
 

 

Abstract Predicting the rate at which a substance will pass 

through human skin and into the bloodstream is a problem of 

current interest.  We use Gaussian Process modeling to train a 

set of predictors using every combination of six molecular 

features.  We find that only three of the features are needed 

for our best predictor.  This result could be useful in the 

further analysis of skin permeability. 

I. INTRODUCTION 

In recent years there has been increasing attention paid to 

the problem of predicting the rate at which a substance will 

pass through human skin [1-6].  Interest in this issue has 

been driven by the pharmaceutical industry, where it is 

important to be able to predict the rate at which a drug will 

pass through the skin and into the bloodstream.  Such 

knowledge enables skin patches to be designed to 

administer drugs at appropriate dosages.  The issue is also 

of interest to the cosmetics industry where the concern is 

normally to reduce dermal uptake.  For example it is not 

desirable for a sun block to pass readily into the 

bloodstream.  Lastly it is important to know how much of 

an industrial or household chemical is likely to pass through 

skin should accidental contact arise. 

Of course the simplest way to predict the rate at which a 

chemical will be absorbed is by direct measurement.  This 

process, however, is difficult, expensive and time 

consuming.  So attempts have been made to use known 

absorption rates as the basis for extrapolation to new 

compounds. 

The first attempts to do this took two easily measured 

features of a compound, the lipophilicity and the molecular 

weight, and then tried to fit a linear regression to the data, 

with the absorption rate as dependent variable.  

Subsequently this simple linear model has been refined and 

modified.  More recently non-linear models such as neural 

nets [2] and k-nearest neighbours have been tried.  However 

the number of available data points is not large and this 

encouraged us to investigate how well a Gaussian Process 

model (GP) would perform on this data.  We also look at a 

wider range of molecular features than just the two 

aforementioned measures.  The novel contribution 

described here is that we investigate every combination of 

six molecular features to find the set that provides the best 

overall prediction. 

                                                           
1 The authors are at the University of Hertfordshire, Hatfield, UK.   
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II. BACKGROUND 

 The outer layer of human skin, the stratum corneum, is the 

primary barrier to absorption.  It is a thin layer, 15 − 30μm, 

deep and it consists of dead keratin cells in a lipid domain, 

the so called bricks and mortar model.  For a chemical to 

pass through the dermis, in any quantity, it must be 

desolvable in lipids (have high lipophilicity) and small, so 

that it can diffuse through the barrier.  The lipophilicity is 

measured as the partition coefficient, P.  This quantifies the 

extent to which the chemical prefers to be in the particular 

lipid octanol rather than water.  It is straightforward to 

measure this.  The chemical under investigation is dissolved 

in a equal mixture of octanol and water.  The mixture is 

then allowed to separate – it takes about 24 hours, and the 

relative quantities of the dissolved chemical, in each 

domain, are then measured.  As this value varies over a very 

large range, 10
-7

 to 10
+7

 it is usual to use the logarithm of P.   

Crudely speaking big molecules find it harder to get 

through the stratum corneum than do small molecules, so 

the molecular weight MW, is also commonly used to 

indicate permeability.   

To measure the actual permeability of skin, a chemical is 

placed on the outer surface of the skin and the rate at which 

it is absorbed is measured.  This rate is concentration 

corrected by dividing by the concentration of the chemical 

on the external surface of the skin, as the higher the 

concentration the higher will be the absorption rate.  This 

gives the permeability coefficient, Kp , of the chemical.  

Again this has a very large range so log Kp is normally 

reported. 

In 1992 the first attempt was made at predicting 

permeability from P and MW.  Potts and Guy [6] found the 

best linear fit for a data set of 93 compounds.  Their actual 

equation is:  

 



log Kp  0.71log P 0.006MW6.3
  

 

Such linear fits are know as Quantitative Structure-

Permeability Relations (QSPRs) to the pharmacologists.  

The regression was not very successful with a coefficient of 

determination of 0.67 (1 is perfect, 0 is bad).  This 

suggested that the relationship is non-linear and may 

involve other physical/chemical features of the molecule.  

So in the intervening years several researchers have 

proposed other linear models using a variety of molecular 

descriptors.  However none of these has been particularly 

successful across a wide range of different molecular types.  

