
Floating-Point Matrix Product on FPGA

Faycal Bensaali
University of Hertfordshire

f.bensaali@herts.ac.uk

Abbes Amira
Brunel University

abbes.amira@brunel.ac.uk

Reza Sotudeh
University of Hertfordshire

r.sotudeh@herts.ac.uk

Abstract

The nature of some scientific computing applications in-

volves performing complex tasks repeatedly on floating-

point data, often under real-time requirements. There-

fore, high performance systems are required by the devel-

opers for fast computations. Many researchers have begun

to recognize the potential of reconfigurable hardware such

as field-programable gate arrays in implementing floating-

point arithmetic. In this paper a floating-point adder and

multiplier are presented. The proposed cores are used as ba-

sic components for the implementation of a parallel floating-

point matrix multiplier designed for 3D affine transforma-

tions. The cores have been implemented on recent FPGA

devices. The performance in terms of area/speed of the pro-

posed architectures has been assessed and has shown that

they require less area and can be run with a higher frequency

when compared with existing systems.

1. Introduction

Many scientific computing applications demand high
numerical stability and accuracy and hence are usually
floating-point based arithmetic. A close examination of the
algorithms used in these applications reveals that many of
the fundamental actions involve matrix operations such as
matrix multiplication. However, these operations are of
O(N3) on a sequential computer and O(N3/p) on a parallel
system with p processors and hence are computer intensive
for large size problems. Reconfigurable hardware devices
in the form of Filed-Programmable Gate Arrays (FPGAs)
have been proposed as viable system building blocks in the
construction of high performance systems at an economical
price. Given the importance and the use of Floating-Point
Matrix Multiplication (FPMM) in scientific computing ap-
plications, it seems an ideal candidate to harness and exploit
the advantages offered by FPGAs including flexibility and
programmability. To increase their flexibility, recent FPGA
devices provide new fixed circuit functions which may be
employed in floating-point operations. Since they are al-

ready committed to the silicon die at manufacture time, there
is no added cost in circuit area if a designer chooses to use
them. Furthermore, a single FPGA device now contains
enough logic blocks to hold multiple floating-point units that
can perform computations concurrently. Thus, algorithms
that exploit the inherent parallelism of matrix multiplication
can be implemented on the device [1].

In this paper a single precision FP adder and multiplier
are presented, which are the basic components used in the
implementation of a proposed parallel FP matrix multiplier
designed for 3D affine transformations. A range of algo-
rithms such as modified Booth-encoder multiplication, tech-
niques and design approaches have been used to efficiently
implement the proposed cores in order to investigate the
best performances obtained. The target hardware for the im-
plementation and verification of the proposed architectures
is Celoxica RC1000 PCI based FPGA development board
equipped with a Xilinx XCV2000E Virtex FPGA [2]. More-
over, the developed architectures have been synthesized on
the most recent FPGAs exploring the new available features
on these devices.

The composition of the rest of the paper is as follow. Re-
lated work is presented is Section 2. Section 3 is concerned
with a brief review on the IEEE 754 standard for binary FP
arithmetic. In the next two Sections 4 and 5, the proposed FP
adder and multiplier with their hardware implementation are
described respectively. Section 6 is concerned with the pro-
posed parallel FP matrix multiplier designed for 3D affine
transformations and its hardware implementation. Section 7
concludes the paper.

2. Related Work

Researchers have investigated the use of FP arithmetic in
FPGAs and quantified its cost, anticipating the time when
FPGAs have sufficient density to support it. Work presented
in [3, 4] investigated the use of custom FP formats in FP-
GAs. Other studies are concerned with translating FP to
fixed-point [5] or optimizing the bit-widths of FP formats
as an alternative. Compared to IEEE standards [6], these
formats require significantly less area and run significantly

