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Abstract 

System-on-Chip design is facing increasing 
challenges in its integration, global wiring delay and 
power dissipation. Interconnection network technology 
has the advantage over conventional bus technology in 
its scalability; on the other hand, asynchronous circuit 
design technology may offer power saving and tackle the 
clock-skew problem. Chip designers are thus turning 
their attention to Network-on-Chip solutions. Packet-
switches play a key role in interconnection networks and 
this paper focuses on their implementation as 
asynchronous circuits. The results of experiments run to 
evaluate several aspects of the routing switch 
implementation are presented.

1. Introduction 

As technology scales, a variety of challenges have 
been presented to IC developers. System integration is 
one among them. Although buses are still the dominant 
approach, interconnection networks have been receiving 
more and more attentions as an alternative integration 
solution [2, 8, 9, 11]. An interconnection network is 
comprised of communication links and packet-switches. 
The links connect hosts to switches and switches to 
switches. Packet-switches enable data and instructions to 
be switched from source hosts to any desired destination. 
One advantage of interconnection networks over buses is 
the scalability in throughput, latency, cost and integration 
of the system. 

Wire delay is another challenge IC developers have to 
confront. In the near future, technology scaling will 
cause wire delay to dominate, while gate delay will no 
longer be a critical factor in most systems. This dramatic 
increase in the delay of a global wire, almost doubling 
every year, affects the signaling, timing, and architecture 
of digital systems. This makes it extremely difficult to 
distribute a global clock with low skew [2]. One solution 
is to devote a large quantity of interconnect metal to 

building a low-impedance clock grid or wire using new 
materials (e.g. copper). However, this solution is 
anticipated to only be effective for one or two more 
generations [1]. A more radical approach is to eliminate 
global synchrony. One can either divide the chip into 
separate clock domains (known as Globally 
Asynchronous Locally Synchronous), or more 
aggressively, fully employ asynchronous circuit design 
technology, such as [4, 7, 14].  

Power dissipation has become another critical metric 
in VLSI circuit design. The growing market of mobile, 
battery-powered electronic systems fuels the demands for 
ICs with low power dissipation. Unfortunately, power 
dissipation in real-life ICs does not follow the 
descending trend in semiconductor technology [3]. 
Including asynchronous circuits into a complex VLSI 
design can help reduce power dissipation [10]: unlike a 
synchronous system, in which all switching gates charge 
and discharge with the transition of the clock signal even 
if they are not in use, consuming power in asynchronous 
circuits takes place only when a circuit is in operation.  

Having seen the challenges in SoC design and the 
advantages of interconnection-network technology and 
asynchronous circuit design technology, one question 
may arise: could the combination of these two 
technologies provide a solution to the interconnection of 
SoC. This paper aims to address this question and to 
consider the feasibility of interconnection network 
components using asynchronous methods. In particular, 
the asynchronous design of a packet-switch is examined. 
The rest of paper is organized as follows: in Section 2, 
the architecture of a packet-switch is presented; the 
implementation of the packet-switch by asynchronous 
technology is presented in Section 3; simulation results 
are presented in section4; limitations of this work are 
stated in Section5; finally conclusions are drawn in 
Section 6. 
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2. Pipelined data processing in output-
buffering packet-switches 

Switch
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Figure 1. Overview of a 2by2 output buffering packet-
switch 

An output-buffering packet-switch [13] is proposed 
for this study as illustrated in Fig.1. To ease our 
implementation, the switch is only equipped with two 
input/output ports. The switch consists of four blocks: 
Output Block1, Output Block0, Input Block1 and Input 
Block0. Both input and output blocks are further divided 
into two parts: control block and data path. The input 
data path can buffer one flit at a time and one flit is 
defined as 32-bit wide in this paper. The output data path 
as buffer memory is the main storage element of the 
switch.  

Data transfers between two circuits are point-to-point, 
involving requests, which initialize each transfer, and 
acknowledgements, which signal the completion. Before 
a sender can start its data transfer, the receiver must have 
indicated the sender that it is ready to take in the data. 

Each packet consists of two parts: header and payload. 
Header is one flit long, located at the beginning of each 
packet and containing all output ports a packet will pass 
through. The rest of a packet is payload, only containing 
data. Packet-size in this paper is fixed. 

Packets at each switch are processed in a pipelined 
fashion as shown in Fig2. Incoming flits from their 
previous hosts are buffered at input blocks as they arrive. 
If a flit is the header of a packet, its routing destination is 
identified, and then a request is sent to the corresponding 
output block to arrange memory space for the packet. If 
the flit belongs to payload, it is then forwarded to the 
same memory as its header. In this switch model, input 
blocks are involved in stages 1(a) and 1(b), and output 
blocks are involved in stages 1(c), 2 and 3. 

