Asynchronous Packet-Switch for SoC

Jun Xu, Reza Sotudeh
University of Hertfordshire
x.fun(@herts.ac.uk | r.soideh@heris.ac.uk

Abstract:

System-on-Chip (SoC) design is facing increasing
difficulties in its integration, global wiring delay and
power dissipation. Interconnection network technology
has the advantage aver the conventional bus technalogy in
its scalability; on the other hand, asynchrownous circuit
design technology may offer power saving and tackle the
clock-skew problem. The combination of these fwo
technologies therefore could be an optimal solution for the
interconmection of SoC. In this paper we focus on the
implementation of packet-switch with asynchronous
tecimology. The results of experiments run to evaluate
several aspects of the packet-switch implementation are
presented.

1 Introduction

As technology scales, a variety of challenges have been
presented to IC developers. System integration s one
among them. Although buses are still the dominant
approach so far, interconnection networks have been
recetved more and more attentions as an alternative
ntegration solution (2, 7, B]. One advantage of
interconnection networks over buses is the scalability in
throughput, latency, cost and integration of the system.

Wire delay is another challenge. The increase in the
delay of a global wire, almost doubling every year, affects
the signalling, timing, and architecture of digital systems.
This makes it extremely difficult to distribute a global
clock with low skew [2]. One solution is to devote a large
quantity of interconnect metal to building a low-
impedance clock grid or wire using new matenals,
However, this solution is anticipated to only be effective
for one or two more generations {1}. A more radical
approach is to eliminate global synchrony. One can gither
divide the chip into separate clock domains (known as
Globally Asynchronous Locally Synchronous), or more
aggressively, fully employ asynchronous circuit design
technology, such as {6].

Power dissipation has become another critical metric.
The growing market of mobile, battery-powered electronic
systems fuels the demands for ICs with low power
dissipation. Unfortunately, power dissipation in real-life
ICs does not follow the descending trend in semiconductor
technology [3]. Including asynchronous circuits into a
complex VLSI design can help reduce power dissipation
[9): unlike a synchronous system, charging and
discharging (consuming powet) in asynchronous circuits
takes place only when a ¢ircuit is in operation,

Having seen the chailenges of SoC design and the
advantages of interconnection-network technejogy and

0-7803-8656-6/04/320 00 ©@2004 JEEE

asynchronous circurt desigh technology, one question may
arise: could the combination of these two technologies
provide a solution to the mterconnection of SoC. This
paper aims to address this question and to consider the
feasibulity of interconnection network components using
asynchronous methods. In particular, the asynchronous
design of a packet-switch is examined. The rest of paper is
organized as follows, in Section 2, the architecture of a
packet-switch 1s presented; the implementation detail of
the packet-switch by asynchronous technology 1s
presented in Section 3; the simulation results are presented
in section 4; finally the conclusions are drawn in Section
5.

2 Architecture of packet-switch

An output-buffering packet-switch [11] is proposed for
this study. For ease of our
implementation, the packet- p— Sipd
switch only consists of two Blockp _Blacko
input/output ports as shown in
Figl. The packet-swiich
consists of four blocks: Ouiput
Block1, Output Block0, Input Tt o
Blockl and Input BlockO. Block] Blockl
Both input and output f .
blocks comprise of control Figure 1 A 2by2 switch
block and data path. The mmput data path can buffer one lit
(32-bit wide) at a time; the output data path as buffer
memory is the main storage element of the packet-switch.

Data transfers between two circuits are based on a
Point-to-Point flow control protocel involving requests,
which initialise each transfer, and acknowledgements,
which signal the completion of a transfer.

Each packet consists of two parts: header and payload.
Header is one flit long, located at the beginning of each
packet and containing all output ports a packet will pass
through. The rest of a packet 1s payload, only containing
data.