4661-4244-1031-2/07/$25.00©2007 IEEE

faster. Customized formats enable significant speedups for
certain applications, but many scientific applications depend
on the dynamic range and high precision of IEEE single and
double-precision FP to maintain numerical stability. A series
of works [7, 8, 9] ensued, all considering only IEEE single-
precision format, usually with no rounding capabilities ex-
cept in [8], where the authors implement rounding to near-
est. These works on IEEE FP found that single-precision im-
plementations were feasible, but extremely slow. As FPGAs
grow in capacity, a variety of work [10, 11] has demonstrated
the growing feasibility of IEEE compliant, single precision
FP arithmetic and other similarly complex FP formats on
FPGAs. Only few researchers have studied FP matrix multi-
plication on FPGAs. Specifically, [8] studies several aspects
of single precision FP matrix multiplication and compares
it to a microprocessor. [9] studies as well the implementa-
tion of FP arithmetic and used matrix multiplication as an
example application. More recently, [11, 12] considers both
performance and power issues for double precision FP ma-
trix multiplication.

3. The IEEE Standard FP Representation

Currently the most important FP representation for real
numbers is defined by the IEEE standard 754 [6]. The IEEE
FP representation makes use of an exponential notation to
represent real numbers, in which any real number is decom-
posed into: (1) sign, (2) fraction and (3) an exponent, for the
implicit binary base:

(−1)s 1.f × 2E−bias = (−1)s 1.f × 2e (1)

where s denotes the sign, f the fraction and E the bi-
ased exponent. The sign is represented by only one bit
(0 for positive and 1 for negative numbers). The frac-
tion represents a number less than 1, but the significand or
mantissa m of the FP number is 1 plus the fraction part
(m = {m0.m1m2 . . . mn} = 1.f), where mi is the ith bit
of the mantissa. The FP number is “normalized” when m0

is one. The exponent is a signed number represented using
the bias method with a bias of 2k−1 − 1, where k is the bit-
width of the biased exponent. The term unbiased exponent
(or just exponent) refers to the actual power to which 2 is
to be raised [13]. The IEEE standard 754 has four different
precision formats: single, single extended, double and dou-
ble extended. The single and double precision formats are
the most used. Single precision representation requires 32
bits, one bit for the sign, 23 bits for the mantissa and eight
bits for the exponent, using the implicit binary base. Dou-
ble precision in the standard makes use of 64 bits, 52 for the
mantissa and 11 for the exponent. The mantissa is assumed
to be normalized and only includes the bits in the fractional
part f (the bit at the left of the decimal point is implicit and,

normally, supposed to be 1). The single-precision biased ex-
ponents of 0 and 255 (0 and 2047 for double-precision) are
used for the special values: Not a Number (NaN), Infinity
and Denormalized numbers. For the denormalized numbers,
because of the additional complexity and costs, this part of
the standard is not commonly implemented in hardware.

3.1. Rounding and Normalizing

Subsequent to all arithmetic operations performed on the
FP value, it is necessary to return it to the standard, normal-
ized form, before presenting the result for storage or further
processing. Normalizing a FP value refers to shifting right
or left its mantissa until its Most Significant Bit (MSB) is 1,
while incrementing or decrementing the exponent for every
bit the mantissa was shifted. In this way, the FP value is
brought into its normalized form.

During processing, mantissa bit-width is normally in-
creased. Hence, to return the post-processing FP value into
the correct format, its mantissa bit-width must be reduced to
its original size. However, reduction of bit-width introduces
the need for rounding, because the fraction part needs to be
converted into a less precise representation.

The IEEE standard specifies four rounding modes: (1)
Round to Zero (RZ); (2) Round to Nearest (RN);(3) Round
to Positive Infinity (+∞) (RPI); and (4) Round to Negative
Infinity (−∞). These modes are implemented by extend-
ing the relevant significands by three bits beyond their Least
Significant Bit (LSB) L. These bits are referred to, from
the most significant to the least significant, as “guard” (g),
“round” (r) and “sticky” (st). The first two are normal exten-
sion bits, while the last one is the logical OR of all the bits
that are lower than the r bit [13, 14]. There are two cases:

1. If the hight order bit of the significand is 0, it must be
shifted one bit left including the extension bits.

2. If the hight order bit of the significand is 1, set s = s∨r,
r = g and increment the exponent by one.

The precise rules for rounding depend on the rounding
mode and are given in Table 1. In this table, blanks mean
that truncation takes place and the bits of the significand are
the actual result bits. If the condition listed is true the sig-
nificand is incremented by one. Out this four, the most im-
plemented one is the RN mode, as it minimizes the rounding
error and it is the default mode in the IEEE standard. In the
next sections, the proposed FP multiplier and adder are pre-
sented with their hardware implementation. In this paper,
the implemented format is the IEEE single precision.