Memory-bank 
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Main 
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stage 1 stage 2 stage 3
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pay load by pass path
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Figure 2. Pipelined processing model 
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As a header arrives at an input block, its routing 
destination is immediately identified. In a 2by2 packet-
switch, routing decisions for a packet can be made using 
just one bit of information. Here, we assume that the 
routing information bit (RIB) is always the Least 
Significant Bit (LSB) at each header. This determines the 
output block with which to communicate.  

Making routing decisions is achieved by means of a 
combinational operation: shifting and buffering, at the 
input data path. As shown in Fig.3, the input data path 
includes 33-bit D-type flipflops (DFF's). If the incoming 
flit is payload, it is buffered from bit1 to bit32 and then 
outputted from bit1 to bit32. However, if the flit is a 
header, it is shifted and buffered from bit0 to bit31 and 
then outputted from bit1 to bit32. In this scenario, bit32 
is filled with "0", turning into the new Most Significant 
Bit in the header, and bit1 turns into the new Least 
Significant Bit. These two bits together with the rest of 
header are then transmitted to their next host. The 33rd

bit, bit0, is therefore implemented to accommodate the 
routing information bit and remove the used routing 
information from each header.  

2.2 Memory Allocation 

Memory arrangement for each incoming packet 
involves operations from both input blocks and output 
blocks; however, it is mainly conducted at output blocks 
as illustrated in Fig.4. The memory in such packet-
switches is constituted by multiple memory banks. Only 
two memory banks are illustrated in the figure though 
more banks could be accommodated if required.  

2-to-l multiplexers at each output block are associated 
with memory banks. Each memory bank has two 2-to-l 
multiplexers in front of it, one for data, and the other for 
control signals. Since each output block communicates 
with two input blocks, through the multiplexers, signals 
from either of the input blocks can be propagated to any 
memory bank. The output control block forms 
connections between input blocks and memory banks by 
setting up the associated 2-to-l multiplexers. A counter, 
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implemented in the output control block, provides 
memory bank addresses and determines which pair of 2-
to-l multiplexers is supplying data.  
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Figure 4. Memory arrangement in Output Block0 

To avoid collision, setting up 2-to-l multiplexers for 
different packets must be mutually exclusive: only one 
action is allowed to progress at a time, therefore, an 
arbiter [16] must be employed. The arbiter allows one 
request to pass through at a time; the one that arrives first 
is selected. When two requests arrive simultaneously, it 
arbitrarily selects one to go through. A request from an 
input block for memory therefore will not proceed until it 
is granted by the arbiter. To ensure that no two packets 
will crash at the same memory bank, the arbiter must not 
be released until the counter has been incremented to 
point to the next memory bank.  

This memory-management design allows packets 
from different input blocks to be loaded into the memory 
concurrently once their addresses have been assigned, 
thus improving the performance of packet-transmission. 

3. Asynchronous implementation 

3.1 Asynchronous design methodologies 

The asynchronous circuits in this paper are 
implemented based on a Speed-Independent model. In 
such a circuit, delays on wires are regarded as zero or 
negligible while delays on gates are unbounded [12].  

The handshaking signals (request and 
acknowledgement) are encoded as a 4-phase level 
signaling protocol (return-to-zero). The 4-phase signaling 
protocol uses the level of the handshaking signals to 

indicate events. There are four transitions involved in the 
completion of each transfer. After each transfer, the 
channel signaling system returns to the same state as it 
was in before the next transfer can start.  

Data encoding is in compliance with a bundled-data 
protocol (also known as single-rail protocol), which 
employs one wire for each bit of information. This 
encoding is used the same convention as in synchronous 
circuit design. In the case that data value is n-bit wide, 
n+2 wires, i.e., n bits for data, 1 bit for request, 1 bit for 
acknowledgement, are required in transferring each 
datum from the sender to the receiver.  

3.2 Input control logic 

Processing headers and payloads at input blocks are 
described into two separate Signal Transition Graphs 
(STG’s) [5], as shown in Fig.5 and Fig.6 respectively.  
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Figure 5. STG for head-processing 
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Figure 6. STG for payload-processing at input blocks 

H_r and H_a are the handshaking pair interacting with 
the sender for header-transmission. The receiver notifies 
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the sender whether it is ready to accept a new header 
using H_a, and H_r is activated when a new header is 
asserted.