Packets at each packet-switch are processed m a
pipelined fashion (three stages) as shown in Fig2.
Incoming flits from previous packet-switches /source are
buffered at imput blocks as they arrive. If a flit is the
header of a

stagel sHage? staged
D) E packet, its
. kou [| Rouing | 1 | Memory-benk] 2 Mamn Output 0
Butfenng Dacison arangament Sorgae P! routlng
. destmation is

identified, and
then & reguest
is sent to the corresponding output block to arrange
memory for the packet. If the flit belongs to pavload, it is
then transmitted to the same memory as its header. In this

Figure 2 Pipelined processing model

335

packet-switch model, input blocks are mvolved in stages
1(a) and 1(b), and output blocks are involved in stages
1{c), 2 and 3.

2.1 Input data path

In a 2by2 packet-switch, routing decisions for a packet
can be made using just one bit of information. Here, we
assume that the routing information bit (RIB) for each
packet-switch is always the Least Significant Bit (LSB) of
each header. This determines the output block with which
to communicate

Making routing decisions is achieved by means of
shifting and buffering operations at input data paths. As

Data_in shown in Fig.3, the

Shift_r |bit0 |6 b itd) b3z ?nput data . path
- 2 ot includes 33-bit D-
type flipflops

(DFF's). The exira
bit is used to support
the shift operation
which removes the
LSB of each header
thus stripping off the
used bif of routing
information. An incoming flit is transmitted through 32
DFF's, outputting either from bit0 to bit31 or from bitl to
bit32. The former event takes place when the incoming flit
is the header and the latter event takes place when it is part
of payload. Multiplexers are deployed in front of the DFF's
to direct the incoming flit. As a header is buffered at input
data paths, the Most Significant Bit (MSB) is filled with
"0", bit] turning into the new LSB which together with the
rest of header will be transmitted to its next stage. Both
header and payload are read from bit! to bit32 of input
data paths.

Figure 3 Input data path

2.2 Memory Arrangement

Memory arrangement is mainly conducted by output
biocks. The overview of memery amrangement is
illustrated in Fig.4,
where we assume that
the memory consists

00, Arkarer_ 10,
[Atbier_!
Arbier_1| Arbiter
Arbiter_a

B

Ba_al0
Ba_1® Cantro| Block
E,

a0 St E

multiplexers in front
of it, one for data,
and the other for
control signals, Since

Daa_ti

e of two memory-
‘!}_ e mapw DANKS.

Duss o] i Each memory-

Dy] &_ Man =y bank has two 2-to-l

Datah_s

= i > MBL
Darap el
Data Path

each output block

éé; 210-1 Multiplexer 33— ORpate comimunicates with
Figure 4 Memory-arrangement at two input blocks,
Output Blockd ooty
multiplexers,

signals from either of the input blocks can be directed to
any memory-bank. The output control block forms
connections between 1nput blocks and memory-banks by
setting up the associated 2-to-] multiplexers. A counter,

implemented in the output control block, provides
memory-bank addresses and determines which pair of 2-
to-] multiplexers 1s supplying data.

To avoid collision, setting up 2-to-] multiplexers for
different packets must be mutually exclusive: only one
action is allowed to progress at a time, thercfore, an arbiter
must be employed. The arbiter allows one request to pass
through at a time; the one that arrives first is selected.
When two requests arrive simultaneously, it arbitrarily
selects one to go through.

3 Asynchronous implementation
3.1 Asynchronous design methodologies

The asvnchronous circuits in this paper are based on a
Speed-Independent model, where delays on wires are
regarded as zero or negligible while delays on gates are
unbounded [10]. Data encoding is based on bundled-data
protocol. In the case that data value is n-bit wide, n+2
wires, Le., n bits for data, 1 bit for request, 1 bit for
acknowledgement, are required in transferring each data.
Encoding for handshaking signals are based on a 4-phase
level signalling protocol (return-to-zero). Afier each
transfer, the channel signalling system returns to the same
state as it was in before the next transfer can start.