4. Floating-Point Multiplication

Let us consider three FP numbers X , Y and Z. Using
the IEEE standard, the three numbers can be represented as

467

Table 1. Rules for rounding modes [13]
Rounding

mode

Sign of the result

≥ 0

Sign of the result

< 0

−∞ +1 if r ∨ s
+∞ +1 if r ∨ s
0

Nearest +1 if r ∧ mmsb or
r ∧ s

+1 if r ∧ mmsb or
r ∧ s

follows:

X = (−1)s1m1 × 2e1 , Y = (−1)s2m2 × 2e2 (2)

and Z = (−1)sm × 2e

where e1 = E1−bias, e2 = E2−bias and e = E−bias
The product Z = X × Y involves the following steps:

1. If one or both operands is equal to zero, return the result
as zero, otherwise:

2. Compute the sign of the result: s1 xor s2

3. Compute the exponent of the result: E = E1 + E2 −
bias

4. Compute m:

• Multiply the mantissas: m = m1 × m2

• Round the result to the allowed number of man-
tissa bits

5. Normalize if needed, by shifting m right and incre-
menting E.

4.1. Proposed Floating-Point Multiplier

Figure 1 illustrates the block diagram of the proposed FP
multiplier. The two input FP numbers are unpacked and
checks are performed for zero, infinity or NaN operands. For
now, we can assume that neither operand is zero, infinity or
NaN. The mantissa multiplier is a 24-bit parallel multiplier
which consists of two parts: an array and a final adder. The
array uses the modified Booth’s algorithm which is an effec-
tive algorithm to reduce the number of partial product to be
added by factor of two. Therefore, in our case, the number
of partial products is reduced from 24 to 12.

4.1.1 Modified Booth-Encoder Multiplication

Let m1 and m2 be the mantissas of the two FP numbers to
be multiplied. m = m1×m2 is the mantissa of the multipli-
cation result. Since the mantissas are positive numbers and
have a constant word-length W , modified Booth encoding
can be further improved. The unsigned representation of m2

is as follows:

m2 =

W−1
∑

x=0

m2,x × 2x (3)

��������

�	
���

���

�
�

�
�

�
�

�
�

��

�
�

�
�

����������

�

�����

��

����������

�	
�

����

���������
����	���

�������

����	

�
��

�

��
��
��

��
�

�

∞∞ ∞∞

�

Figure 1. Block diagram for FP multiplier

Equation 3 can be rewritten as follows:

m2 =

W/2−1
∑

y=0

(m2,2y + 2 × m2,2y+1) × 22y (4)

or:

m2 =

W/2−1
∑

y=0

(Dy) × 4y (5)

where: Dy = (m2,2y + 2 × m2,2y+1) and Dy ∈ {0, 1, 2, 3}
Using equation 5, the mantissas product m can be computed
as follows:

m =

W/2−1
∑

y=0

m1 × Dy × 4y =

W/2−1
∑

y=0

PPy × 4y (6)

where: PPy = m1 ×Dy . Table 2 shows the possible values
of PPy and Dy .

Table 2. Possible values of Dy and PPy

m2,2y+1 m2,2y Dy PPy

0 0 0 0
0 1 1 m1

1 0 2 2 × m1

1 1 3 3 × m1

By using the unsigned representation for the mantissas,
the three following points, which are part of the standard
modified both algorithm, have been avoided:

1. Extend the sign bit to ensure that the word-length of the
multiplicand is even;

2. Append a 0 to the right of the LSB of the multiplicand;
and

3. Compute the two’s complement of the multiplier.

468

4.2. Hardware Implementation and Results

The proposed FP multiplier shown in Figure 1 has been
implemented using Handel-C [15] on the RC1000 board
which is a standard PCI bus card equipped with a Xilinx
XCV2000E Virtex-E FPGA. It has 8 MBytes of SRAM di-
rectly connected to the FPGA in four 32-bit wide memory
banks. All are accessible by the FPGA and any device on the
PCI bus [2]. The mantissas multiplier has been implemented
using two different approaches: (i) Modified Both algorithm
described in the previous section with a parallel adder for
partial products accumulation. (ii) A parallel pipelined in-
teger multiplier. Figure 2 shows the different components
used in the first approach.