Shift_r is the shifting request signal, activated only 
when an incoming flit is the header, and is released once 
the header is buffered at the input data path. The shifted 
header is buffered as Bufh_r goes high when the routing 
information bit is sampled. Shift_a, Bufh_a are the 
acknowledge signals corresponding to Shift_R and
Bufh_R respectively.  

In order to accommodate the right routing destination 
information from each packet, the shifting operation 
must take place before the buffering operation. Since 
Shift_a goes high only after the incoming header has 
been shifted, the circuitry is safe when Bufh_r is 
triggered only after Shift_a and H_r both are asserted. 
The falling transition of Shift_a indicates that the routing 
information has been stabilized in the input block. 

Processing payload in an input block is conducted in 
two steps, i.e., buffering it and then forwarding it to the 
same output block as its header. The input control block 
interacts with the sender using the handshaking pair 
P_r/P _a. P_r goes high as one flit of payload is sent. 
The flit is buffered at the input data path as Bufp_r goes 
high once a high P_r is detected. The input block 
acknowledges the sender its acceptance by driving P_a 
high after Bufp_a goes high. 

3.3 Output control logic 

Memory arrangement in the output control block is 
described in Fig.7. Ba_r00 and Ba_r10 are the request 
signals asserted by Input Block0 and Input Block1, and 
Ba_a00 and Ba_a10 are the corresponding acknowledge 
signals, respectively.  
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Figure 7. STG for memory-arrangement in Output 
Block0

The output control block forms the connections 
between Input Block0 and memory banks by setting up 
the associated 2-to-l multiplexers using handshaking 

pairs, St_r0 and St_a0, and for Input Block1 using St_r1 
and St_a1, respectively. The counter, which provides 
memory bank addresses and determines which pair of 2-
to-l multiplexers are supplying data, is driven by the 
handshaking pair Counter_r and Counter_a. The output 
control block communicates with the arbiter using the 
handshaking pair, Arbiter_r0 and Arbiter_a0, for packets 
from Input Block0, and Arbiter_r1 and Arbiter_a1, for 
packets from Input Block1 respectively.  

The output control block is also responsible for 
forwarding the packets stored in the memory to their next 
switches or destination hosts. The operation is described 
in Fig.8. Packets are read out of memory flit by flit using 
the handshaking pair, Datao_r and Datao_a, and then are 
forwarded to their next switches or destination hosts 
using the handshaking signals, Inout_r and Inout_a. 
lnout_r and Inout_a are the handshaking pair employed 
between switches or between a host and a switch. Signals 
on Inout_r are passed onto H_r (refer to section 3.2) 
when the incoming flit is a header, and are passed onto 
P_r when it is payload. Correspondingly, Signals on H_a 
and P_a are multiplexed onto Inout_a.

Datao_a+

Inout_req+

Datao_r-

Datao_a- Inout_ack-

Datao_r+

Inout_ack+ Inout_req-

Figure 8. STG for packet-output 

4. Experimental results 

4.1 Simulation environment 

To evaluate the asynchronous implementation, a 
synchronous packet-switch was also implemented based 
on the same architecture presented in Section 2. 
Asynchronous control circuits in this paper were 
synthesized using Petrify with 0.5 m CMOS technology, 
and synchronous control circuits were synthesized using 
SIS. The implementations were evaluated in MicroSim 
Design Centre. The minimum clock period was 
determined by the critical path, and a minimum clock 
period of 6ns was obtained from the PSPICE simulation. 

The base system used for the simulation was a k-stage 
butterfly network [15]. The packet size in the evaluation 
was fixed to 8-flit, l6-flit, 24-flit or 32-flit long, and the 
traffic of networks was always unloaded. The interface 
between a host and a network was viewed as contributing 
to the same routing delay as a switch [6]. Packets in the 
interface were stored at a memory, which had the 
identical performance to the memory in the switch. The 
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control logic in the network-to-host interface and the 
host-to-network interface had the same performance as 
the input control logic and the output control logic in the 
packet-switch respectively. 

4.2 Simulation results 

Fig.9 shows that the latency of routing an 8-flit long 
packet through an unloaded 2-stage network as well as 
the contributions of header and payload to the overall 
latency. Fig.10 further shows the performance of each 
switch in the network in processing each individual flit. 
The simulation results indicate that although the 
asynchronous switches outperformed the synchronous 
switches in processing each individual flit, routing the 
whole packet in the asynchronous network was slower 
than in the synchronous network.  
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The asynchronous switch won over the synchronous 
one in transmitting each individual flit was mainly 
benefited from the way it making progress: the 
asynchronous circuitry never wasted time in waiting 
clock transitions like its synchronous counterpart, and 
always immediately progressed once its communication 
partner responded. 