3.2 Input control logic

Processing headers and payloads at input blocks is
described by two Signal Transition Graphs (STG's) [4], as
shown in Fig.5 and Fig.6

. -
f respeclively.
mie W H:'" B H _rand H _a are the
e 55 handshaking pair
B WI) ¥ interacting with the
3 H sender for header-
e B s transmission. The
» receiver notifies the
“t—”" " } E § sender whether it is
Bir g fae 2 ready to accept a new
D_L{_. _—) ;El_ header using H a and
% J ERH H_r is activated when a
P <£& new header is asserted.

Shift r is the shifting
request signal, activated
only when an incoming
flit is the header, and is released after the header is latched
at the input data path.

Figure 5 STG for header-
processing at input blocks

T «Z The shifted header is
PSR, re E latched as Bufi r goes
f t "% high when the routing

Pufp_r- s Bulp st weepe P_a+

information bit s

peejded Supto] ndu projkeg

Datep_r+ swwwemlge Datap_a+ §. Samp]ed, Sh{f[_a,

§ } g Bufh a are the

peor = B <% acknowledge signals

Figure 6 STG for payload- corresponding to Shift R
processing at input blocks and Bufh R

respectively. The falling

transition of Shift_a indicates that the routing information
has stabilized in the input block.

Processing (each flit of) payload in an input block is

336

conducted in two steps, ie., buffering and then
transmitting it to the same output block as its header. The
input corirol block interacts with the sender wusing the
handshaking pair P_#/P _a. P_r rises as one flit of payload
is sent. The nput control logic buffers the flit at the mput
data path by raising Bufp r as soon as P_r goes high. P a
1s driven high as the flit is latched at the input data path,
indicated by Bufp_a going to high,

3.3 Qutput controf logic

Memory-ammangement in output contol blocks is
described by an STG presented in Fig.7. Ba r00 and
Ba ri0 are the request signals asserted by Input BlockO
and Input Blockl for memory-amrangement, and Ba_a(0
and Ba_ald are the corresponding acknowledge signals,
respectively,

Setting up the
o® o aa associated 2-to-]

t muitiplexers using
SATEET %Y handshaking pairs,
St r0 and St af),
tomaly, and for Input

Blockl using
St vl and St al,
respectively. The
counter, which
provides memory -
bank addresses
are supplying
data, 1s driven by the handshaking pair Counter r and
Counter_a. The cutput conirol block communicates with
the arbiter [13] using the handshaking pair, Arbiter r0 and
Arbiter_a0, for packets from Input Block(Q, and Arbiter ri
and Arbiter al, for packets from Input Blockl
respectively.

Transmitting packets, stored in memory, to their next

switches or destination hosts

EBa_a0. Ba 00+ Ba_r0+ Baal-

Sir0. Adwe 0+ Atbiter_al- Adbeeral
0. Aber_ads e Arbites el

Bas00- Si_10+ Siph Bt

Cowner_a-

—r

Ba_ 200~ M S1_al+

Figure 7 STG for memory-
arrangement at Output Block(

Diino_r+ mumge Datea_i+

is described in Fig.8. Packets

D“} are read out of memory flit
c T Y by flit using the handshaking

I 1 I pair, Datao_r and Datao_a,

Datao_r- et ok _at p lou_s

Figure 8 STG for
packet-output

and are forwarded to their
next packet-switchs or
destination hosts using the
handshakig signals, Inout r
and frout_a. Wote that Inout r and [nowt a are the
handshaking pair employed between packet-switchs or
between a host and a packet-switch. Signals on fnout r are
passed onte H_r (refer to section 3.2) when the incoming
flit is a header, and are passed onto P_r when the
incoming {lit is part of the payload. Correspondingly,
Signals on H_aand P q are multiplexed onto /nout_a.

4 Experimental results
4.1 Simulation environment

To evaluate the asynchronous implementation, a
synchronous packet-switch was also implemented based
on the same architecture presented in Section 2.
Asynchronous control circuits in this paper were

Tiéne (nsg

synthesized by Petrify with 0.5um CMOS technology, and
synchronous control circuits were synthesized by SIS.
Both implementations were evaluated in MicroSim Design
Centre. The minimum clock period, 6ns, was determined
by the critical path and obtained from the PSPICE
simulation.