��������������

��

������������	

���	��	��

����������

��������	����	�

�
������

�

�
�

��
�

��
�

�
����

�

�

��������

�������

�������

�

��������	����	�

�

Figure 2. Mantissa multiplier

The four possible values of Dy are computed and
stored in an array of registers. For each combination
(m2,2y,m2,2y+1), the corresponding Dy value is used as an
input for the parallel adder from Xilinx CoreGen [16]. The
output from the adder is stored in a 27-bit register. Its two
LSBs are copied to the two Most Significant Bits (MSB)
of a 24-bit register which is shifted right by two after each
accumulation. The final result is stored in both registers.
The 24-bit register is used during the rounding process. The
value 2×m1 is computed by simply performing a right shift,
while 3 × m1 is calculated by the same adder used for the
partial products accumulation. For the second approach, a
24-bit parallel pipelined multiplier from Xilinx CoreGen is
used to perform the multiplication of the two input mantis-
sas. The remaining components of the proposed multiplier
are common for both approaches. The sign of the result s is
easily determined by XORing s1 and s2. As the first step of
the calculation of the result exponent E, the sum E1 + E2

is performed using a parallel adder from the CoreGen. The
excess bias is removed from E1 + E2 using the same adder.
This is performed by giving as input the two’s complement
of the bias (in our case 129). The rounding mode used in our
implementation is the RN mode. The rules listed in Table 1
are tested by the rounding control unit.

On the XCV2000E (bg560-6) FPGA, the proposed FP
multiplier based on the first approach consumes 2% of the

available FPGA area and runs with a maximum frequency
of 60 MHz, while the implementation based on the second
approach consumes as well 2% of the total available area
and operates at a maximum clock frequency of 104 MHz.

The proposed FP multiplier has also been implemented
on the XC2VP125 Virtex-II Pro FPGA in order to employ
the available (18 × 18 bits) embedded multipliers. Table 3
illustrates the performances obtained in terms of area con-
sumed and speed which can be achieved.

Table 3. Area/Speed implementation report
Approach

used
Latency Area

Speed

(MHz)
Logic
(%)

18× 18

Mults
Booth encod-

ing
15 1 - 120

CoreGen 7 1 4 231
Multiplier in

[11]
- 1 - 220

In [11], 32-bit, 48-bit and 64-bit pipelined FP adders and
multipliers were designed. The last row of Table 3 illustrates
the implementation result of the single-precision FP multi-
plier which has been implemented on the XC2VP125 Virtex-
II Pro FPGA. Our multiplier based on the Xilinx CoreGen
approach exhibits better results in term of the maximum run-
ning frequency. The advantage of the other approach is that
it requires less area and it can be used for some applications
where the speed is not a big issue. The computation time of
a design where this FP multiplier is used can be increased by
increasing the number of PEs.

5. Floating-Point Addition

The main steps in the calculation of the sum Z = X + Y
are as follows.

1. If E1 < E2 swap the operands. This ensures that the
exponents satisfie d = E1 − E2. Tentatively set the
exponent of the result to E1.

2. If s1 6= s2, replace m2 by its two’s complement.
3. Shift m2 d places to the right (shifting in 1’s if m2

was complemented in the previous step). From the bits
shifted out, set g to the MSB, r to the next MSB, and
set st to the OR of the rest.

4. Compute a preliminary significand m = m1 − m2. If
s1 6= s2, the MSB of m is 1 and there was no carry-out,
then m is negative. Replace m with its two’s comple-
ment. This can only happen when d = 0.