There has also been a small amount of work looking at non-

linear models [2], although none of these have used 

Predicting Drug Absorption Rates Through Human Skin  

 
Yi Sun, Lun Tak Lam, , Gary Moss, Maria Prapopoulou, Rod Adams, Neil Davey, David Gray,  

Mark Brown
1
  



 

Gaussian Process modeling. 

III. THE DATA 

The data set used here consists of the original Potts and Guy 

data supplemented by a variety of data from other sources.  

It contains data on 142 molecules and a detailed description 

can be found in [5].  As well as molecular weight and 

lipophilicity we also have the four following additional 

molecular features that are thought to be important in 

determining a molecules ability to pass through skin: 

 

 The melting point, MPt 

 

 The solubility parameter SP.  This measures how 

soluble the chemical is in the stratum corneum 

 

 HA and HD, which are counts of the number of 

hydrogen bonding acceptor (HA) and donor groups 

(HD), respectively, that can be found on a 

molecule. 

 

So in summary our data set is 142 6-ary vectors each of 

which has a measured value of its skin permeability 

coefficient log Kp . 

 

 

IV. GAUSSIAN PROCESS MODELLING 

Gaussian process (GP) modelling [7] is a non-parametric 

method, which does not produce an  explicit functional 

representation of the data. Here it is assumed that the 

underlying function,



f x , that produces the outputs will 

remain unknown, but that the data is produced from a 

(infinite) set of functions, with a Gaussian distribution in 

the function space.  A multivariate Gaussian distribution is 

characterised by its mean and covariance matrix.  Similarly 

a Gaussian process is completely characterised by its mean 

and covariance function. For simplicity, we usually consider 

the mean function to be the zero everywhere function. The 

covariance function, 



k x i ,x j , is crucial to GP modelling. 

It expresses the expected correlation between the values of 



f x  at 



xi,x j .  In other words, it defines the similarity of 

data points.  It is normal to incorporate noise into the 

model, as the original data will probably be noisy.  Here, 

we use the squared exponential covariance function, which 

incorporates noise, as follows: 

 



k x i ,x j  f
2 exp  1

2
x i  x j 

T
M x i  x j 









 ij n

2
, 

 

where 



M  l2I,  l is the characteristic length-scale, 



 f  is  

signal variance, is 



 n  noise variance, and 



ij  is one if i  = j 

and zero otherwise. It is also possible to have different 

length scales for each feature of the input.  In this case the 

diagonal of M is replaced with the vector 



l1
2 , l2

2,..., lN
2 , 

where 



l i  is the length scale of feature i.  Note that the larger 

the value of 



l i  the less important is that feature.  The central 

exponential gives a function that falls away rapidly as the 

distance between the two data points increases. 

 

Using this covariance function we prepare to predict the 

output value 



y* for a novel input vector 



x*  .   We first 

compute the covariance between all possible pairs of data 

points.  We denote 



K as the N by N matrix of covariances 

of points in the training set, that is 



K i, j  k x i ,x j , 



K*  

as the N-ary vector of covariances of the N training points 

with the new input, so 



K* i  k xi,x*  and 



K**  is the 

covariance of 



x*  with itself, 



k x*,x* . 
To make the prediction, 



y* at the new input 



x* , we need 

to compute the conditional distribution 



p y* | y1,y2,..., yN  
given the already observed: 



y1, y2 ,..., yN . 

Since the model is a Gaussian process, this distribution is 

also a Gaussian and is completely defined by its mean and 

variance.  The mean of the distribution can be shown to be: 

 

 



y* K*K
1
y 

 

and the variance is: 
 



var y* K** K*K
1
K*
T  

 

So the predicted value will be 



y* and the variance gives a 

measure of our confidence in the prediction. 
 

The three hyperparameters of the model, the signal 

variance, the noise variance and the length scale vector, 

can be estimated by expectation maximization on the 

training set.  So under the assumption that the training data 

was generated by a GP, a search through the 

hyperparameter space is undertaken for the parameters that 

make the observed data most likely.  Since the length scale 

vector can be found in this way a method of Automatic 

Releveance Detection is readily available.  In other words. 

if a feature is found to have a large lengthscale it will 

contribute very little to the covariance and thus has low 

relevance. 

. V PERFORMANCE MEASURES 

The standard linear regressors often used in this field do not 

perform very well.  So for a baseline comparison we use a 

naïve predictor, that always predicts the same value, namely 

the mean value of permeability over the complete training 

set.  So we first calculate the mean square error (MSE) of 

our predictor and report the Improvement On the Naïve  

(ION) predictor as: 



ION 
MSEnaiveMSE

MSEnaive
.  We also 

report the normalized mean square error, where the MSE is 

divided by the variance of log Kp in the test set, and finally 

we give the correlation coefficient of the predictions with 



 

the measured values, over the test set. 

