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Abstract. We explore possible characterisations of entanglement classes which may be interpreted 
as gates acting on globally distributed systems. The cyclic nature of a selection of entanglement 
gates, primitives, is explored commencing with gates for generating Bell, GHZ and W states. 
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INTRODUCTION 

Cyclic Groups and Finite Fields. [1, 2, 3]. Central to classical error detection 
schemes such as the cyclic redundancy check, found at the link layer in network pro­
tocols such as BISYNC, HDLC, DDCMP, CSMA and token ring, is the concept of a 
cyclic structure operating within a finite field. These may take various forms such as Z^ 
with p prime, p e N+, Z^ [x] \f in which / is an irreducible divisor, or involve geometric 
constructions such as Ep{a,b), in for example, elliptic and hyperelliptic settings. Re­
lated algebraic and geometric structures appear within a quantum setting in for example 
[4, 5, 6, 7, 8, 9, 10], whilst within a classical setting they are to be found in symmetric 
and asymmetric cryptography, where they play a major role. Motivated by alternative 
applications for cyclic structures, the role of primes and irreducibilty in both classical 
and quantum settings, and the similarity between entanglement and irreducibilty from 
an algebraic perspective, we consider properties of gates used to generate such states. 

Ambient Space, Primes and Entanglement. [11]. Entanglement and primes share a 
common property in that their status is dependent upon the space in which they are 
perceived to belong. 17 = (4 H- i)(4 - i) for example is prime over Z but not over Z(j), 
likewise Z^ + 1 is irreducible for ]R[x] when the roots are restricted to M but not over 
C Likewise, Bell states are seen to be entangled provided they are restricted to the 
action of operators from l^{Jf) ® SS{,yV) with ,yV a one particle, two dimensional 
Hlbert space. However if we extend the operator space to SS[,yV ® ,yV) then the Bell 
states are seen to be separable. It is the potential for global operators that characterises a 
state as either entangled or separable. Here we consider 'Bell gates' from SS{,yV ® ^ ) , 
Sg{.^ ®.^® .^) and related spaces. 

Bell States. Bell states are entangled states over ^{J^) ® l^{Jf) and may be 
generated by a combination of local unitary Hadamard and Identity gates in l^{Jf) 
followed by a global unitary CNOT gate in ^ ( ^ ® Jif). 
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Bell Gates. Consider the gate 

B = CN0T.H®1 
1 

7! 
/ / 
X -X 

GATES 

with X and / Pauli Operators acting on Jf 

The action of the Bell gate on x e {|00), |01), |10), |11)} results in each of the Bell 

states V2 
(|00)- | l l ) ) , ^ ( | 0 1 ) + | 1 0 » , ^ ( | 0 0 ) - | l l ) ) , ^ ( | 0 1 ) - | 1 0 ) ) m ^ ® ^ . 

The gate B generates a cyclic group of order 8, with orbit: 
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Assigning each of the given Bell states in different orders to the basis states 
{|00), |01), |10), |11)} generates 4! different possible gates from B. Different or­
ders result for the orbits of the cyclic groups generated by these gates. A self adjoint 

rz / 1 
/ -X 

generates a cyclic group of order 2 version of B, for example, such as 4= 

generates a cyclic group of order 24 whilst one such as V2 
/ / 
lY -iY 

It may be shown that of the 4! possible gates suggested, 4 generate cyclic groups of 
order 24, 4 generate cyclic groups of order 12, 10 generate cyclic groups of order 8, 
4 of order 4 and 2 of order 2. The orbits involve operators, each of whose action on 
{|00), |01), |10), |11)}, either result in 4 entangled states or 4 separable states. The cyclic 
groups generated by each of the 4! gates are likewise either gates generating separable 
states or gates generating entangled states. In any cyclic group generated there is found 
to be either 1, 2 or 4 gates whose action leads to entangled states. B for example has just 
2 gates leading to entangled states, B and B^. 

L^^^i = 72 

Likewise for 5 , 

/ / 
-X X 

1 
v5 

and^T = A-
2 V2 

X X 
I I 

X X 
I I 

be two permutations of 5. Then 5 j = —B\. 

we find that B = B\.li follow that the cyclic group <B> 

generated by gate B is identical to that generated by gate B^, so <B >=<B^ > and 

< 5 j > = < - 5 ^ > . 

Theorem The general form for the operator B generating GHZ states is 

1 

V2 (E)X -(E)X 

Proof. This follows by construction. We commence with the sum of the least binary 
value 1000... 0) and the greatest binary value 1111... 1). This gives the first entry in the 
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/ Pauli operator and the first entry in the X Pauli operator. We then add one to the least 
binary value and subtract one from the greatest binary value to obtain the second column 
in the / operator and the second column in the X operator. Continuing in this way to the 
half way point in our construction generates (g)/ for the upper half of the gate and ®X 
for the lower half of the gate. Following this we take the 'conjugate' of the second part 
of the sum from the first column, then the second column, then ... column generating 
®/ for the remaining upper half of the gate and -®X for the remaining lower half of the 
gate. The scalar follows by normalisation. D 

The orbit for the given GHZ gate is found to be 8. 

W Gates. The smallest W gate is 2^ x 2^ leading to 2^! different gates that one may 
use to generate W states from the 2^ basis states {| ijk)} in which i, j.ke {0,1}. 

Definition We define a starting global gate W for describing the generation of W-states 
in ^ ( X ) ^ ® ^ to be: 

V3 

I 

-X 
I 

X 

-X e^ 

X 

Proposition The gate W £ SS{,yV ®Jf® Jf) is a cyclic operator of order 8. 

Proof. W^ 1 

0 0 z 
0 0 0 

- z o o 
0 Z 0 

0 • 

-z 
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0 

W^ = -I, and W^ = I. 
D 

A greater degree of complexity emerges in the cyclic groups generated by W gates. 
These range from gates generating cyclic groups of order 2, for example: 

^^^7! 

/ |1)(0| Z |0)(0| 
-|1)(0| - / |0)(0| z 
-X - | 1 ) (1 | / - | 0 ) (1 | 

|1)(1| -X |0)(1| - / 

to gates such as 

W, 
V3 

I |1)(0| z |o)(i|-
-|1)(0| - / |0)(0| / 
-X |1)(1| / - |0)(0 | 

|1)(1| -X |0)(1| -X . 
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EL-GAMAL 

The generation of cyclic elements lends itself to encryption protocols such as El-Gamal, 
illustrating in principle, the possibility for masking the choice of gate employed at 
different stages within an application. Further research in this, the above and related 
areas has been carried out. The details will appear elsewhere. 
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