5. Shift m as follows. If s1 = s2 and there was a carry-out
in step 4, shift m right by one, filling in the high-order
position with 1 (the carry-out). Otherwise, shift it left
until it is normalized. When left shifting, on the first

469

shift fill in the low-order position with the g bit. After
that, shift in zeros. Adjust the exponent of the result
accordingly.

6. Adjust s and st. If m was shifted right in step 5, set r =
low-order bit of m before shifting and st = g ∨ r ∨ st.
If there was no shift, set r = g and st = r ∨ st. If
there was a single left shift, do not change r and st. If
there were two or more left shifts, r = 0 and st = 0 (in
the last case, two or more sifts can only happen when
s1 6= s2 and E1 = E2).

7. Round m using the rules in Table 1.
8. Compute the sign of the result. If s1 = s2, the result

has the same sign. If s1 6= s2, then the sign of the
results depends on: i) s1 and s2; ii) whether there was
a swap in step 1; and iii) whether m was replaced by its
two’s complement in step 4. Table 4 shows the different
possible cases.

Table 4. Sign computation when s1 6= s2

Swap Complement s1 s2 s

Yes + - -
Yes - + +
No No + - +
No No - + -
No Yes + - -
No Yes - + +

5.1. Proposed Floating-Point Adder

Figure 3 illustrates the block diagram of the proposed FP
adder.

First, the two input FP numbers are unpacked and checks
are performed for zero, infinity or NaN operands. For now,
we can assume that neither operand is zero, infinity or NaN.

The exponents are compared by an 8-bit comparator and
if E1 < E2, a signal and the difference d = E1 − E2 are
sent to the Swap and Align Unit (SAU) where the mantissas
are swaped. This ensures the difference between the two ex-
ponents to be a positive value. The sign of the result is com-
puted by the Sign Unit (SU) according to the cases listed in
Table 4. If the signs of the operands are different, a signal is
sent by the SU to the SAU where the mantissa m2 is two’s
complemented then shifted d positions to the right, aligning
the binary point. The first two bits shifted out are set to g
and r and st is set to the OR of the rest. For adding the two
mantissas, a 24-bit adder is sufficient, as long as the first dis-
carded bit (round) and the OR of the rest of the bits (sticky)
are kept. If the result of the addition is negative, it is replaced
by its two’s complement. In the Normalize Unit (NU), the

�
�

�
�

�
�

�
�

��

�
�

�
�

����������

�

������

��

����

�
��

	

��

��
��
��

�

∞∞ ∞∞

�

��	�

���

������
����

�������

���������� ����������	�

���

���

�������
��

�������

�����

���

���������

 �����������

�
!
"�

�

!����#�
!
$�

�
%

!����#�
!
&�

�
%

Figure 3. Block diagram for FP adder

results is shifted to the left until it is normalized. The expo-
nent is adjusted according to the number of positions shifted.
Finally, the result is rounded by the Round Unit (RU). The
rounding mode used is the RN, which adds a one to the LSB
of the result according to the rules in Table 1.

5.2. Hardware Implementation and Results

Likewise the FP multiplier, The proposed FP adder
shown in Figure 3 has been implemented using Handel-C
on the RC1000 board. The following Xilinx CoreGen Cores
have been used for the implementation of the different units
in the proposed FP adder:

• 24-bit parallel integer adder for mantissas addition;
• 8-bit comparator for the two input exponents compari-

son;
• 8-bit parallel integer subtractor. This component is

used for the computation of the two input exponents
difference and the incrementation or decrementation of
the result’s exponent; and

• 24×1-bit adder with the 1-bit input set to 1. This com-
ponent is used for the two’s complement computation.

The rest of the design logic (the sign computation, normal-
izing and rounding, etc) has been implemented using pure
Handel-C coding. The proposed FP adder consumes 5% of
the total available area on the XCV2000E FPGA and runs
with a maximum frequency of 55 MHz. It has been also im-
plemented on the XC2VP125 Virtex-II Pro FPGAs in order
to use it with the FP multiplier in the next section where a FP
matrix multiplier is presented. Table 5 illustrates the perfor-
mances obtained in terms of area consumed and speed which
can be achieved. The proposed adder gives better results in
term of the maximum running frequency in comparison with
the FP adder in [11].