The base system used for the simulation was a k-stage
butterfly network [12]. The packet size in the evaluation
was fixed. For the convenience, the interface between a
host and a network was viewed as contributing to the same
routing delay as a packet-switch [5].

4.2 Simulation results

Fig.9 shows that the latency of routing an 8-{lit long
packet through an empty 2-stage network as well as the
contributions of its header and payload to the overall
latency. Fig.10 further
shows the performance of
each packet-switch in the

network In processing

each individual flit. The

simulation results

Figure 9 Latency of indicate that despite the
transmitting an 8-flit packet asynchronous packet-
through a network switches outperformed

the synchronous packet-
switches in processing each individual flit, the latency of
routing the whole packet in the asynchronous network was
greater than in the

LY TSI S e

ol e : :;:: . synchronous network.
Bat— The teason that the
Tgn . s—— synchronous packet-
el switches lost to the

et asynchronous omes in

! rador T Penas processing gach

individual flit was
mainly caused by the
redundant time In each clock eyele. The 6 ns cleck period
was dictated by the slowest path as deseribed in Section
4.1. The optimal clock period for these two operations
based on our experiment was approximate 4ns. By
contrast, the asynchronous circuits immediately progressed
as soon as their environment responded.

When flits are transmitted consecutively in a pipeline
style, however, the routing time of each flit can be
overlapped by its neighbouring flits. The more they
overlap each other, the less routing latency a packet has,
For an asynchronous circuit, ruled by a 4-phase level
signalling protocel, recovery time was required to return
the asynchronous cireurt to its original state before another
transfer could start. Our

Figure 10 Delay at each switch

1 e sync 7 simulation result shows
B Syme the recovery operaticns
caused the asynchronous

pipeline less interleaved—

only 65.6% of payload-

routing time was

S e overlapped, ~compared
Figure 11 Latency as network to the synchronous

network, where 87.5%
of overlap rate was

scale increases

37

achieved.

The impact of network scale on its performance is
itlustrated in Fig.11. The result shows that the performance
of the asynchronous networks caught up the synchronous
networks after scaling up to 3 stages. It 13 because in an
unteaded network, where the delay of a header at packet-
swilches is always greater than the delay of payload, the
latency of routmg a packet is contributed by the time of a
header to establish the route from its source to its
destination plus the time of loading its payload from its
final stage packet-switch to its destination host. The latter
1s determined by the packet-size, the processing delay at
its final stage packet-swiich, and the pipeline efficiency;
the former 1s determined by the distance between the
source and destination and the delay of header at cach
packet-switch. When the packet size was fixed, as the
network scale (distance) increased, the latency of header
began to domnate and the routing latency of a packet in
an asynchronous implementation improved on that of a
synchronous implementation.

The impact of packet-size on the performance of

networks is presented

Y e Ay in Fig.12, where the
&, | 8 Smo packet size was varied
g) .
E from 8 flits to 32 flits.
Em ~ ”‘M The simulation result

mdicates that

. increasing packet size

T e can cause longer

Figure 12 L?tency as packet-size latency for a packet
increases] .

routmg n an

asynchronous network than in a synchronous one.

4.3 Gate-counts consideration

The gate-counts of synchronous and asynchronous
control logic are compared in Table 1. The data paths

both implementations share similar structures, and
therefore they are not considered in this paper.
Asynchronous Synchtonous
Block Name Implementation ImEIemenlathF
Gate Equiv. Gate Equiv, Gate-
ocounts Gate-counis Counts counts
(one) Input
control logic 161 235 73 1215
{cne) Output
coneol o 83 121 69 128
Total Gate- 438 689 4 a9
coults

Table 1 Gate-counts of asynchronous and synchronous
circuits

Table 1 shows that the asynchronous packet-switch has
similar size to the synchronous ote in output control logic,
however, it cost 100 more {equivalent) gates than the
synchronous one in input control logic. It is because in the
asynchronous input blocks, processing header and payload
had to be described using two separate STG’s due to the
limatation of the asynchronous synthesis tool.