When flits were transmitted consecutively in a 
pipeline style in an unloaded network, it was found that 
the routing time of each flit was overlapped by its 
neighboring flits. The more they could overlap with each 
other, the less routing latency they would have. However, 
it was also found that the impact of the recovery time for 
the asynchronous circuitry, ruled by a 4-phase level 

signaling protocol, also became significant. Our 
simulation result shows that the recovery operation 
caused the asynchronous pipeline loosely overlapped: 
only 31% of processing time on each flit was overlapped 
by its neighboring flits, compared to the synchronous 
network, in which the payload only contributed seven 
clock cycles to its overall routing latency.  

The impact of packet-size on the network 
performance is illustrated in Fig.11, in which packets 
varied from 8 flits to 32 flits routing in an unloaded 2-
stage network. The simulation result shows that 
increasing packet-size weakened the performance of the 
asynchronous implementation more than its synchronous 
counterpart. This again can be explained by the 
sluggishness of the asynchronous pipelining as the result 
of the recovery operation. 
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Figure 11. Latency of routing a packet in a network 
as packet size increases

The impact of network-scale on the network 
performance was examined by routing an 8-flit long 
packet in unloaded networks, as illustrated in Fig.12. The 
result shows that the asynchronous network caught up its 
synchronous counterpart as the network scaled up to 4. 
This is because when the packet size was fixed, the 
impact resulting from the pipelining due to the recovery 
operation on the overall latency became constant. As the 
network scaled up, the latency of header began to 
dominate and the routing latency of a packet in an 
asynchronous implementation improved on that of a 
synchronous implementation.
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4.3 Gate-counts 

The number of gates used in both implementations to 
achieve the targeted functions is compared. Since the 
data paths and memory in both implementations share 
very similar structures, in this paper only the result of the 
control logic is listed. Both implementations cover a 
variety of logic gates, these logic is therefore first 
converted to equivalent standard gates: 2-input NAND. 
The mapping table is presented in Table 1. 

Table 1. Mapping logic to 2-input NAND's 

Gate 
Name  

Equivalent 
Gate-
counts 

Gate 
Name  

Equivalent 
Gate-
counts 

2-Input 
NAND 

1
2-Input 
AND 

1.5 

3-Input 
AND 

2 Arbiter 5 

D-type 
flipflop 

4 Inverter 0.5 

3-Input 
NAND 

1.5
4-Input 
NAND 

2

2-Input 
NOR 

1
3-Input 
NOR 

1.5 

3-Input OR 2 4-Input OR 2.5 

Table 2. Gate-counts of the asynchronous and the 
synchronous control logic 

Asynchronous 
Implementation

Synchronous 
ImplementationBlock 

Name Gate 
counts 

Equiv 
Gate 

counts 

Gate 
counts 

Equiv 
Gate 

counts 
(one) 
Input 

control 
logic 

161 223.5 73 121.5 

(one) 
Output 
control 
logic 

83 121 69 128 

Total 
Gate 

counts 
488 689 284 499

Table 2 shows that the asynchronous implementation 
cost 190 more equivalent gates than the synchronous one. 
These extra gates mainly came from the input control 
logic, in which processing header and payload were 
described into two separate STG’s. It nearly doubled the 
gate-counts of asynchronous input control logic. 
However, the table shows that the asynchronous output 

control logic has similar size to its synchronous 
counterpart.  

5. Limitations and future work 

It has been known that when contention occurs, 
metastability in an arbiter for asynchronous circuits may 
last for an unpredictable period. In this paper, we restrict 
our performance evaluation and related conclusions to 
the arbiter's typical behavior only. Secondly, our 
experiment results were only based on the assumption 
that the networks were unloaded, and therefore more 
research should be conducted in investigating the impact 
of traffic on the performance. Thirdly, a 2-phase 
signaling protocol should be explored for the 
improvement of the performance of the asynchronous 
implementation. 

6. Summaries and conclusions 

In this paper, we explored the feasibility of 
implementing an asynchronous on-chip network as the 
interconnection solution of SoC. In particular, a packet-
switch was proposed and implemented. Comparison was 
made between the asynchronous implementation and its 
synchronous counterpart. The simulation results 
suggested that the asynchronous networks could 
outperform the synchronous networks as the network-
scale increased but would underperform the synchronous 
ones as the packet-size increased. The causes of these 
phenomena were also explained.  
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