470

Table 5. Area/Speed implementation report
FP Adder Latency Area (%) Speed (MHz)

Proposed 12 2 236
Adder in [11] - 2 220

6. Floating-Point Matrix Multiplication for 3D

Affine Transformations

In this section, the proposed FP adder and multiplier
cores, presented in the previous sections, are used as basic
components for the implementation of a parallel FPMM de-
signed for 3D affine transformations.

In computer graphics the most popular method for repre-
senting an object is the polygon mesh model. In a simplest
case, a polygon mesh is a structure that consists of polygons
represented by a list of (x, y, z) coordinates that are the poly-
gon vertices. Thus the information we store to describe an
object is finally a list of points or vertices [17] (see Figure
4).

1 2

3

4

5

0

6

7

Cube A
B
C
D
E
F

Polygon Faces

0
3
2
1

3
7
6
2

x
0
, y

0
, z

0

x
1
, y

1
, z

1

x
2
, y

2
, z

2

x
3
, y

3
, z

3

x
4
, y

4
, z

4

x
5
, y

5
, z

5

x
6
, y

6
, z

6

x
7
, y

7
, z

7

Vertex lists Vertices

Figure 4. Data structure for object representa-
tion

3D affine transformations are the transformations that in-
volve rotation, scaling, shear and translation. A matrix can
represent an affine transformation and a set of affine transfor-
mations can be combined into a single overall affine trans-
formation [17]. Using matrix notation, a Vertex V is trans-
formed to V ∗ (* denotes the transformed vertex) under trans-
lation, scaling and rotation, which are the most commonly
used transformations in computer graphics, as:

V ∗ = T × V (7)

x∗

y∗

z∗

1

=

A D G J
B E H K
C F I L
0 0 0 1

×

x
y
z
1

(8)

Consider an object represented with N vertices. The New
Position (NP) of the object when applying a transformation
can be calculated as follows [18]:

NP = T × OP (9)

where T is the matrix transform, OP is a (4, N) matrix con-
tains the Old vertices Position and NP is a (4, N) matrix
contains the New vertices Position.

x∗

0
x∗

1
. . . x∗

N−1

y∗

0
y∗

1
. . . y∗

N−1

z∗
0

z∗
1

. . . z∗
N−1

1 1 . . . 1

= T ×

x0 x1 . . . xN−1

y0 y1 . . . yN−1

z0 z1 . . . zN−1

1 1 . . . 1

 (10)

6.1. Proposed Architecture

Figure 5 shows the proposed parallel FPMM architecture.
The multiplier consists of four identical Processor Elements

Bank 0

iMac

Host

1st row

2nd row

3rd row

4th r0w

0 1 0 1 x

AL columns

Bank 1

Bank 2

Bank 3

PE0

PE1

PE3

PE2

M
U
X

M
U
X

M
U
X

M
U
X

Counter

Matrix T Matrix OP

Bl
oc

k 0

Bl
oc

k 1

Bl
oc

k 2

Blo
ck

 3

tik

Pi
pe

lin
ed

Fl

oa
tin

g-
po

in
t

M
ul

tip
ly

ac
cu

m
ul

at
or

SE

OPkj

NPij

PE : Processor Element
SE: Storage Element

AL
-1

AL: Adder Latency

Figure 5. The proposed parallel FPMM archi-
tecture for 3D affine transformations

(PEs). Each PE comprises a pipelined FP Multiply ACcu-
mulator (MAC) and a register for final result storage. The
vertices coordinates are represented using the IEEE single-
precision real numbers. The MAC has been implemented
using two different approaches:

• The pipelined FP library from Celoxica [19]. It is
a platform-independent core. It allows the program-
mer to perform FP operations in a pipelined manner on
single-precision FP numbers.

471

• The proposed FP adder and multiplier described in the
previous sections. The FP multiplier used is the Xilinx
CoreGen based approach.