S Summaries and conclusions

In this paper, we explored the feasibility of an on-chip

338

network using asynchronous circuit design technology as a
solution of system integration. A packet-switch was
proposed. The asynchronous implementation was
presented and compared with its synchronous counterpart.
The simulation results suggest that asynchronous networks
could outperform synchronous networks as the network-
scale increases while underperform with the increase of
packet size. The associated reasons were also explained.

6 Acknowledgement

The first author would like to thank UK Overseas Rescarch
Students Awards Scheme (ORS) and London South Bank
University for their financial support and especially Professor
Mark Josephs for his inspiring supervision,

7 References

[1] M.T. Bohr, lnterconnect scaling-the real limiter to high
performance ULSI, Proc. Int. Electron Devices Meeting, Dec.
1995, pp. 241-244,

[2] L. Benini and G. De Micheli, Networks on chips: a new SoC
paradigm, Computer, Volume: 35 Issue: 1, Page(s): 70 -78. Jan
2002.

3] L. Benini, G. De Micheli and E. Macii. Designing low-power
circuits: practical recipes, IEEE Circuits and Systems Magazine.
Vol: 1, Issue: 1, Page(s): 6 -25,2001. {4] T -A. Chu. Synthesis of

Self-timed VLSI Circuits from Graph-theoretic Specifications.
PhD Thesis, MIT, June 1987,

[4] T.-A. Chu. Synthesis of Self-timed VLSl Circuits from
Graph-theoretic Specifications, PhD Thesis, MIT, June 1987.

[5} D.E. Culler and 1P. Singh, Parallel Computer Architecture. a
hardware/software approach, Morgan Kaufinann Publishers, Inc.
1999, USA.

{6] ID. Garside, W.I Bainbridge, A. Bardsley, D.M. Clark, DA
Edwards, S.B. Furber, 1 Liu, D.W. Lloyd, 8. Mohammadi, 18,
Pepper, O. Petlin, 8. Temple and 1V. Woods, "AMULET 3i-an
Asynchronous System-on-Chip",
http:/farwrw cs man ac.uk/amulet/. 2001,

[7] P. Guerrier and A. Greiner, A generic architecture for on-
chip packet-switched interconnections, Design, Automation and
Test in Europe Conference and Exhibition 2000 Proceedings,
Page(s): 250 -256,2000.

[8] K Goossens. E Rijpkema, P Wielage, A Peeters and J van
Meerbergen, Philips Research, NL. Networks on Silicon: The
Next Design Paradigm for System on Silicon, Design
Automation & Test in Europe (DATE) 2002,

{9] Scou Hauck, Asynchronous Design Methodologies: An
Overview, Proceedings of the IEEE, Vol 83, No.l, pp6%-03,
January 1995.

[10] M.B. Josephs. SM. Nowick and cH. van Berkel,
Modelling and Design of Asynchronous cirevits, Proceedings of
the IEEE on Asynchronous circuits and systems, v. 87:2, Feb..
1999.
i11] M. 1. Karol, M. G. Hluchyj, and §. P. Morgan, Input versus
output queuing on a space division packet switch, [EEE
Transactions on Commtimications, COM-35 (12) 1347-1356,
December 1987,

[12] F. Thomson Leighton, Introduction to Parallet algorithms
and architectures: arrays, trees, hypercubes, Morgan Kaufinann
Publisher San Mateo, California, 1992. {13] G. Moore, VLSI:

Some fundamental challenges, IEEE Spectrum. Vol. 16, p.30.
1979.

[13) C. L. Seitz, System Timing. In C.A. Mead and L A,
Conway, editors, Introduction to VLSI Systems, chapter 7.
Addison-Wesley, 1980.

http://www.cs.man.ac.uWamuletl