 

IV. THE EXPERIMENTS 

Since the data set here is very small we divided it into a 

training set of 75% of the data (107  molecules) and training 

set of the remaining 25% (35 molecules).  For each 

experiment reported we validate the training/test split by 

doing 10 independent runs with different random 

taining/test splits.  The results for the models are therefore 

averages over these 10 runs.  

Experiment 1 – QSPR Method 

In this experiment we compared two trainable models with 

the best performing of the linear predictors, the QSPRs, 

used in the field.  On our data the model of Lao et al. was 

the best performing and its form is:  

 

log Kp = 0.5752 log P – 0.004475 MW – 2.64368 

 

For the comparison to be fair the trainable classifiers were 

only given the two features used by the QSPR, namely 

lipophilicty and molecular weight.  As stated earlier the 

non-linear model used was a Gaussian Process regressor 

with hyper parameters set from the training set.  In order to 

see how well the QSPR did against a linear predictor 

optimised for this specific data set a simple, single layer, 

linear neural network (NN) was also trained on the data.  

The results are shown in Table 1. 

 
TABLE 1 

Model ION  (%) NMSE 
Correlation 

Coefficient 

QSPR -53.25 ± 36.24 1.56± 0.35 0.24 ± 0.11 

NN 9.83 ± 11.1 0.93 ±  0.17 0.34 ±  0.17 

GPR 22.89 ± 10.62 0.79 ± 0.17 0.49 ± 0.11 

 

It is clear that the QSPR does not do at all well on this data 

set; it predicts a poorer value than the naïve predictor.  The 

reason for this is that this regressor was designed for a 

different set of molecules (with some overlap) than those 

used here.  It has not generalised well.  The single layer 

network (NN), also a linear model, has done better and does 

improve on the baseline.  The Gaussian Process model is 

clearly the best and this confirms our earlier results [5] that 

suggested that skin permeability prediction needs a non-

linear model.  Figure 1 illustrates the non-linearity of this 

problem.  The skin permeability, as predicted by the GP, is 

plotted against log P (vertical axis) and MW (horizontal 

axis). 

Experiment 2 – Feature Selection 

Each molecule can be represented by up to 6 features, and 

due to the small nature of our data we were able to 

complete a full evaluation of all combinations of these 

features.  In other words we formed data sets in which each 

molecule is represented by every possible pair of features 

(15 different sets), by each triple, and so, on until all six 

features were used. 

QuickTime™ and a
 decompressor

are needed to see this picture.

 
Fig. 1: A contour map of the predicted skin permeability against MW and 

log P.  The non linearity of the prediction is clear. 

 

This gives a total of 57 different data sets.  Both of our 

trainable models were trained using these 57 data sets.  First 

the 6 best performing GP models are shown in Table 2.  
TABLE 2 

GP PREDICTION WITH THE BEST PERFORMING FEATURES 

Combination of features NMSE ± SD 

MPt, Log P, HD 0.64 ± 0.13 

MW, MPt, Log P, HD 0.65 ± 0.15 

MW, MPt, SP, Log P, HD 0.65 ±  0.14 

MW,SP, Log P, HD 0.67 ± 0.18 

MPt, SP, Log P, HD 0.67 ±  0.12 

MW, Log P, HD 0.68 ± 0.19 

 

It can be seen that all the best performing models used Log 

P, the lipophilicity and HD, the number of hydrogen donor 

groups.  As well as these two the melting point, MPt ,and/or 

molecular weight, MW, were also included.  In fact from the 

modeling point of view melting point and molecular weight 

are interchangeable. 

As stated earlier it is possible to infer the length scale 

vector for the GP model from the training data. Table 3 

shows the length scales of each of the six inputs in a variety 

of different models 

It can be seen that for most variable the length scales are 

of the same order of magnitude.  However the solubility 

parameter SP, consistently has large length scales.  This 

suggests that for this data SP does not provide useful 

information for predicting permeability.  It is notable that 

whilst some features, such as Log P, have generally low 

lengthscales the importance of the features varies with the 

context in which they are used.  For example in the last 

model (MW, MPt, HA, HD) molecular weight is very 

important whereas in the second model (MW, MPt, Log P, 

HD ) it is not so. 