For both approaches, the FP adders and multipliers used are
pipelined and have different latencies. The FP Adder and
Multiplier Latencies from Celoxica’s library are AL = 10
and ML = 7 respectively. The input transform matrix T is
partitioned into four rowwise blocks, which gives one row
per block. Each block is stored in one of the four available
banks. The matrix OP is partitioned into four columnwise
blocks, likewise matrix T each block is stored in one of the
banks. In addition, due to AL value, each block of the matrix
OP is partitioned into columnwise sub-blocks. each sub-
block contains AL columns and the last one is padded with
columns of zeros if N mod AL 6= 0 (N is the number of
vertices).

Figure 6 illustrates the timing diagram when performing
a multiplication of one row of the transform matrix T with
one sub-block of the matrix OP as shown in equation 11 in
the case of AL = 10:

(

NPi0 NPi1 . . . NPi9

)

=

(

ti0 ti1 ti2 ti3
)

×

OP00 OP01 . . . OP09

OP10 OP11 . . . OP19

OP20 OP21 . . . OP29

OP30 OP31 . . . OP39

 (11)

6.2. Results and Analysis

The proposed architecture has been implemented and
tested on the RC1000 prototyping board. The implementa-
tion based Celoxica’s FP library consumes 99% of the avail-
able FPGA area and runs with a maximum frequency of 50
MHz, while the implementation based on the proposed FP
adder and multiplier consumes 70% of the target FPGA area
and can be run at a maximum clock frequency of 85 MHz.
The parallel FPMM architecture has been synthesized on
Virtex-II Pro FPGA in order to exploit the additional features
and resources available on this device. Table 6 illustrates the
performance obtained for the proposed architectures when
using the two different design approaches for the MAC im-
plementation.

Table 6. Area/Speed implementation report

Mac used Area
Speed

(MHz)
Logic (%) 18 × 18 Mults

Proposed FP

Adder/Multiplier
39 16 215

Celoxica Pipelined

FP library
43 64 119

Results obtained show that the parallel FPMM based on
our proposed FP addition and multiplication cores gives bet-

ter performance in comparison with the one based on the
pipelined FP library from Celoxica. This mainly, because of
the suitability of the different components used in our imple-
mentation for the targeted FPGA device. It is worth noting
that, due to the application requirements, the sizes of the
manipulated matrices T and OP are (4 × 4) and (4 × N)
respectively. The maximum value of N depends only on the
available off-chip storage resources. On the RC1000 board,
N can be any value up to 218. Other sizes can be performed
using the proposed architecture by applying a different par-
titioning strategy on the matrices T and OP at the host level.

In [11], which is the most recent work concerning 32-bit
FP matrix multiplication, two implementations for FPMM
are presented. The results presented are only the one ob-
tained for 64-bit input data. Therefore, a fair comparison can
not be made with our implementation. The work presented
in [9], studied the implementation of FP arithmetic and used
matrix multiplication as an example application. Results ob-
tained show that a 96× 96 FPMM, implemented on a Virtex
XC4044XL FPGA device, can achieve a maximum running
frequency of 50 MHz. In [8], the authors investigated the
influence of the FP MACs on the performance of a matrix
multiplication algorithm. Results obtained, show that the
maximum and best running frequency for a 1024× 1024 FP
matrix multiplier is 33 MHz on the Annapolis MicroSystems
board.

7. Conclusion

The abundant hardware resources on current FPGAs pro-
vide new opportunities to improve the performance of hard-
ware implementations of scientific computations requiring
FP arithmetic. In this paper, a FP adder and multiplier
have been developed and tested on the RC1000 prototyping
board. The proposed cores have been used as basic compo-
nents for the implementation of a parallel FPMM designed
for 3D affine transformations. Results obtained demonstrate
the suitability of recent FPGAs for applications based on FP
arithmetic. Our implementations have achieved superior FP
performance over state-of-the-art FPGA-based implementa-
tions and has shown significant speed-up compared to soft-
ware based implementation.

References

[1] F. Bensaali, “Accelerating Matrix Product on Reconfig-
urable Hardware for Image Processing Applications,”
PhD thesis, The Queen’s University of Belfast, 2005.

[2] Datasheet, “RC1000 Development Platform Product
Brief,” v1.1, Celoxica Ltd., August 2002.

