalisation 

the use of adapted-GMMs leads to a higher error rate than that 

obtained with the decoupled-GMMs. This is thought to be due 

to the effect of the speaker independent components in each 

adapted-GMM. It should be noted that such an effect can be 

removed by using WMN and therefore it is common in the 

literature to consider the performance of the adapted-GMMs 

in conjunction with WMN as the baseline [3]. 

Table 2 shows that the adoption of WMN results in a signifi-

cantly better result for the adapted-GMMs than for the de-

coupled-GMMs. Figure 1, which shows the DET curves ob-

tained for WMN with these two modelling techniques, further 

confirms this relative effectiveness. At the first glance, it may 
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be thought that this difference in performance is solely due to 

the better handling of the unseen data in the case of adapted-

GMMs. However, it can be argued that in the second stage of 

OSTI-SI, this problem exists to a lesser extent. This is because 

a speaker model selected in the first stage is always the best 

match for the test utterance over all the registered speaker 

models. It is therefore felt that the difference in the observed 

performance is too significant for it to be solely attributed to 

the better handling of the unseen data by the adapted-GMM. It 

is thought that different GMM topologies for the speaker mod-

els and the world model could contribute to this difference.   

It can be realised from Section 2 that, in the case of decou-

pled-GMMs, such a topological difference does exist. In this 

case, the speaker models are built with 32 mixtures whilst the 

world model consisted of 2048 mixtures. It is believed that 

with such a degree of topological difference, the contamina-

tions in the test utterance could be reflected very differently in 

the best matched speaker model and the world model, com-

pared to that in the case where the relevant models are of 

unique topology (which has been the case in adapted-GMMs). 

As a result, in the case of decoupled-GMMs, WMN may not 

be as effective as it is in the case of adapted-GMMs in com-

pensating for such contaminations in the test utterance. In 

order to verify this hypothesis, a world model with 32 mix-

tures was trained using the same speech data as that for the 

2048 mixture version. Table 3 presents the result of this study. 

It can be seen that, in this case, the performance of WMN im-

proves significantly. 
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Figure 1: DET plots for the considered modelling techniques 

with WMN and WMNZ 

World Model Topology 
 

2048mmmm 32mmmm 

OSI-EER (%) 29.6 ± 2.2 24.2 ± 2.0 

Table 3: Effectiveness of the WMN for two different world 

model topologies (in the case of decoupled-GMM). (Results 

are given with a 95 % confidence interval). 

Table 2, Figure 2 and Figure 3 indicate that in the cases of CN 

and UCN, the decoupled-GMMs offers similar levels of per-

formance to those obtainable with the adapted-GMMs. It is 

also observed that the performance of the decoupled-GMMs 

followed that of the adapted-GMMs more closely in the case 

of UCN than in the case of CN. When the adapted-GMMs are 

used with CN/ UCN, the cohort speaker models have to take 

the role of handling the unseen data. These models cannot be 

as effective as the world model in accomplishing this task. 

This is because, in the case of CN and more in the case of 

UCN, there is no guarantee that the unseen data falls outside 

the adapted regions of the competing models.  For the same 

reason, the performance obtained with CN and UCN in 

adapted-GMMs may not be considerably different from that in 

decoupled-GMMs. Based on the results obtained for CN and 

UCN, it appears that the cohort speaker models that are chosen 

based on their closeness to the best matched speaker model are 

better in accomplishing this task than the cohort speaker mod-

els chosen according to their closeness to the test utterance.  
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Figure 2: DET plots for the considered modelling techniques 

with CN and CNZ. 
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Figure 3: DET plots for the considered modelling techniques 

with UCN and UCNZ. 

It is interesting to note in Table 2 that the T-norm approach, 

which is one the worst performers in the case of the decoupl-

ed-GMMs, is one of the best performers in the case of adapt-

ed-GMMs. Figure 4 elaborates these results using DET 

curves. A careful investigation into these results shows that 
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the reason for this is, to a large extent, dependent on how each 

registered speaker model reacts to a given test utterance pro-

duced by an unknown speaker. In the case of adapted-GMMs, 

this reaction is much similar across the registered speaker 

population, whereas in the case of decoupled-GMMs, it is 

considerably different. As a result, the T-norm parameters 

computed for adapted-GMMs tend to be much closer to those 

of the unknown speaker distribution and this makes the T-

norm work better in this case. It should be noted that the Z-

norm, which is specifically designed for aligning the models 

(i.e. reducing the model dependant biases), tend to produce 

more consistent reactions across the registered speaker popu-

lation to a given test utterance produced by an unknown 

speaker. This may explain why, in the case of decoupled-

GMMs, when T-norm is combined with Z-norm, a relatively 

large improvement is observed (Table 1 or Figure 4). 
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Figure 4: DET plots for the considered modelling techniques 

with T-norm and TZ-norm. 

It is observed in Table 2 and Figures 1 – 4 that with two excep-

tions, Z-norm exhibits similar levels of performance for both 

considered modelling techniques when it is combined with 

other normalisation methods. These exceptional cases are the 

T-norm and Z-norm combination (i.e. TZ-norm) which is dis-

cussed above, and the UCN and Z-norm combination (i.e. 

UCNZ).  

In the case of decoupled-GMMs, UCNZ performs slightly 

worse than UCN. A close analysis of this case revealed that 

the underlying problem was the lack of availability of suffi-

cient data for computing the Z-norm parameters for every 

known speaker model. In particular, it was observed that, with 

the available development data, the tail ends of the distribu-

tions assumed for computing the Z-norm parameters were 

significantly inaccurate. This problem may be tackled by 

adopting a large development set representing enough varie-

ties of unknown speaker utterances. In other words, for each 

registered model, there should be an adequately large subset of 

the development data that can effectively be used as the un-

known speaker utterances. Achieving this in practice is 

extremely difficult, especially when dealing with a large set of 

registered models. Therefore, it may be best to avoid the use 

of combined Z-norm and UCN with decoupled-GMMs. 

However, this problem is not as significant when decoupled-

GMMs are replaced with adapted-GMMs. This is because, 

with adapted-GMMs, the scores produced by registered 

speakers for unknown utterances (in the development set) tend 

to be very similar. As a result, for each registered model, the 

validity of the Z-norm parameters obtained using the relevant 

subset of the development data is not too significantly 

influenced by the size of the subset. This may be the reason 

that, in the case of adapted-GMMs, UCNZ does not achieve a 

worse error rate than UCN. 

6. CONCLUSIONS 

This paper has presented a comparative analysis of the per-

formance of decoupled-GMM and adapted-GMM in OSTI-SI. 

It has been shown that, in general, the use of adapted-GMM 

results in better performance and this is particularly significant 

in the first stage of the OSTI-SI process. The better perform-

ance of the adapted-GMMs has been mainly attributed to the 

way in which such models handle the problem of the unseen 

data in the test segments. It was also found out that significant 

differences in the model topology limit the effectiveness of the 

WMN for the case of decoupled models. Furthermore, based 

on the experimental results it is shown that the cohort ap-

proaches are equally capable of achieving good performance 

with both types of models and this is found to be particularly 

evident for the case of UCN. It is also noted that T-norm is 

one of the worst performers in the case of decoupled-GMM 

despite being amongst the best performers in the case of 

adapted-GMM. Finally, the performance improvement achiev-

able by Z-norm is similar with both modelling approaches 

with the exception of the cases involving UCN and T norm 

(i.e. UCNZ and TZ-norm). 
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