 

 
 

TABLE 3 

LENGTH SCALES FOR A VARIETY OF FEATURE SETS 

 Length scale  

Combination of 

features MW MPt SP Log P HA HD Features significance Ranking 

MPt, LogP, HD - 1.23 - 0.51 - 0.99 Log P > HD > MPt 

MW, MPt, Log P, HD 5.22 1.28 - 0.51 - 1.03 Log P > HD > MPt > MW 

MW, MPt, SP,  

Log P, HD 
5, 20 1.27 31.09 0.51 - 1.0 Log P > HD > MPt > MW > SP 

MPt, Log P, HA.HD - 1.14 - 0.85 2.51 1.11 Log P > HD > MPt > HA 

MW, SP,  

Log P, HD 
0.77 - 83.70 0.64 - 0.62 HD > Log P > MW > SP 

MPt, SP, Log P, HD - 1.22 24.47 0.51 - 0.98 Log P > HD > MPt > SP 

MW, LogP, HD 0.77 - - 0.64 - 0.62 HD > Log P > MW 

MW, Log P, HA, HD 0.62 - - 0.78 0.64 0.41 HD > HA > Log P > MW 

MW, MPt, SP,  

Log P, HA, HD 
0.90 1.31 53.92 0.86 0.70 0.39 HD > HA > Log P > MW > MPt > SP 

MW, MPt, HA 0.38 0.86 - - 0.43 - 
MW > HA > MPt 

 

MW, MPt, Log P,  

HA, HD 
0.90 1.32 - 0.87 0.70 0.40 

HD > HA > Log P 

> MW > MPt 

MW, MPt, HA, HD 0.26 1.91 - - 0.38 0.70 MW > HA > HD > MPt 

 

   
 

TABLE 4 

THE BEST FEATURE SETS WHEN THERE IS A RESTRICTION IN HOW MANY CAN BE USED 

Lowest 

NMSE model 

GP models NN models GP NMSE 

± SD 

NN NMSE 

± SD 

2 features MW, HD MPt, HA 
0.77 

± 0.19 

0.91 

± 0.13 

3 features MPt, Log P, HD MPt, SP, HA 
0.64 

± 0.13 

0.91 

± 0.14 

4 features MW, MPt, log P, HD MW, MPt, SP, HA 
0.65 

± 0.15 

0.93 

± 0.18 

5 features MW, MPt, SP, Log P, HD MW, MPt, SP, HA, HD 
0.65 

± 0.14 

0.96 

± 0.19 

6 features MW, MPt, SP, Log P, HA, HD MW, MPt, SP, Log P, HA, HD 
0.71 

± 0.15 

0.99 

± 0.20 

 

Next we look at the best combination of features if the number of features allowed is restricted.  The results are 



 

presented in Table 4.  Unsurprisingly it can be seen that the 

GP does better than the linear model.  For the GP only 3 

features were needed for best performance.  Adding further 

features did not change the performance much, although 

performance did drop when the sixth feature (HA) was 

added.  Once again Log P and HD were important features 

here and this is consistent with the length scale results. 

For the linear predictor no improvement was made above 

just using two features.  Interestingly the linear models did 

not want to use log P, presumably because the relation 

between lipophilicity and permeability is highly non-linear. 

V1. DISCUSSION 

Firstly we have confirmed and generalized our earlier result: 

GPs perform much better than linear predictors on skin 

permeability prediction.  This is true regardless of which 

features are used as inputs to the model and simply indicates 

that the relationship between molecular properties and 

permeability is non linear. 

For this problem domain the data set is very small and the 

number of molecular features that can be used is also small.  

This allowed us to undertake an unusual study.  We were 

able to look at every combination of the six input features to 

find which worked well.  We found that there was no simple 

ordering of the features, although one of the features, 

solvability, was consistently the least informative.  Different 

sets of features produced predictions that were equally good, 

although some features, for example lipophilicity, were 

present in all the best performing predictors.  For others their 

importance varied with the varying features they were paired 

with. 

The best performing model we could find was a GP with 

just 3 inputs, although having more features did not, for the 

most part, damage performance. 

We have recently been working on predicting the 

permeability of skin of non-humans (for example pig skin).  

We next want to find out if it is possible to improve 

permeability predictions of human skin with permeability 

data from other species. 
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