[3] P. Belanovic and M. Leeser, “A Library of Parameter-
ized Floating-Point Modules and Their Use,” Proceed-

472

�����

��
��

��
�	

��

��
��

��
�	

��
�

��
	

��
�� ��

�	

� � ����

���
�����

���
����

���
���

�

��������

�

�
��
����	

��

��

��
��

��

���������

�������

������

��

�

��

�
��
����	

��
�
��
����	

��
�
��
����	

��
�
��
����	

��
�
��
����	

��

�
��
����	

��
�
��
����	

��

��
�	

�
��
����	

��
�
��
����	

��

� � � � � � � � � � � �

� �� � � � � �

Figure 6. Timing diagram when performing a multiplication of one row of the transform matrix T with
one sub-block of the matrix OP

ings of the 12th International Conference on Field Pro-

grammable Logic and Application, pp. 657-666, Mont-
pellier, France, September 2002.

[4] J. Dido et al., “A Flexible Floating-Point Format for
Optimizing Data-Paths and Operators in FPGA Based
DSPs,” Proceedings of the ACM International Sympo-

sium on Field Programmable Gate Arrays, pp. 50-55,
CA, February 2002.

[5] M. P. Leong et al., “Automatic Floating to Fixed Point
Translation and its Application to Post-Rendering 3D
Warping,” Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines, pp.
240-248, Napa, California, April 1999.

[6] “IEEE Stndard for Binary Floating-Point Arithmetic,”
ANSI/IEEE Std 754-1985,NY, USA, August 1985.

[7] L. Louca et al., “Implementation of IEEE single pre-
cision floating point addition and multiplication on
FPGAs,” Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines, pp.
107116, Napa, California, April 1996.

[8] W. B. Ligon III et al., “A Re-Evaluation of the Practical-
ity of Floating-Point Operations on FPGAs,” Proceed-

ings of the IEEE Symposium on Field-Programmable

Custom Computing Machines, pp. 206-215, Napa, Cali-
fornia, April 1998.

[9] I. Sahin et al. “Feasibility of Floating-Point Arithmetic
in Reconfigurable Computing Systems,” Proceedings of

the 3rd Military and Aerospace Applications of Pro-

grammable Devices and Technology Conference, Mary-
land, USA, September 2000.

[10] J. Liang et al. “Floating Point Unit Generation and
Evaluation for FPGAs,” Proceedings of the IEEE Sym-

posium on Field-Programmable Custom Computing

Machines, pp. 185-194, Napa, California, April 2003.
[11] L. Zhuo and V. K. Prasanna, “Scalable and Modular

Algorithms for Floating-Point Matrix Multiplication on
FPGAs,” in Proceedings of the 18th International Paral-

lel and Distributed Processing Symposium, pp. 94-103,
New Mexico, USA, April 2004.

[12] G. Govindu et al., “Analysis of High Performance
Floating-Point Arithmetic on FPGAs,” Proceedings of

the 18th International Parallel and Distributed Process-

ing Symposium, pp. 316-323, New Mexico, April 2004.
[13] J. L. Hennessy and D. A. Patterson, “Computer Archi-

tecture: A Quantitative Approach,” Third Edition, Mor-

gan Kaufmann Publisher, 2003.
[14] S. Paschalakis and P. Lee “Double Precision Floating-

Point Arithmetic on FPGAs,” Proceedings of the IEEE

International Conference on Field-Programmable Tech-

nology, pp. 352-358, Japan, December 2003.
[15] Manual , “Handel-C Language Reference Manual,”

RM-1003-4.2, Celoxica Ltd., 2004
[16] Application Note, “Xilinx CoreGen and Handel-C,”

AN 58 v1.0, 2001.
[17] A. Watt, “3D Computer Graphics,” Addison-Wesley,

2000.
[18] F. Bensaali et al., “Accelerating Matrix Product on Re-

configurable Hardware for Image Processing Applica-
tions,” IEE Proceedings on Circuits, Devices and Sys-

tems, Vol. 152, Issue 3, pp 236-246, June 2005.
[19] Manual, “Pipelined Floating-Point Library,” Celoxica

Ltd., 2004.

473

